WO2021035653A1 - 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法 - Google Patents

金属有机骨架复合物比率电化学miR3123适体传感器的制备方法 Download PDF

Info

Publication number
WO2021035653A1
WO2021035653A1 PCT/CN2019/103464 CN2019103464W WO2021035653A1 WO 2021035653 A1 WO2021035653 A1 WO 2021035653A1 CN 2019103464 W CN2019103464 W CN 2019103464W WO 2021035653 A1 WO2021035653 A1 WO 2021035653A1
Authority
WO
WIPO (PCT)
Prior art keywords
mir3123
bpnss
mof
aptamer
electrochemical
Prior art date
Application number
PCT/CN2019/103464
Other languages
English (en)
French (fr)
Inventor
桂日军
孙玉娇
金辉
姜晓文
Original Assignee
青岛大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛大学 filed Critical 青岛大学
Priority to US17/051,781 priority Critical patent/US11099150B1/en
Publication of WO2021035653A1 publication Critical patent/WO2021035653A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/30Processes for applying liquids or other fluent materials performed by gravity only, i.e. flow coating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the invention belongs to the technical field of preparation of metal-organic framework composite materials and ratio electrochemical aptamer sensors, and specifically relates to a ratio electrochemical miR3123 aptamer based on a copper-based metal-organic framework nanocomposite co-doped with black phosphorous nanosheets and thionine
  • the method for preparing a body sensor can be used for the highly sensitive and selective quantitative detection of miR3123 in biomedical samples.
  • MicroRNAs are a class of non-coding single-stranded RNA molecules that are encoded by endogenous genes with a length of about 22 nucleotides. In the process of cell differentiation and biological development, it participates in the regulation of post-transcriptional gene expression in animals and plants. Because of their remarkable functions, miRNAs have aroused extensive research interest of scientific and technological workers. With the continuous deepening of research work, researchers have discovered that small RNA gene regulation plays an important role in the development of tumors, heart disease, and neurological diseases. Therefore, small RNAs are considered as a new biomarker for diseases. Diagnostic research.
  • miR3123 is a 17-nucleotide microRNA, which exhibits significant expression changes in early gastric cancer and can be used as a potential biomarker for early diagnosis of gastric cancer. Quantitative detection of miR3123 in humans is helpful for early diagnosis and treatment of gastric cancer.
  • Daneshpour et al. designed a dual-signal electrochemical nano-biosensor for the detection of gastric cancer-related marker miR-106a (Maryam Daneshpour, Behzad Karimi, Kobra Omidfar. Simultaneous detection of gastric cancer-involved miR-106a and let- 7a through a dual-signal-marked electrochemical nanobiosensor. Biosensors and Bioelectronics, 2018, 109, 197-205).
  • Ki et al. developed a local surface plasmon resonance sensor with enzyme-assisted target circulation for the detection of gastric cancer-related markers miR-10b (Jisun Ki, Hyo Young Lee, Hye Young Son, Yong-Min Huh, Seungjoo Haam.
  • Liu Hanshao et al. disclosed a method for reverse transcription and real-time quantitative PCR reaction of gastric cancer biomarker miR-378, using U6snRNA as an internal reference to calculate the relative quantitative value of miR-378 by PCR (Liu Hanshao; Meng Xianxin; Zhang Wei ; Zhang Chunxiu; Xiao Huasheng. Application of miR-378 biomarker in gastric cancer detection and diagnosis. National Invention Patent. Publication No. CN102605042A).
  • the present invention discloses a method for quantitative detection of gastric cancer disease-related marker miR3123, and reports a copper-based metal-organic framework Cu-MOF nanocomposite co-doped with black phosphorus nanosheets BPNSs and thionine TH The preparation method of the ratio electrochemical miR3123 aptamer sensor.
  • TH is reacted with Cu-MOF precursor to prepare TH/Cu-MOF composite, and BPNSs dispersion liquid is drip-coated on the composite to prepare BPNSs/TH/Cu-MOF composite, and the composite is drip-coated on bare glass carbon
  • a single-stranded DNA aptamer labeled with ferrocene Fc was adsorbed on BPNSs to prepare an aptamer-BPNSs/TH/Cu-MOF nanocomposite.
  • the target molecule miR3123 specifically binds to its DNA single-stranded aptamer, causing Fc-DNA to break away from the BPNSs and away from the electrode surface, causing the Fc electrochemical signal to weaken.
  • the purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and design a method that is simple and convenient, low cost, high sensitivity and good selectivity based on black phosphorus nanosheets and thionine co-doped copper-based metal organic framework nanocomposite
  • the preparation method of the ratio electrochemical miR3123 aptamer sensor is to overcome the shortcomings of the above-mentioned prior art, and design a method that is simple and convenient, low cost, high sensitivity and good selectivity based on black phosphorus nanosheets and thionine co-doped copper-based metal organic framework nanocomposite.
  • the preparation process of a ratio electrochemical miR3123 aptamer sensor based on black phosphorus nanosheets and thionine co-doped copper-based metal-organic framework nanocomposite includes the following steps:
  • a method for preparing a metal-organic framework complex ratio electrochemical miR3123 aptamer sensor characterized in that the method specifically includes the following steps:
  • TH/Cu-MOF complex Preparation of TH/Cu-MOF complex: Weigh 4mg copper nitrate trihydrate, 10 ⁇ L trifluoroacetic acid and 10mg polyvinylpyrrolidone into 12mL mixed solvent, containing 9mL N,N-dimethylformamide and 3mL Ethanol, stir evenly to form mixed solution A. Weigh 4mg of 4,4',4”,4”'-(porphin-5,10,15,20-tetraalkyl)tetrabenzoic acid and 4mg thionine, respectively, and add 3mL N,N-dimethyl In a mixed solvent of formamide and 1 mL of ethanol, stir evenly to form a mixed solution B.
  • the mixture A was added dropwise to the mixture B, and after stirring and ultrasonic action for 10 minutes, the A-B mixture was heated to 80°C for 3 hours.
  • the reaction product solution was centrifuged at 8000 rpm for 10 min, washed with ethanol and distilled water, and dried to obtain a TH/Cu-MOF composite, which was dispersed in ethanol for later use.
  • the glassy carbon electrode modified by the aptamer-BPNSs/TH/Cu-MOF nanocomposite is used as the working electrode, placed in the three-electrode system of the electrochemical workstation, and the phosphate water buffer is used as the electrolyte, and added to it.
  • Determine a certain amount of miR3123 measure the electrochemical square wave voltammetry curve at different miR3123 concentrations, use the peak intensity of the redox current of TH and Fc as the reference signal and response signal, and fit the ratio of the two current peak intensity I Fc /I TH and
  • the linear relationship between the concentration of miR3123 is used to construct a ratio electrochemical aptamer sensor for the quantitative detection of miR3123.
  • the linear detection concentration range of miR3123 is 1nM ⁇ 10 ⁇ M, and the detection limit is 1 ⁇ 5nM.
  • the effect of the present invention is: a method for preparing a ratio electrochemical miR3123 aptamer sensor based on Cu-MOF nanocomposite co-doped with BPNSs and TH is reported.
  • TH and Cu-MOF precursor are reacted together to prepare TH/Cu-MOF composite, and the freshly prepared BPNSs dispersion liquid is drip-coated on TH/Cu-MOF to prepare BPNSs/TH/Cu-MOF composite.
  • the material is dripped on the surface of the bare glassy carbon electrode to construct the composite modified glassy carbon electrode.
  • Fc-labeled DNA single-stranded aptamers were enriched on BPNSs by adsorption, and aptamer-BPNSs/TH/Cu-MOF nanocomposites were prepared.
  • the target molecule miR3123 specifically binds to its DNA single-stranded aptamer Fc-DNA, so that Fc-DNA is separated from BPNSs, that is, Fc is far away from the electrode surface, causing the electrochemical signal of Fc to weaken. This process has little effect on the electrochemical signal of TH.
  • the linear relationship between the redox current peak intensity ratio I Fc /I TH and the concentration of miR3123 was fitted to construct a ratio electrochemical miR3123 aptamer sensor.
  • the method of the present invention is easy to operate, has strong anti-interference ability of the ratio electrochemical signal, high detection sensitivity and good selectivity, and can be used as a novel ratio electrochemical sensor for the high sensitivity of miR3123 in biomedical samples. And highly selective quantitative detection.
  • Figure 1 is a schematic diagram of the preparation of a ratio electrochemical aptamer sensor based on a copper-based metal-organic framework nanocomposite co-doped with black phosphorous nanosheets and thionine and the principle of miR3123 detection;
  • Figure 2(a) is the electrochemical square wave voltammetry curve corresponding to the ratio electrochemical aptamer sensor system in the presence of different miR3123 concentrations;
  • Figure 2(b) shows the redox current peak intensity ratio I Fc /I TH of ferrocene and thionine corresponding to different miR3123 concentrations, fitting the linear relationship between different I Fc /I TH ratio values and miR3123 concentration.
  • the preparation method of the ratio electrochemical miR3123 aptamer sensor based on the copper-based metal-organic framework nanocomposite co-doped with black phosphorous nanosheets and thionine involved in this embodiment the preparation process and the principle schematic diagram of miR3123 detection are shown in Fig. 1 As shown, the specific process steps are as follows:
  • TH/Cu-MOF complex weigh 4mg copper nitrate trihydrate, 10 ⁇ L trifluoroacetic acid and 10mg polyvinylpyrrolidone into 12mL mixed solvent, containing 9mL N,N-dimethylformamide and 3mL ethanol, stir The mixed solution A is uniformly formed. Weigh 4mg of 4,4',4”,4”'-(porphin-5,10,15,20-tetraalkyl)tetrabenzoic acid and 4mg thionine, respectively, and add 3mL N,N-dimethyl In a mixed solvent of formamide and 1 mL of ethanol, stir evenly to form a mixed solution B.
  • the mixture A was added dropwise to the mixture B, and after stirring and ultrasound for 10 minutes, the mixture A-B was heated to 80°C for 3 hours.
  • the reaction product solution was centrifuged at 8000 rpm for 10 min, washed with ethanol and distilled water, and dried to obtain a TH/Cu-MOF composite, which was dispersed in ethanol for later use.
  • BPNSs/TH/Cu-MOF complex Preparation of BPNSs/TH/Cu-MOF complex: Weigh 15 mg of black phosphorus block crystals and add 30 mL of 1-methyl-2-pyrrolidone, treat them in an ultrasonic cleaner for 6 hours, and then transfer them to a probe-type ultrasonic generator After treatment for 4 hours, the ultrasonically treated dispersion was centrifuged at 10000 rpm for 20 minutes to remove larger-sized products, and the upper dispersion was centrifuged at 3500 rpm for 20 minutes to obtain a BPNSs dispersion.
  • Preparation of aptamer-BPNSs/TH/Cu-MOF nanocomposite drop the cross-linking agent Nafion on the polished surface of the bare glassy carbon electrode, and then drop the BPNSs/TH/Cu-MOF composite dispersion to form The composite modified glassy carbon electrode.
  • the modified electrode was immersed in the phosphate water buffer containing 2 ⁇ M miR3123 corresponding to the DNA single-stranded aptamer Fc-DNA, incubated at 37°C for 2h, then the electrode was taken out, and the aptamer-BPNSs were prepared on the electrode surface after natural drying.
  • /TH/Cu-MOF nanocomposite drop the cross-linking agent Nafion on the polished surface of the bare glassy carbon electrode, and then drop the BPNSs/TH/Cu-MOF composite dispersion to form The composite modified glassy carbon electrode.
  • the modified electrode was immersed in the phosphate water buffer containing 2 ⁇ M miR3123 corresponding to the DNA single
  • the glassy carbon electrode modified by the aptamer-BPNSs/TH/Cu-MOF nanocomposite is used as the working electrode, placed in the three-electrode system of the electrochemical workstation, and the phosphate water buffer is used as the electrolyte, and a certain amount of miR3123 is added to it Measure the electrochemical square wave volt-ampere curve under different miR3123 concentrations (as shown in Figure 2(a)), and use the redox current peak intensity of TH and Fc as the reference signal and response signal to fit the two current peak intensities
  • the linear relationship between the ratio I Fc /I TH and the concentration of miR3123 was used to construct a ratio electrochemical aptamer sensor for the quantitative detection of miR3123.
  • the linear detection concentration range of miR3123 is 10nM ⁇ 2 ⁇ M, and the detection limit is 2nM.
  • Example 2 The ratio electrochemical aptamer sensor based on copper-based metal-organic framework nanocomposite co-doped with black phosphorous nanosheets and thionine, its preparation process and schematic diagram of the principle of miR3123 detection, TH/Cu -The process steps for the preparation of MOF and BPNSs/TH/Cu-MOF composite are the same as in Example 1. Other specific process steps are as follows:
  • the crosslinking agent Nafion was dropped on the polished and polished surface of the bare glassy carbon electrode, and then the BPNSs/TH/Cu-MOF composite dispersion was dropped to form a composite modified glassy carbon electrode.
  • the modified electrode was immersed in a phosphate water buffer containing 5 ⁇ M of miR3123 corresponding to the DNA single-stranded aptamer Fc-DNA, incubated at 37°C for 2h, then the electrode was taken out, and the aptamer-BPNSs were prepared on the electrode surface after natural drying. /TH/Cu-MOF nanocomposite.
  • the glassy carbon electrode modified by the aptamer-BPNSs/TH/Cu-MOF nanocomposite is used as the working electrode, placed in the three-electrode system of the electrochemical workstation, and the phosphate water buffer is used as the electrolyte, and a certain amount of miR3123 is added to it Measure the electrochemical square wave volt-ampere curve at different miR3123 concentrations, and use the redox current peak intensity of TH and Fc as the reference signal and response signal to fit the ratio of the two current peak intensity I Fc /I TH to the concentration of miR3123 The linear relationship between the two was used to construct a ratio electrochemical aptamer sensor for miR3123 quantitative detection.
  • the linear detection concentration range of miR3123 is 10nM ⁇ 10 ⁇ M, and the detection limit is 5nM.
  • Example 3 The ratio electrochemical aptamer sensor based on the copper-based metal-organic framework nanocomposite co-doped with black phosphorous nanosheets and thionine, its preparation process and schematic diagram of the principle of miR3123 detection, TH/Cu -The process steps for the preparation of MOF and BPNSs/TH/Cu-MOF composite are the same as in Example 1. Other specific process steps are as follows:
  • the crosslinking agent Nafion was dropped on the polished and polished surface of the bare glassy carbon electrode, and then the BPNSs/TH/Cu-MOF composite dispersion was dropped to form a composite modified glassy carbon electrode.
  • the modified electrode was immersed in a phosphate water buffer containing 8 ⁇ M miR3123 corresponding to the DNA single-stranded aptamer Fc-DNA, incubated at 37°C for 2h, then the electrode was taken out, and the aptamer-BPNSs were prepared on the electrode surface after natural drying. /TH/Cu-MOF nanocomposite.
  • the glassy carbon electrode modified by the aptamer-BPNSs/TH/Cu-MOF nanocomposite is used as the working electrode, placed in the three-electrode system of the electrochemical workstation, and the phosphate water buffer is used as the electrolyte, and a certain amount of miR3123 is added to it Measure the electrochemical square wave volt-ampere curve at different miR3123 concentrations, and use the redox current peak intensity of TH and Fc as the reference signal and response signal to fit the ratio of the two current peak intensity I Fc /I TH to the concentration of miR3123 The linear relationship between the two was used to construct a ratio electrochemical aptamer sensor for miR3123 quantitative detection.
  • the linear detection concentration range of miR3123 is 1nM ⁇ 1 ⁇ M, and the detection limit is 1nM.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Nanotechnology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Algebra (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)

Abstract

基于黑磷纳米片BPNSs和硫堇TH掺杂的铜基金属有机骨架Cu-MOF复合物的比率电化学miR3123适体传感器的制备方法。将TH与Cu-MOF前驱体反应制备TH/Cu-MOF,滴涂BPNSs制备BPNSs/TH/Cu-MOF,将其滴涂在电极上。二茂铁Fc标记的DNA单链适体吸附在BPNSs上,制得适体-BPNSs/TH/Cu-MOF。靶分子miR3123与DNA单链适体Fc-DNA结合,使Fc-DNA脱离BPNSs,引起Fc电化学信号减弱,而对TH信号影响甚微。拟合电流峰强度比率IFc/ITH与miR3123浓度之间的线性关系,构建比率电化学miR3123适体传感器。

Description

金属有机骨架复合物比率电化学miR3123适体传感器的制备方法 技术领域:
本发明属于金属有机骨架复合材料和比率电化学适体传感器的制备技术领域,具体涉及一种基于黑磷纳米片和硫堇共掺杂的铜基金属有机骨架纳米复合物的比率电化学miR3123适体传感器的制备方法,其制备的传感器可用于生物医学样品中miR3123的高灵敏和高选择性定量检测。
背景技术:
MicroRNAs简写为miRNAs,是一类非编码的单链RNA分子,由长度约为22个核苷酸的内源性基因编码。在细胞分化和生物发育过程中,参与调节动植物转录后的基因表达。miRNAs因其显著的功能,引起了科技工作者广泛的研究兴趣。随着研究工作的不断深入,研究者发现小RNA基因调控在肿瘤、心脏病和神经系统疾病等的发展中起着重要作用,小RNA因此被认为是一种新的生物标记物,用于疾病诊断研究。目前已知检测小RNA的方法,主要包括荧光猝灭、指数等温扩增、电化学发光和实时聚合酶链式反应平台。miR3123是一种含17核苷酸的微小RNA,它在早期胃癌中表现出明显的表达变化,可作为胃癌早期诊断的潜在生物标志物。对人体中miR3123的定量检测,有助于胃癌的早期诊断和治疗。
Daneshpour等设计了一种双信号标记的电化学纳米生物传感器,用于胃癌相关标志物miR-106a的检测(Maryam Daneshpour,Behzad Karimi,Kobra Omidfar.Simultaneous detection of gastric cancer-involved miR-106a and let-7a through a dual-signal-marked electrochemical nanobiosensor.Biosensors and Bioelectronics,2018,109,197-205)。Ki等发展了酶辅助靶循环的局域表面等离子体共振传感器,用于胃癌相关标志物miR-10b的检测(Jisun Ki,Hyo young Lee,Hye Young Son,Yong-Min Huh,Seungjoo Haam.Sensitive plasmonic detection of miR-10b in biological samples using enzyme-assisted target recycling and developed LSPR probe.ACS Appl.Mater.Interfaces,2019,11,18923-18929)。刘寒梢等公开了一种对胃癌生物标志物miR-378进行反转录和实时定量PCR反应,以U6snRNA作为内参计算miR-378的PCR相对定量值的方法(刘寒梢;孟宪欣;张伟;张春秀; 肖华胜.miR-378生物标志物在胃癌检测、诊断中的应用.国家发明专利.公开号CN102605042A)。王振宁等公开了一种胃癌疾病进展分子标志物miR-1258的试剂盒,用于胃癌术后早期进行预后治疗(王振宁;宋永喜;周欣;黄选章;高鹏;孙景旭;陈晓婉.胃癌进展及预后相关分子标志物miR-1258.国家发明专利.公开号CN104531856A)。
尽管有关胃癌疾病相关标志物小RNA检测的工作已有国内外文献和专利报道,但迄今为止,尚未检索到有关miR3123定量检测的国内外文献和专利报道。基于此,本发明公开了一种胃癌疾病相关标志物miR3123定量检测的方法,报道了一种基于黑磷纳米片BPNSs和硫堇TH共掺杂的铜基金属有机骨架Cu-MOF纳米复合物的比率电化学miR3123适体传感器的制备方法。将TH与Cu-MOF前驱体一起反应制备TH/Cu-MOF复合物,将BPNSs分散液滴涂在复合物上制备BPNSs/TH/Cu-MOF复合物,将此复合物滴涂在裸玻碳电极表面,二茂铁Fc标记的DNA单链适体吸附在BPNSs上,制得适体-BPNSs/TH/Cu-MOF纳米复合物。靶分子miR3123与其DNA单链适体特异性结合,使Fc-DNA脱离BPNSs而远离电极表面,引起Fc电化学信号减弱,此过程对TH的电化学信号影响甚微。由此,以TH为参比,Fc为信号响应单元,拟合氧化还原电流峰强度比率I Fc/I TH与miR3123浓度之间的线性关系,构建比率电化学miR3123适体传感器。截止目前,尚未有基于黑磷纳米片和硫堇共掺杂的铜基金属有机骨架纳米复合物,以及比率电化学适体传感器用于miR3123定量检测的国内外文献和专利的报道。
发明内容:
本发明的目的在于克服上述现有技术存在的不足,设计一种方法简便、成本低、灵敏高和选择性好的一种基于黑磷纳米片和硫堇共掺杂铜基金属有机骨架纳米复合物的比率电化学miR3123适体传感器的制备方法。
为实现上述目的,本发明涉及的一种基于黑磷纳米片和硫堇共掺杂铜基金属有机骨架纳米复合物的比率电化学miR3123适体传感器的制备工艺包括以下步骤:
1.金属有机骨架复合物比率电化学miR3123适体传感器的制备方法,其特征在于,该方法具体包括以下步骤:
(1)TH/Cu-MOF复合物的制备:称取4mg三水合硝酸铜、10μL三氟乙酸和10mg聚乙烯吡咯烷酮分别加入12mL混合溶剂中,含有9mL N,N-二甲基甲酰胺和3mL乙醇,搅拌均匀形成混合液A。称取4mg的4,4’,4”,4”’-(卟吩-5,10,15,20-四烷基)四苯甲酸和4mg硫堇分别加入含有3mL N,N-二甲基甲酰胺和1mL乙醇的混合溶剂中,搅拌均匀形成混合液B。将混合液A逐滴加入混合液B中,搅拌和超声作用10min后,将A-B混合液加热至80℃反应3h。反应产物溶液在8000rpm转速下离心10min,用乙醇和蒸馏水洗涤、干燥后得到TH/Cu-MOF复合物,将此复合物分散在乙醇中备用。
(2)BPNSs/TH/Cu-MOF复合物的制备:称取15mg黑磷块状晶体加入30mL的1-甲基-2-吡咯烷酮中,在超声波清洗机中处理6h后,转入探头式超声波发生器中处理4h,超声处理后的分散液在10000rpm转速下离心20min去除尺寸较大的产物,取上层分散液在3500rpm转速下离心20min,得到BPNSs分散液。将其逐滴加入TH/Cu-MOF复合物的分散液中,保持搅拌和超声处理1h,然后在8000rpm转速下离心15min,制得BPNSs/TH/Cu-MOF复合物分散液备用。
(3)适体-BPNSs/TH/Cu-MOF纳米复合物的制备:在抛光打磨处理后的裸玻碳电极表面滴加交联剂Nafion,然后滴涂BPNSs/TH/Cu-MOF复合物分散液,形成该复合物改性的玻碳电极。将此改性电极浸没在含有1~10μM的miR3123对应DNA单链适体Fc-DNA的磷酸盐水缓冲液中,在37℃下孵育2h,然后取出电极,自然干燥后在电极表面制得适体-BPNSs/TH/Cu-MOF纳米复合物。
(4)以适体-BPNSs/TH/Cu-MOF纳米复合物改性的玻碳电极为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,向其中加入一定量miR3123,测定不同miR3123浓度下的电化学方波伏安曲线,以TH和Fc的氧化还原电流峰强度为参比信号和响应信号,拟合两个电流峰强度比率I Fc/I TH与miR3123浓度之间的线性关系,构建用于miR3123定量检测的比率电化学适体传感器。其中,miR3123的线性检测浓度范围为1nM~10μM,检测限为1~5nM。
本发明的效果是:报道了一种基于BPNSs和TH共掺杂的Cu-MOF纳米复合物的比率电化学miR3123适体传感器的制备方法。首先将TH与Cu-MOF前驱体共同反应制备TH/Cu-MOF复合物,将新鲜制备的BPNSs分散液滴涂在 TH/Cu-MOF上制备BPNSs/TH/Cu-MOF复合物,将此复合物滴涂在裸玻碳电极表面,构建该复合物改性的玻碳电极。Fc标记的DNA单链适体通过吸附富集在BPNSs上,制得适体-BPNSs/TH/Cu-MOF纳米复合物。靶分子miR3123与其DNA单链适体Fc-DNA特异性结合,使Fc-DNA脱离BPNSs,即Fc远离电极表面,引起Fc电化学信号减弱,此过程对TH的电化学信号影响甚微。基于此,以TH为参比,Fc为信号响应单元,拟合氧化还原电流峰强度比率I Fc/I TH与miR3123浓度之间的线性关系,构建比率电化学miR3123适体传感器。与现有技术相比,本发明方法操作简便,比率电化学信号抗干扰能力强,检测灵敏度高和选择性好,可作为一种新颖的比率电化学传感器用于生物医学样品中miR3123的高灵敏和高选择性定量检测。
附图说明:
图1为基于黑磷纳米片和硫堇共掺杂的铜基金属有机骨架纳米复合物的比率电化学适体传感器的制备与miR3123检测的原理示意图;
图2(a)为测定不同miR3123浓度存在下该比率电化学适体传感器体系对应的电化学方波伏安曲线;
图2(b)为不同miR3123浓度对应的二茂铁和硫堇的氧化还原电流峰强度比率I Fc/I TH,拟合不同I Fc/I TH比率值与miR3123浓度之间的线性关系。
具体实施方式:
下面结合附图并通过具体实施例对本发明进行详细说明。
实施例1:
本实施例涉及的基于黑磷纳米片和硫堇共掺杂的铜基金属有机骨架纳米复合物的比率电化学miR3123适体传感器的制备方法,其制备工艺和miR3123检测的原理示意图如图1所示,具体工艺步骤如下:
TH/Cu-MOF复合物的制备:称取4mg三水合硝酸铜、10μL三氟乙酸和10mg聚乙烯吡咯烷酮分别加入12mL混合溶剂中,含有9mL N,N-二甲基甲酰胺和3mL乙醇,搅拌均匀形成混合液A。称取4mg的4,4’,4”,4”’-(卟吩-5,10,15,20-四烷基)四苯甲酸和4mg硫堇分别加入含有3mL N,N-二甲基甲酰胺和1mL乙醇的混合溶剂中,搅拌均匀形成混合液B。将混合液A逐滴加入混合 液B中,搅拌和超声作用10min后,将A-B混合液加热至80℃反应3h。反应产物溶液在8000rpm转速下离心10min,用乙醇和蒸馏水洗涤、干燥后得到TH/Cu-MOF复合物,将此复合物分散在乙醇中备用。
BPNSs/TH/Cu-MOF复合物的制备:称取15mg黑磷块状晶体加入30mL的1-甲基-2-吡咯烷酮中,在超声波清洗机中处理6h后,转入探头式超声波发生器中处理4h,超声处理后的分散液在10000rpm转速下离心20min去除尺寸较大的产物,取上层分散液在3500rpm转速下离心20min,得到BPNSs分散液。将其逐滴加入TH/Cu-MOF复合物的分散液中,保持搅拌和超声处理1h,然后在8000rpm转速下离心15min,制得BPNSs/TH/Cu-MOF复合物分散液备用。
适体-BPNSs/TH/Cu-MOF纳米复合物的制备:在抛光打磨处理后的裸玻碳电极表面滴加交联剂Nafion,然后滴涂BPNSs/TH/Cu-MOF复合物分散液,形成该复合物改性的玻碳电极。将此改性电极浸没在含有2μM的miR3123对应DNA单链适体Fc-DNA的磷酸盐水缓冲液中,在37℃下孵育2h,然后取出电极,自然干燥后在电极表面制得适体-BPNSs/TH/Cu-MOF纳米复合物。
以适体-BPNSs/TH/Cu-MOF纳米复合物改性的玻碳电极为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,向其中加入一定量miR3123,测定不同miR3123浓度下的电化学方波伏安曲线(如图2(a)所示),以TH和Fc的氧化还原电流峰强度为参比信号和响应信号,拟合两个电流峰强度比率I Fc/I TH与miR3123浓度之间的线性关系(如图2(b)所示),构建用于miR3123定量检测的比率电化学适体传感器。miR3123的线性检测浓度范围为10nM~2μM,检测限为2nM。
实施例2:本实施例涉及的基于黑磷纳米片和硫堇共掺杂的铜基金属有机骨架纳米复合物的比率电化学适体传感器,其制备工艺和miR3123检测的原理示意图,TH/Cu-MOF和BPNSs/TH/Cu-MOF复合物制备的工艺步骤同实施例1。其它具体工艺步骤如下:
在抛光打磨处理后的裸玻碳电极表面滴加交联剂Nafion,再滴涂BPNSs/TH/Cu-MOF复合物分散液,形成该复合物改性的玻碳电极。将此改性电极浸没在含有5μM的miR3123对应DNA单链适体Fc-DNA的磷酸盐水缓冲液中,在37℃下孵育2h,然后取出电极,自然干燥后在电极表面制得适体-BPNSs/TH/Cu-MOF纳米复合物。
以适体-BPNSs/TH/Cu-MOF纳米复合物改性的玻碳电极为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,向其中加入一定量miR3123,测定不同miR3123浓度下的电化学方波伏安曲线,以TH和Fc的氧化还原电流峰强度为参比信号和响应信号,拟合两个电流峰强度比率I Fc/I TH与miR3123浓度之间的线性关系,构建用于miR3123定量检测的比率电化学适体传感器。miR3123的线性检测浓度范围为10nM~10μM,检测限为5nM。
实施例3:本实施例涉及的基于黑磷纳米片和硫堇共掺杂的铜基金属有机骨架纳米复合物的比率电化学适体传感器,其制备工艺和miR3123检测的原理示意图,TH/Cu-MOF和BPNSs/TH/Cu-MOF复合物制备的工艺步骤同实施例1。其它具体工艺步骤如下:
在抛光打磨处理后的裸玻碳电极表面滴加交联剂Nafion,再滴涂BPNSs/TH/Cu-MOF复合物分散液,形成该复合物改性的玻碳电极。将此改性电极浸没在含有8μM的miR3123对应DNA单链适体Fc-DNA的磷酸盐水缓冲液中,在37℃下孵育2h,然后取出电极,自然干燥后在电极表面制得适体-BPNSs/TH/Cu-MOF纳米复合物。
以适体-BPNSs/TH/Cu-MOF纳米复合物改性的玻碳电极为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,向其中加入一定量miR3123,测定不同miR3123浓度下的电化学方波伏安曲线,以TH和Fc的氧化还原电流峰强度为参比信号和响应信号,拟合两个电流峰强度比率I Fc/I TH与miR3123浓度之间的线性关系,构建用于miR3123定量检测的比率电化学适体传感器。miR3123的线性检测浓度范围为1nM~1μM,检测限为1nM。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

  1. 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法,其特征在于,该方法具体包括以下步骤:
    (1)TH/Cu-MOF复合物的制备:称取4mg三水合硝酸铜、10μL三氟乙酸和10mg聚乙烯吡咯烷酮分别加入12mL混合溶剂中,含有9mL N,N-二甲基甲酰胺和3mL乙醇,搅拌均匀形成混合液A,称取4mg的4,4’,4”,4”’-(卟吩-5,10,15,20-四烷基)四苯甲酸和4mg硫堇分别加入含有3mL N,N-二甲基甲酰胺和1mL乙醇的混合溶剂中,搅拌均匀形成混合液B,将混合液A逐滴加入混合液B中,搅拌和超声作用10min后,将A-B混合液加热至80℃反应3h,反应产物溶液在8000rpm转速下离心10min,用乙醇和蒸馏水洗涤、干燥后得到TH/Cu-MOF复合物,将此复合物分散在乙醇中备用;
    (2)BPNSs/TH/Cu-MOF复合物的制备:称取15mg黑磷块状晶体加入30mL的1-甲基-2-吡咯烷酮中,在超声波清洗机中处理6h后,转入探头式超声波发生器中处理4h,超声处理后的分散液在10000rpm转速下离心20min去除尺寸较大的产物,取上层分散液在3500rpm转速下离心20min,得到BPNSs分散液,将其逐滴加入TH/Cu-MOF复合物的分散液中,保持搅拌和超声处理1h,然后在8000rpm转速下离心15min,制得BPNSs/TH/Cu-MOF复合物分散液备用;
    (3)适体-BPNSs/TH/Cu-MOF纳米复合物的制备:在抛光打磨处理后的裸玻碳电极表面滴加交联剂Nafion,然后滴涂BPNSs/TH/Cu-MOF复合物分散液,形成该复合物改性的玻碳电极,将此改性电极浸没在含有1~10μM的miR3123对应DNA单链适体Fc-DNA的磷酸盐水缓冲液中,在37℃下孵育2h,然后取出电极,自然干燥后在电极表面制得适体-BPNSs/TH/Cu-MOF纳米复合物;
    (4)以适体-BPNSs/TH/Cu-MOF纳米复合物改性的玻碳电极为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,向其中加入一定量miR3123,测定不同miR3123浓度下的电化学方波伏安曲线,以TH和Fc的氧化还原电流峰强度为参比信号和响应信号,拟合两个电流峰强度比率I Fc/I TH与miR3123浓度之间的线性关系,构建用于miR3123定量检测的比率电化学适体传感器,其中,miR3123的线性检测浓度范围为1nM~10μM,检测限为1~5nM。
PCT/CN2019/103464 2019-08-27 2019-08-30 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法 WO2021035653A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/051,781 US11099150B1 (en) 2019-08-27 2019-08-30 Method for preparing ratiometric electrochemical miR3123 aptasensor based on metal-organic framework composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910796313.5A CN110455896B (zh) 2019-08-27 2019-08-27 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法
CN201910796313.5 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021035653A1 true WO2021035653A1 (zh) 2021-03-04

Family

ID=68489371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103464 WO2021035653A1 (zh) 2019-08-27 2019-08-30 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法

Country Status (3)

Country Link
US (1) US11099150B1 (zh)
CN (1) CN110455896B (zh)
WO (1) WO2021035653A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075269A (zh) * 2021-03-26 2021-07-06 常州大学 一种用于特异性检测氯霉素的电化学发光适配体传感器及其制备方法和应用
CN113945619A (zh) * 2021-10-18 2022-01-18 曲阜师范大学 MPBA@Au-MOF复合材料光电化学传感器的制备方法及应用
CN114839242A (zh) * 2022-03-25 2022-08-02 河北医科大学 一种检测农药的电化学传感器、其制备方法及应用
CN114858875A (zh) * 2022-03-07 2022-08-05 青岛科技大学 一种自增强光电化学检测卡那霉素的方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110836921B (zh) * 2019-12-02 2020-05-08 青岛大学 检测应激诱导磷蛋白的纳米电化学适体传感器的制备方法
CN111855625B (zh) * 2019-12-02 2022-11-04 南京市妇幼保健院 一种基于Cu-MOF的CA125检测试剂盒及其应用
CN111363161B (zh) * 2020-04-21 2022-02-11 周口师范学院 一种基于铽-有机框架材料的钍离子荧光探针及制备方法
CN111366625B (zh) * 2020-05-07 2021-04-02 青岛大学 基于锌配位黑磷纳米片复合物与生物酶催化的比率电化学尿酸传感器的制备方法
CN111398393B (zh) * 2020-05-20 2021-02-09 河南工业大学 一种用于棒曲霉素检测的电化学适体比率传感器制备方法
CN112421038A (zh) * 2020-11-06 2021-02-26 清华大学 金属有机框架包覆黑磷纳米片的复合材料及其制备方法和应用
CN112763472B (zh) * 2020-12-29 2022-03-08 南京师范大学 一种用于检测t-2毒素残留的检测系统及其制备方法和应用
CN113237928B (zh) * 2021-04-25 2023-02-17 重庆医科大学 一种检测乙肝病毒dna的电化学发光传感器及其制备与应用
CN113155929B (zh) * 2021-05-17 2023-02-28 青岛大学 基于硼纳米片负载药物与mof-纳米酶杂化物的比率电化学传感器的制备方法
CN113252752B (zh) * 2021-05-18 2023-09-15 青岛大学 硫纳米粒/mof/硼纳米片/二茂铁基纳米杂化物比率电化学传感器的制备方法
CN113388859B (zh) * 2021-05-19 2022-12-13 东华理工大学 一种Th-MOF负载Cu基单位点催化材料及其制备方法和应用
CN113740398B (zh) * 2021-08-14 2023-12-22 云南师范大学 一种比率型生物传感器及用于检测muc1的方法
CN113720819B (zh) * 2021-08-30 2023-10-17 安徽师范大学 一种适配体dna-荧光探针传感器及其制备方法和利用其定量检测gtx1/4的方法
CN113884556B (zh) * 2021-10-15 2023-12-15 河南工业大学 一种用于赭曲霉毒素a检测的比率型电化学传感器制备方法
CN113960131A (zh) * 2021-10-18 2022-01-21 济南大学 一种双信号电化学适配体传感器及测定啶虫脒的方法
CN114624304B (zh) * 2021-12-09 2023-09-19 重庆医科大学国际体外诊断研究院 基于铈银纳米花和分支DNAzyme步行器的miRNA电化学传感器
CN114518397B (zh) * 2022-01-14 2023-09-26 江苏大学 一种奶粉中微量元素的电化学检测装置的构建方法及其应用
CN114534789B (zh) * 2022-01-28 2024-01-26 上海健康医学院 羟基磷酸铜-有机金属离子骨架/多壁碳纳米管复合材料及其制备方法和应用
CN114813885B (zh) * 2022-04-01 2023-03-14 上海大学 一种多通道微流控电化学传感芯片的制备方法及应用
WO2023206075A1 (en) * 2022-04-26 2023-11-02 Micropoint Biotechnologies, Co., Ltd. Electrochemical dual-signal detection method and device for detecting biomarkers
CN114858898B (zh) * 2022-05-23 2023-04-18 山西大学 荧光/电化学双信号模式生物传感器及其构建方法和应用
CN115015362B (zh) * 2022-05-26 2024-01-12 广西壮族自治区农业科学院 一种检测杨梅素的电化学方法
CN115974786B (zh) * 2022-07-18 2024-05-31 中南民族大学 基于离子液体功能化镧系金属有机框架的光电化学和电化学双模式ctDNA传感器
CN116046863A (zh) * 2022-12-08 2023-05-02 河南省科学院高新技术研究中心 一种基于mof双信号探针的比率型电化学传感器及其制备方法和检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104707569A (zh) * 2015-03-09 2015-06-17 云南大学 一种用于吸附磷酸根离子的MOFs材料
CN106124581A (zh) * 2016-06-12 2016-11-16 青岛大学 同一体系构建两种比率电化学传感器检测抗肿瘤药物方法
CN108745404A (zh) * 2018-06-14 2018-11-06 苏州大学 基于黑磷/金属有机框架修饰的氮化碳膜复合材料及其制备方法与在废气处理中的应用
CN109239040A (zh) * 2018-10-09 2019-01-18 太原理工大学 一种基于适体链-黑磷纳米片荧光能量共振转移的砷离子检测方法
CN109540991A (zh) * 2018-09-20 2019-03-29 上海大学 功能化金属有机骨架材料、其构建的fkn传感器及其制备方法
CN109602919A (zh) * 2018-11-30 2019-04-12 东南大学 一种核壳金属有机框架包覆的黑磷量子点及其制备方法与应用
CN110078034A (zh) * 2019-04-29 2019-08-02 厦门大学深圳研究院 一种有机金属框架包覆二维黑磷纳米片的制备方法
CN110146571A (zh) * 2019-06-05 2019-08-20 郑州轻工业学院 双金属有机框架复合材料及其制备方法、适体传感器及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605042A (zh) 2011-01-20 2012-07-25 上海生物芯片有限公司 miR-378生物标志物在胃癌检测、诊断中的应用
CN104531856A (zh) 2014-12-19 2015-04-22 王振宁 胃癌进展及预后相关分子标志物miR-1258

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104707569A (zh) * 2015-03-09 2015-06-17 云南大学 一种用于吸附磷酸根离子的MOFs材料
CN106124581A (zh) * 2016-06-12 2016-11-16 青岛大学 同一体系构建两种比率电化学传感器检测抗肿瘤药物方法
CN108745404A (zh) * 2018-06-14 2018-11-06 苏州大学 基于黑磷/金属有机框架修饰的氮化碳膜复合材料及其制备方法与在废气处理中的应用
CN109540991A (zh) * 2018-09-20 2019-03-29 上海大学 功能化金属有机骨架材料、其构建的fkn传感器及其制备方法
CN109239040A (zh) * 2018-10-09 2019-01-18 太原理工大学 一种基于适体链-黑磷纳米片荧光能量共振转移的砷离子检测方法
CN109602919A (zh) * 2018-11-30 2019-04-12 东南大学 一种核壳金属有机框架包覆的黑磷量子点及其制备方法与应用
CN110078034A (zh) * 2019-04-29 2019-08-02 厦门大学深圳研究院 一种有机金属框架包覆二维黑磷纳米片的制备方法
CN110146571A (zh) * 2019-06-05 2019-08-20 郑州轻工业学院 双金属有机框架复合材料及其制备方法、适体传感器及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JINQIONG XU ET AL.: "Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin", MICROCHIMICA ACTA, vol. 186, no. 4, 13 March 2019 (2019-03-13), XP036766144, DOI: 20200509214100A *
JUN JIN ET AL.: "Directly anchoring 2D NiCo metal–organic frameworks on few-layer black phosphorus for advanced lithium-ion batteries", JOURNAL OF MATERIALS CHEMISTRY A, vol. 7, no. 2, 14 January 2019 (2019-01-14), pages 783 - 790, XP055785827 *
JUNDIE HU ET AL.: "Engineering black phosphorus to porous g-C3N4-metal–organic framework membrane: a platform for highly boosting photocatalytic performance", JOURNAL OF MATERIALS CHEMISTRY A, vol. 7, no. 9, 7 March 2019 (2019-03-07), pages 4408 - 4414, XP055785832 *
MING LI ET AL.: "Synthesis of a 2D phosphorus material in a MOF-based 2D nano-reactor", CHEMICAL SCIENCE, vol. 9, no. 27, 21 July 2018 (2018-07-21), pages 5912 - 5918, XP055785830 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075269A (zh) * 2021-03-26 2021-07-06 常州大学 一种用于特异性检测氯霉素的电化学发光适配体传感器及其制备方法和应用
CN113075269B (zh) * 2021-03-26 2023-01-17 常州大学 一种用于特异性检测氯霉素的电化学发光适配体传感器及其制备方法和应用
CN113945619A (zh) * 2021-10-18 2022-01-18 曲阜师范大学 MPBA@Au-MOF复合材料光电化学传感器的制备方法及应用
CN114858875A (zh) * 2022-03-07 2022-08-05 青岛科技大学 一种自增强光电化学检测卡那霉素的方法
CN114839242A (zh) * 2022-03-25 2022-08-02 河北医科大学 一种检测农药的电化学传感器、其制备方法及应用
CN114839242B (zh) * 2022-03-25 2024-01-09 河北医科大学 一种检测农药的电化学传感器、其制备方法及应用

Also Published As

Publication number Publication date
US20210247349A1 (en) 2021-08-12
CN110455896A (zh) 2019-11-15
CN110455896B (zh) 2020-02-11
US11099150B1 (en) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2021035653A1 (zh) 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法
Luo et al. A ratiometric electrochemical DNA biosensor for detection of exosomal MicroRNA
Wang et al. Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich
Chen et al. A sandwich-type electrochemical biosensing platform for microRNA-21 detection using carbon sphere-MoS2 and catalyzed hairpin assembly for signal amplification
WO2016062101A1 (zh) 检测ndm-1的修饰电极及其制备方法和应用
Borghei et al. Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles
Huang et al. Amperometric biosensor for microRNA based on the use of tetrahedral DNA nanostructure probes and guanine nanowire amplification
Chen et al. Fiber optic biosensor for detection of genetically modified food based on catalytic hairpin assembly reaction and nanocomposites assisted signal amplification
Yang et al. A self-powered 3D DNA walker with programmability and signal-amplification for illuminating microRNA in living cells
Meng et al. Pd nanoparticles-DNA layered nanoreticulation biosensor based on target-catalytic hairpin assembly for ultrasensitive and selective biosensing of microRNA-21
Li et al. A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination
CN110146566A (zh) 修饰电极、组合产品及其电致化学发光生物传感器与应用
WO2021114914A1 (zh) 一种基于铋烯纳米片荧光淬灭的生物传感器、miRNA检测试剂盒及应用
Sun et al. Reversible ratiometric electrochemiluminescence biosensor based on DNAzyme regulated resonance energy transfer for myocardial miRNA detection
Wang et al. Target-triggered hybridization chain reaction for ultrasensitive dual-signal miRNA detection
CN111440851A (zh) 一种检测miRNA的电化学生物传感器及其制备方法与应用
Wei et al. An enzyme-free surface plasmon resonance imaging biosensing method for highly sensitive detection of microRNA based on catalytic hairpin assembly and spherical nucleic acid
Wang et al. Orderly nucleic acid aggregates by electrostatic self-assembly in single cells for miRNA detection and visualizing
Zhang et al. An electrochemical biosensor based on DNA “nano-bridge” for amplified detection of exosomal microRNAs
Yuan et al. Highly-efficient luminol immobilization approach and exponential strand displacement reaction based electrochemiluminescent strategy for monitoring microRNA expression in cell
Zhang et al. An aptamer biosensor for leukemia marker mRNA detection based on polymerase-assisted signal amplification and aggregation of illuminator
Wang et al. Nano polythionine-based electrochemiluminescence biosensor for detection of the p16INK4a gene using RuAg@ AuNPs core-shell nanocomposites as DNA labels
Chen et al. A cancer cell membrane vesicle-packaged DNA nanomachine for intracellular microRNA imaging
Jiang et al. Novel electrochemical biosensing platform for microRNA: bivalent recognition-induced nanoparticle amplification occurred in nanochannels
He et al. Y-shaped probe for convenient and label-free detection of microRNA-21 in vitro

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942848

Country of ref document: EP

Kind code of ref document: A1