CN110455896A - 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法 - Google Patents

金属有机骨架复合物比率电化学miR3123适体传感器的制备方法 Download PDF

Info

Publication number
CN110455896A
CN110455896A CN201910796313.5A CN201910796313A CN110455896A CN 110455896 A CN110455896 A CN 110455896A CN 201910796313 A CN201910796313 A CN 201910796313A CN 110455896 A CN110455896 A CN 110455896A
Authority
CN
China
Prior art keywords
mir3123
bpnss
mof
aptamer
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910796313.5A
Other languages
English (en)
Other versions
CN110455896B (zh
Inventor
桂日军
孙玉娇
金辉
姜晓文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201910796313.5A priority Critical patent/CN110455896B/zh
Priority to US17/051,781 priority patent/US11099150B1/en
Priority to PCT/CN2019/103464 priority patent/WO2021035653A1/zh
Publication of CN110455896A publication Critical patent/CN110455896A/zh
Application granted granted Critical
Publication of CN110455896B publication Critical patent/CN110455896B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/30Processes for applying liquids or other fluent materials performed by gravity only, i.e. flow coating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Nanotechnology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Algebra (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)

Abstract

本发明公开了基于黑磷纳米片BPNSs和硫堇TH掺杂的铜基金属有机骨架Cu‑MOF复合物的比率电化学miR3123适体传感器的制备方法。将TH与Cu‑MOF前驱体反应制备TH/Cu‑MOF,滴涂BPNSs制备BPNSs/TH/Cu‑MOF,将其滴涂在电极上。二茂铁Fc标记的DNA单链适体吸附在BPNSs上,制得适体‑BPNSs/TH/Cu‑MOF。靶分子miR3123与DNA单链适体Fc‑DNA结合,使Fc‑DNA脱离BPNSs,引起Fc电化学信号减弱,而对TH信号影响甚微。拟合电流峰强度比率IFc/ITH与miR3123浓度之间的线性关系,构建比率电化学miR3123适体传感器。

Description

金属有机骨架复合物比率电化学miR3123适体传感器的制备 方法
技术领域:
本发明属于金属有机骨架复合材料和比率电化学适体传感器的制备技术领域,具体涉及一种基于黑磷纳米片和硫堇共掺杂的铜基金属有机骨架纳米复合物的比率电化学miR3123适体传感器的制备方法,其制备的传感器可用于生物医学样品中miR3123的高灵敏和高选择性定量检测。
背景技术:
MicroRNAs简写为miRNAs,是一类非编码的单链RNA分子,由长度约为22个核苷酸的内源性基因编码。在细胞分化和生物发育过程中,参与调节动植物转录后的基因表达。miRNAs因其显著的功能,引起了科技工作者广泛的研究兴趣。随着研究工作的不断深入,研究者发现小RNA基因调控在肿瘤、心脏病和神经系统疾病等的发展中起着重要作用,小RNA因此被认为是一种新的生物标记物,用于疾病诊断研究。目前已知检测小RNA的方法,主要包括荧光猝灭、指数等温扩增、电化学发光和实时聚合酶链式反应平台。miR3123是一种含17核苷酸的微小RNA,它在早期胃癌中表现出明显的表达变化,可作为胃癌早期诊断的潜在生物标志物。对人体中miR3123的定量检测,有助于胃癌的早期诊断和治疗。
Daneshpour等设计了一种双信号标记的电化学纳米生物传感器,用于胃癌相关标志物miR-106a的检测(Maryam Daneshpour,Behzad Karimi,Kobra Omidfar.Simultaneousdetection of gastric cancer-involved miR-106a and let-7a through a dual-signal-marked electrochemical nanobiosensor.Biosensors and Bioelectronics,2018,109,197-205)。Ki等发展了酶辅助靶循环的局域表面等离子体共振传感器,用于胃癌相关标志物miR-10b的检测(Jisun Ki,Hyo young Lee,Hye Young Son,Yong-Min Huh,Seungjoo Haam.Sensitive plasmonic detection of miR-10b in biological samplesusing enzyme-assisted target recycling and developed LSPR probe.ACSAppl.Mater.Interfaces,2019,11,18923-18929)。刘寒梢等公开了一种对胃癌生物标志物miR-378进行反转录和实时定量PCR反应,以U6snRNA作为内参计算miR-378的PCR相对定量值的方法(刘寒梢;孟宪欣;张伟;张春秀;肖华胜.miR-378生物标志物在胃癌检测、诊断中的应用.国家发明专利.公开号CN102605042A)。王振宁等公开了一种胃癌疾病进展分子标志物miR-1258的试剂盒,用于胃癌术后早期进行预后治疗(王振宁;宋永喜;周欣;黄选章;高鹏;孙景旭;陈晓婉.胃癌进展及预后相关分子标志物miR-1258.国家发明专利.公开号CN104531856A)。
尽管有关胃癌疾病相关标志物小RNA检测的工作已有国内外文献和专利报道,但迄今为止,尚未检索到有关miR3123定量检测的国内外文献和专利报道。基于此,本发明公开了一种胃癌疾病相关标志物miR3123定量检测的方法,报道了一种基于黑磷纳米片BPNSs和硫堇TH共掺杂的铜基金属有机骨架Cu-MOF纳米复合物的比率电化学miR3123适体传感器的制备方法。将TH与Cu-MOF前驱体一起反应制备TH/Cu-MOF复合物,将BPNSs分散液滴涂在复合物上制备BPNSs/TH/Cu-MOF复合物,将此复合物滴涂在裸玻碳电极表面,二茂铁Fc标记的DNA单链适体吸附在BPNSs上,制得适体-BPNSs/TH/Cu-MOF纳米复合物。靶分子miR3123与其DNA单链适体特异性结合,使Fc-DNA脱离BPNSs而远离电极表面,引起Fc电化学信号减弱,此过程对TH的电化学信号影响甚微。由此,以TH为参比,Fc为信号响应单元,拟合氧化还原电流峰强度比率IFc/ITH与miR3123浓度之间的线性关系,构建比率电化学miR3123适体传感器。截止目前,尚未有基于黑磷纳米片和硫堇共掺杂的铜基金属有机骨架纳米复合物,以及比率电化学适体传感器用于miR3123定量检测的国内外文献和专利的报道。
发明内容:
本发明的目的在于克服上述现有技术存在的不足,设计一种方法简便、成本低、灵敏高和选择性好的一种基于黑磷纳米片和硫堇共掺杂铜基金属有机骨架纳米复合物的比率电化学miR3123适体传感器的制备方法。
为实现上述目的,本发明涉及的一种基于黑磷纳米片和硫堇共掺杂铜基金属有机骨架纳米复合物的比率电化学miR3123适体传感器的制备工艺包括以下步骤:
1.金属有机骨架复合物比率电化学miR3123适体传感器的制备方法,其特征在于,该方法具体包括以下步骤:
(1)TH/Cu-MOF复合物的制备:称取4mg三水合硝酸铜、10μL三氟乙酸和10mg聚乙烯吡咯烷酮分别加入12mL混合溶剂中,含有9mL N,N-二甲基甲酰胺和3mL乙醇,搅拌均匀形成混合液A。称取4mg的4,4’,4”,4”’-(卟吩-5,10,15,20-四烷基)四苯甲酸和4mg硫堇分别加入含有3mL N,N-二甲基甲酰胺和1mL乙醇的混合溶剂中,搅拌均匀形成混合液B。将混合液A逐滴加入混合液B中,搅拌和超声作用10min后,将A-B混合液加热至80℃反应3h。反应产物溶液在8000rpm转速下离心10min,用乙醇和蒸馏水洗涤、干燥后得到TH/Cu-MOF复合物,将此复合物分散在乙醇中备用。
(2)BPNSs/TH/Cu-MOF复合物的制备:称取15mg黑磷块状晶体加入30mL的1-甲基-2-吡咯烷酮中,在超声波清洗机中处理6h后,转入探头式超声波发生器中处理4h,超声处理后的分散液在10000rpm转速下离心20min去除尺寸较大的产物,取上层分散液在3500rpm转速下离心20min,得到BPNSs分散液。将其逐滴加入TH/Cu-MOF复合物的分散液中,保持搅拌和超声处理1h,然后在8000rpm转速下离心15min,制得BPNSs/TH/Cu-MOF复合物分散液备用。
(3)适体-BPNSs/TH/Cu-MOF纳米复合物的制备:在抛光打磨处理后的裸玻碳电极表面滴加交联剂Nafion,然后滴涂BPNSs/TH/Cu-MOF复合物分散液,形成该复合物改性的玻碳电极。将此改性电极浸没在含有1~10μM的miR3123对应DNA单链适体Fc-DNA的磷酸盐水缓冲液中,在37℃下孵育2h,然后取出电极,自然干燥后在电极表面制得适体-BPNSs/TH/Cu-MOF纳米复合物。
(4)以适体-BPNSs/TH/Cu-MOF纳米复合物改性的玻碳电极为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,向其中加入一定量miR3123,测定不同miR3123浓度下的电化学方波伏安曲线,以TH和Fc的氧化还原电流峰强度为参比信号和响应信号,拟合两个电流峰强度比率IFc/ITH与miR3123浓度之间的线性关系,构建用于miR3123定量检测的比率电化学适体传感器。其中,miR3123的线性检测浓度范围为1nM~10μM,检测限为1~5nM。
本发明的效果是:报道了一种基于BPNSs和TH共掺杂的Cu-MOF纳米复合物的比率电化学miR3123适体传感器的制备方法。首先将TH与Cu-MOF前驱体共同反应制备TH/Cu-MOF复合物,将新鲜制备的BPNSs分散液滴涂在TH/Cu-MOF上制备BPNSs/TH/Cu-MOF复合物,将此复合物滴涂在裸玻碳电极表面,构建该复合物改性的玻碳电极。Fc标记的DNA单链适体通过吸附富集在BPNSs上,制得适体-BPNSs/TH/Cu-MOF纳米复合物。靶分子miR3123与其DNA单链适体Fc-DNA特异性结合,使Fc-DNA脱离BPNSs,即Fc远离电极表面,引起Fc电化学信号减弱,此过程对TH的电化学信号影响甚微。基于此,以TH为参比,Fc为信号响应单元,拟合氧化还原电流峰强度比率IFc/ITH与miR3123浓度之间的线性关系,构建比率电化学miR3123适体传感器。与现有技术相比,本发明方法操作简便,比率电化学信号抗干扰能力强,检测灵敏度高和选择性好,可作为一种新颖的比率电化学传感器用于生物医学样品中miR3123的高灵敏和高选择性定量检测。
附图说明:
图1为基于黑磷纳米片和硫堇共掺杂的铜基金属有机骨架纳米复合物的比率电化学适体传感器的制备与miR3123检测的原理示意图;
图2(a)为测定不同miR3123浓度存在下该比率电化学适体传感器体系对应的电化学方波伏安曲线;
图2(b)为不同miR3123浓度对应的二茂铁和硫堇的氧化还原电流峰强度比率IFc/ITH,拟合不同IFc/ITH比率值与miR3123浓度之间的线性关系。
具体实施方式:
下面结合附图并通过具体实施例对本发明进行详细说明。
实施例1:
本实施例涉及的基于黑磷纳米片和硫堇共掺杂的铜基金属有机骨架纳米复合物的比率电化学miR3123适体传感器的制备方法,其制备工艺和miR3123检测的原理示意图如图1所示,具体工艺步骤如下:
TH/Cu-MOF复合物的制备:称取4mg三水合硝酸铜、10μL三氟乙酸和10mg聚乙烯吡咯烷酮分别加入12mL混合溶剂中,含有9mL N,N-二甲基甲酰胺和3mL乙醇,搅拌均匀形成混合液A。称取4mg的4,4’,4”,4”’-(卟吩-5,10,15,20-四烷基)四苯甲酸和4mg硫堇分别加入含有3mL N,N-二甲基甲酰胺和1mL乙醇的混合溶剂中,搅拌均匀形成混合液B。将混合液A逐滴加入混合液B中,搅拌和超声作用10min后,将A-B混合液加热至80℃反应3h。反应产物溶液在8000rpm转速下离心10min,用乙醇和蒸馏水洗涤、干燥后得到TH/Cu-MOF复合物,将此复合物分散在乙醇中备用。
BPNSs/TH/Cu-MOF复合物的制备:称取15mg黑磷块状晶体加入30mL的1-甲基-2-吡咯烷酮中,在超声波清洗机中处理6h后,转入探头式超声波发生器中处理4h,超声处理后的分散液在10000rpm转速下离心20min去除尺寸较大的产物,取上层分散液在3500rpm转速下离心20min,得到BPNSs分散液。将其逐滴加入TH/Cu-MOF复合物的分散液中,保持搅拌和超声处理1h,然后在8000rpm转速下离心15min,制得BPNSs/TH/Cu-MOF复合物分散液备用。
适体-BPNSs/TH/Cu-MOF纳米复合物的制备:在抛光打磨处理后的裸玻碳电极表面滴加交联剂Nafion,然后滴涂BPNSs/TH/Cu-MOF复合物分散液,形成该复合物改性的玻碳电极。将此改性电极浸没在含有2μM的miR3123对应DNA单链适体Fc-DNA的磷酸盐水缓冲液中,在37℃下孵育2h,然后取出电极,自然干燥后在电极表面制得适体-BPNSs/TH/Cu-MOF纳米复合物。
以适体-BPNSs/TH/Cu-MOF纳米复合物改性的玻碳电极为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,向其中加入一定量miR3123,测定不同miR3123浓度下的电化学方波伏安曲线(如图2(a)所示),以TH和Fc的氧化还原电流峰强度为参比信号和响应信号,拟合两个电流峰强度比率IFc/ITH与miR3123浓度之间的线性关系(如图2(b)所示),构建用于miR3123定量检测的比率电化学适体传感器。miR3123的线性检测浓度范围为10nM~2μM,检测限为2nM。
实施例2:本实施例涉及的基于黑磷纳米片和硫堇共掺杂的铜基金属有机骨架纳米复合物的比率电化学适体传感器,其制备工艺和miR3123检测的原理示意图,TH/Cu-MOF和BPNSs/TH/Cu-MOF复合物制备的工艺步骤同实施例1。
其它具体工艺步骤如下:
在抛光打磨处理后的裸玻碳电极表面滴加交联剂Nafion,再滴涂BPNSs/TH/Cu-MOF复合物分散液,形成该复合物改性的玻碳电极。将此改性电极浸没在含有5μM的miR3123对应DNA单链适体Fc-DNA的磷酸盐水缓冲液中,在37℃下孵育2h,然后取出电极,自然干燥后在电极表面制得适体-BPNSs/TH/Cu-MOF纳米复合物。
以适体-BPNSs/TH/Cu-MOF纳米复合物改性的玻碳电极为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,向其中加入一定量miR3123,测定不同miR3123浓度下的电化学方波伏安曲线,以TH和Fc的氧化还原电流峰强度为参比信号和响应信号,拟合两个电流峰强度比率IFc/ITH与miR3123浓度之间的线性关系,构建用于miR3123定量检测的比率电化学适体传感器。miR3123的线性检测浓度范围为10nM~10μM,检测限为5nM。
实施例3:本实施例涉及的基于黑磷纳米片和硫堇共掺杂的铜基金属有机骨架纳米复合物的比率电化学适体传感器,其制备工艺和miR3123检测的原理示意图,TH/Cu-MOF和BPNSs/TH/Cu-MOF复合物制备的工艺步骤同实施例1。
其它具体工艺步骤如下:
在抛光打磨处理后的裸玻碳电极表面滴加交联剂Nafion,再滴涂BPNSs/TH/Cu-MOF复合物分散液,形成该复合物改性的玻碳电极。将此改性电极浸没在含有8μM的miR3123对应DNA单链适体Fc-DNA的磷酸盐水缓冲液中,在37℃下孵育2h,然后取出电极,自然干燥后在电极表面制得适体-BPNSs/TH/Cu-MOF纳米复合物。
以适体-BPNSs/TH/Cu-MOF纳米复合物改性的玻碳电极为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,向其中加入一定量miR3123,测定不同miR3123浓度下的电化学方波伏安曲线,以TH和Fc的氧化还原电流峰强度为参比信号和响应信号,拟合两个电流峰强度比率IFc/ITH与miR3123浓度之间的线性关系,构建用于miR3123定量检测的比率电化学适体传感器。miR3123的线性检测浓度范围为1nM~1μM,检测限为1nM。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

1.金属有机骨架复合物比率电化学miR3123适体传感器的制备方法,其特征在于,该方法具体包括以下步骤:
(1)TH/Cu-MOF复合物的制备:称取4mg三水合硝酸铜、10μL三氟乙酸和10mg聚乙烯吡咯烷酮分别加入12mL混合溶剂中,含有9mL N,N-二甲基甲酰胺和3mL乙醇,搅拌均匀形成混合液A,称取4mg的4,4’,4”,4”’-(卟吩-5,10,15,20-四烷基)四苯甲酸和4mg硫堇分别加入含有3mL N,N-二甲基甲酰胺和1mL乙醇的混合溶剂中,搅拌均匀形成混合液B,将混合液A逐滴加入混合液B中,搅拌和超声作用10min后,将A-B混合液加热至80℃反应3h,反应产物溶液在8000rpm转速下离心10min,用乙醇和蒸馏水洗涤、干燥后得到TH/Cu-MOF复合物,将此复合物分散在乙醇中备用;
(2)BPNSs/TH/Cu-MOF复合物的制备:称取15mg黑磷块状晶体加入30mL的1-甲基-2-吡咯烷酮中,在超声波清洗机中处理6h后,转入探头式超声波发生器中处理4h,超声处理后的分散液在10000rpm转速下离心20min去除尺寸较大的产物,取上层分散液在3500rpm转速下离心20min,得到BPNSs分散液,将其逐滴加入TH/Cu-MOF复合物的分散液中,保持搅拌和超声处理1h,然后在8000rpm转速下离心15min,制得BPNSs/TH/Cu-MOF复合物分散液备用;
(3)适体-BPNSs/TH/Cu-MOF纳米复合物的制备:在抛光打磨处理后的裸玻碳电极表面滴加交联剂Nafion,然后滴涂BPNSs/TH/Cu-MOF复合物分散液,形成该复合物改性的玻碳电极,将此改性电极浸没在含有1~10μM的miR3123对应DNA单链适体Fc-DNA的磷酸盐水缓冲液中,在37℃下孵育2h,然后取出电极,自然干燥后在电极表面制得适体-BPNSs/TH/Cu-MOF纳米复合物;
(4)以适体-BPNSs/TH/Cu-MOF纳米复合物改性的玻碳电极为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,向其中加入一定量miR3123,测定不同miR3123浓度下的电化学方波伏安曲线,以TH和Fc的氧化还原电流峰强度为参比信号和响应信号,拟合两个电流峰强度比率IFc/ITH与miR3123浓度之间的线性关系,构建用于miR3123定量检测的比率电化学适体传感器,其中,miR3123的线性检测浓度范围为1nM~10μM,检测限为1~5nM。
CN201910796313.5A 2019-08-27 2019-08-27 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法 Expired - Fee Related CN110455896B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910796313.5A CN110455896B (zh) 2019-08-27 2019-08-27 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法
US17/051,781 US11099150B1 (en) 2019-08-27 2019-08-30 Method for preparing ratiometric electrochemical miR3123 aptasensor based on metal-organic framework composite
PCT/CN2019/103464 WO2021035653A1 (zh) 2019-08-27 2019-08-30 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910796313.5A CN110455896B (zh) 2019-08-27 2019-08-27 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法

Publications (2)

Publication Number Publication Date
CN110455896A true CN110455896A (zh) 2019-11-15
CN110455896B CN110455896B (zh) 2020-02-11

Family

ID=68489371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910796313.5A Expired - Fee Related CN110455896B (zh) 2019-08-27 2019-08-27 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法

Country Status (3)

Country Link
US (1) US11099150B1 (zh)
CN (1) CN110455896B (zh)
WO (1) WO2021035653A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363161A (zh) * 2020-04-21 2020-07-03 周口师范学院 一种基于铽-有机框架材料的钍离子荧光探针及制备方法
CN111398393A (zh) * 2020-05-20 2020-07-10 河南工业大学 一种用于棒曲霉素检测的电化学适体比率传感器制备方法
CN111855625A (zh) * 2019-12-02 2020-10-30 南京市妇幼保健院 一种基于Cu-MOF的CA125检测试剂盒及其应用
CN112421038A (zh) * 2020-11-06 2021-02-26 清华大学 金属有机框架包覆黑磷纳米片的复合材料及其制备方法和应用
CN112763472A (zh) * 2020-12-29 2021-05-07 南京师范大学 一种用于检测t-2毒素残留的检测系统及其制备方法和应用
WO2021109384A1 (zh) * 2019-12-02 2021-06-10 青岛大学 检测应激诱导磷蛋白的纳米电化学适体传感器的制备方法
CN113155929A (zh) * 2021-05-17 2021-07-23 青岛大学 基于硼纳米片负载药物与mof-纳米酶杂化物的比率电化学传感器的制备方法
CN113237928A (zh) * 2021-04-25 2021-08-10 重庆医科大学 一种检测乙肝病毒dna的电化学发光传感器及其制备与应用
CN113252752A (zh) * 2021-05-18 2021-08-13 青岛大学 硫纳米粒/mof/硼纳米片/二茂铁基纳米杂化物比率电化学传感器的制备方法
CN113388859A (zh) * 2021-05-19 2021-09-14 东华理工大学 一种Th-MOF负载Cu基单位点催化材料及其制备方法和应用
WO2021223316A1 (zh) * 2020-05-07 2021-11-11 青岛大学 基于锌配位黑磷纳米片复合物与生物酶催化的比率电化学尿酸传感器的制备方法
WO2023206075A1 (en) * 2022-04-26 2023-11-02 Micropoint Biotechnologies, Co., Ltd. Electrochemical dual-signal detection method and device for detecting biomarkers

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075269B (zh) * 2021-03-26 2023-01-17 常州大学 一种用于特异性检测氯霉素的电化学发光适配体传感器及其制备方法和应用
CN113740398B (zh) * 2021-08-14 2023-12-22 云南师范大学 一种比率型生物传感器及用于检测muc1的方法
CN113720819B (zh) * 2021-08-30 2023-10-17 安徽师范大学 一种适配体dna-荧光探针传感器及其制备方法和利用其定量检测gtx1/4的方法
CN113884556B (zh) * 2021-10-15 2023-12-15 河南工业大学 一种用于赭曲霉毒素a检测的比率型电化学传感器制备方法
CN113960131A (zh) * 2021-10-18 2022-01-21 济南大学 一种双信号电化学适配体传感器及测定啶虫脒的方法
CN113945619B (zh) * 2021-10-18 2023-07-28 曲阜师范大学 MPBA@Au-MOF复合材料光电化学传感器的制备方法及应用
CN114624304B (zh) * 2021-12-09 2023-09-19 重庆医科大学国际体外诊断研究院 基于铈银纳米花和分支DNAzyme步行器的miRNA电化学传感器
CN114518397B (zh) * 2022-01-14 2023-09-26 江苏大学 一种奶粉中微量元素的电化学检测装置的构建方法及其应用
CN114534789B (zh) * 2022-01-28 2024-01-26 上海健康医学院 羟基磷酸铜-有机金属离子骨架/多壁碳纳米管复合材料及其制备方法和应用
CN114858875A (zh) * 2022-03-07 2022-08-05 青岛科技大学 一种自增强光电化学检测卡那霉素的方法
CN114839242B (zh) * 2022-03-25 2024-01-09 河北医科大学 一种检测农药的电化学传感器、其制备方法及应用
CN114813885B (zh) * 2022-04-01 2023-03-14 上海大学 一种多通道微流控电化学传感芯片的制备方法及应用
CN114858898B (zh) * 2022-05-23 2023-04-18 山西大学 荧光/电化学双信号模式生物传感器及其构建方法和应用
CN115015362B (zh) * 2022-05-26 2024-01-12 广西壮族自治区农业科学院 一种检测杨梅素的电化学方法
CN115974786B (zh) * 2022-07-18 2024-05-31 中南民族大学 基于离子液体功能化镧系金属有机框架的光电化学和电化学双模式ctDNA传感器
CN116046863B (zh) * 2022-12-08 2024-07-19 河南省科学院高新技术研究中心 一种基于mof双信号探针的比率型电化学传感器及其制备方法和检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106124581A (zh) * 2016-06-12 2016-11-16 青岛大学 同一体系构建两种比率电化学传感器检测抗肿瘤药物方法
CN108745404A (zh) * 2018-06-14 2018-11-06 苏州大学 基于黑磷/金属有机框架修饰的氮化碳膜复合材料及其制备方法与在废气处理中的应用
CN110078034A (zh) * 2019-04-29 2019-08-02 厦门大学深圳研究院 一种有机金属框架包覆二维黑磷纳米片的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605042A (zh) 2011-01-20 2012-07-25 上海生物芯片有限公司 miR-378生物标志物在胃癌检测、诊断中的应用
CN104531856A (zh) 2014-12-19 2015-04-22 王振宁 胃癌进展及预后相关分子标志物miR-1258
CN104707569B (zh) 2015-03-09 2021-06-15 云南大学 一种用于吸附磷酸根离子的MOFs材料
CN109540991A (zh) 2018-09-20 2019-03-29 上海大学 功能化金属有机骨架材料、其构建的fkn传感器及其制备方法
CN109239040B (zh) 2018-10-09 2020-12-15 太原理工大学 一种基于适体链-黑磷纳米片荧光能量共振转移的砷离子检测方法
CN109602919B (zh) 2018-11-30 2021-06-11 东南大学 一种核壳金属有机框架包覆的黑磷量子点及其制备方法与应用
CN110146571B (zh) 2019-06-05 2021-10-22 郑州轻工业学院 双金属有机框架复合材料适体传感器及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106124581A (zh) * 2016-06-12 2016-11-16 青岛大学 同一体系构建两种比率电化学传感器检测抗肿瘤药物方法
CN108745404A (zh) * 2018-06-14 2018-11-06 苏州大学 基于黑磷/金属有机框架修饰的氮化碳膜复合材料及其制备方法与在废气处理中的应用
CN110078034A (zh) * 2019-04-29 2019-08-02 厦门大学深圳研究院 一种有机金属框架包覆二维黑磷纳米片的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINQIONG XU等: "Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin", 《MICROCHIMICA ACTA》 *
JUNDIE HU等: "Engineering black phosphorus to porous g-C3N4-metal–organic framework membrane: a platform for highly boosting photocatalytic performance", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111855625A (zh) * 2019-12-02 2020-10-30 南京市妇幼保健院 一种基于Cu-MOF的CA125检测试剂盒及其应用
WO2021109384A1 (zh) * 2019-12-02 2021-06-10 青岛大学 检测应激诱导磷蛋白的纳米电化学适体传感器的制备方法
CN111363161A (zh) * 2020-04-21 2020-07-03 周口师范学院 一种基于铽-有机框架材料的钍离子荧光探针及制备方法
WO2021223316A1 (zh) * 2020-05-07 2021-11-11 青岛大学 基于锌配位黑磷纳米片复合物与生物酶催化的比率电化学尿酸传感器的制备方法
CN111398393A (zh) * 2020-05-20 2020-07-10 河南工业大学 一种用于棒曲霉素检测的电化学适体比率传感器制备方法
CN112421038A (zh) * 2020-11-06 2021-02-26 清华大学 金属有机框架包覆黑磷纳米片的复合材料及其制备方法和应用
CN112763472A (zh) * 2020-12-29 2021-05-07 南京师范大学 一种用于检测t-2毒素残留的检测系统及其制备方法和应用
CN113237928A (zh) * 2021-04-25 2021-08-10 重庆医科大学 一种检测乙肝病毒dna的电化学发光传感器及其制备与应用
CN113237928B (zh) * 2021-04-25 2023-02-17 重庆医科大学 一种检测乙肝病毒dna的电化学发光传感器及其制备与应用
CN113155929A (zh) * 2021-05-17 2021-07-23 青岛大学 基于硼纳米片负载药物与mof-纳米酶杂化物的比率电化学传感器的制备方法
CN113155929B (zh) * 2021-05-17 2023-02-28 青岛大学 基于硼纳米片负载药物与mof-纳米酶杂化物的比率电化学传感器的制备方法
CN113252752A (zh) * 2021-05-18 2021-08-13 青岛大学 硫纳米粒/mof/硼纳米片/二茂铁基纳米杂化物比率电化学传感器的制备方法
CN113252752B (zh) * 2021-05-18 2023-09-15 青岛大学 硫纳米粒/mof/硼纳米片/二茂铁基纳米杂化物比率电化学传感器的制备方法
CN113388859A (zh) * 2021-05-19 2021-09-14 东华理工大学 一种Th-MOF负载Cu基单位点催化材料及其制备方法和应用
WO2023206075A1 (en) * 2022-04-26 2023-11-02 Micropoint Biotechnologies, Co., Ltd. Electrochemical dual-signal detection method and device for detecting biomarkers

Also Published As

Publication number Publication date
WO2021035653A1 (zh) 2021-03-04
CN110455896B (zh) 2020-02-11
US20210247349A1 (en) 2021-08-12
US11099150B1 (en) 2021-08-24

Similar Documents

Publication Publication Date Title
CN110455896A (zh) 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法
Luo et al. A ratiometric electrochemical DNA biosensor for detection of exosomal MicroRNA
Miao et al. Electrochemical detection of miRNA combining T7 exonuclease-assisted cascade signal amplification and DNA-templated copper nanoparticles
Cai et al. A signal amplification electrochemical aptasensor for the detection of breast cancer cell via free-running DNA walker
Tran et al. Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141
Wu et al. Dual signal amplification strategy for enzyme-free electrochemical detection of microRNAs
Meng et al. Pd nanoparticles-DNA layered nanoreticulation biosensor based on target-catalytic hairpin assembly for ultrasensitive and selective biosensing of microRNA-21
Cheng et al. A simple electrochemical aptasensor for ultrasensitive protein detection using cyclic target-induced primer extension
Yao et al. An electrochemiluminescent DNA sensor based on nano-gold enhancement and ferrocene quenching
CN110146566A (zh) 修饰电极、组合产品及其电致化学发光生物传感器与应用
CN108169311B (zh) 一种检测miRNA-122的电化学生物传感器
Cheng et al. Enzyme-free electrochemical biosensor based on amplification of proximity-dependent surface hybridization chain reaction for ultrasensitive mRNA detection
CN107543852A (zh) 一种基于功能化金属有机框架材料的电致化学发光传感器
CN110423798A (zh) 一种检测金黄色葡萄球菌的电化学方法
CN109115845A (zh) 基于PEFC的自供能miRNA生物传感器及其应用
Hua et al. LAMP-generated H+ ions-induced dimer i-motif as signal transducer for ultrasensitive electrochemical detection of DNA
quan Zhong et al. An electrochemical Hg2+ sensor based on signal amplification strategy of target recycling
CN112730547A (zh) 一种用于检测nsclc循环肿瘤基因的电化学生物传感器的制备方法及应用
Zhang et al. An aptamer biosensor for leukemia marker mRNA detection based on polymerase-assisted signal amplification and aggregation of illuminator
CN105675590B (zh) 一种检测内切酶的电化学发光生物传感器及其制备与应用
Zhang et al. Electrochemical luminescent DNA sensor based on polymerase-assisted signal amplification
CN104152449A (zh) miRNA捕获探针及其修饰电极与捕获探针互补链及其修饰碳纳米管-金磁纳米粒复合物
Wang et al. Electrochemical detection of microRNA-21 based on a Au nanoparticle functionalized gC 3 N 4 nanosheet nanohybrid as a sensing platform and a hybridization chain reaction amplification strategy
Wang et al. A solid-state electrochemiluminescence biosensing switch for detection of DNA hybridization based on ferrocene-labeled molecular beacon
Wang et al. Multivalent aptamer nanoscaffold cytosensor for glioma circulating tumor cells during Epithelial–Mesenchymal transition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200211