CN107860805A - 一种比率电化学多巴胺适体传感器的制备方法 - Google Patents

一种比率电化学多巴胺适体传感器的制备方法 Download PDF

Info

Publication number
CN107860805A
CN107860805A CN201711070246.6A CN201711070246A CN107860805A CN 107860805 A CN107860805 A CN 107860805A CN 201711070246 A CN201711070246 A CN 201711070246A CN 107860805 A CN107860805 A CN 107860805A
Authority
CN
China
Prior art keywords
dopamine
fit
preparation
aptamer sensor
graphene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711070246.6A
Other languages
English (en)
Other versions
CN107860805B (zh
Inventor
桂日军
赵春芹
王宗花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201711070246.6A priority Critical patent/CN107860805B/zh
Publication of CN107860805A publication Critical patent/CN107860805A/zh
Application granted granted Critical
Publication of CN107860805B publication Critical patent/CN107860805B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于纳米材料、电化学分析和生物传感器交叉技术领域,具体涉及一种比率电化学多巴胺适体传感器的制备方法;采用Hummers法制备氧化石墨烯,将氧化石墨烯与耐尔兰滴涂到玻碳电极表面,采用一步共还原法在电极表面电化学还原沉积金纳米粒和生成还原氧化石墨烯;然后在金纳米粒上连接适体DNA,该适体DNA与多巴胺特异性结合,引起多巴胺和耐尔兰在电极表面有规律的电化学信号响应;拟合多巴胺和耐尔兰电流峰强度比率与多巴胺摩尔浓度之间的线性关系,构建比率电化学多巴胺适体传感器;该传感器制备工艺简单,制备成本低,产品灵敏度高,能够发展成为一种新颖的比率电化学适体传感器,适用于生物样品中多巴胺的高效检测。

Description

一种比率电化学多巴胺适体传感器的制备方法
技术领域:
本发明属于纳米材料、电化学分析和生物科学交叉的传感器技术领域,具体涉及一种基于适体-金纳米颗粒/还原氧化石墨烯-耐尔蓝纳米复合物的比率电化学多巴胺适体传感器的制备方法,其制备的传感器可用于多巴胺的高效检测。
背景技术:
在现代生物科技领域中,多巴胺是一种重要的儿茶酚胺神经递质分子,主要存在于哺乳动物的脑组织和体液中,它在中枢神经系统、心血管系统、内分泌系统和泌尿系统中都发挥着重要的作用。此外,许多神经系统疾病的症状表现为体内多巴胺浓度的改变,如阿尔茨海默病、亨廷顿病和帕金森病等。因此,开发一种高效快速检测多巴胺的方法用于临床诊断和治疗多巴胺相关疾病至关重要。与其它分析方法相比,电化学方法具有响应快速、方法简便、成本低廉等优点,因此受到了广泛的关注。然而,由于生物样品中的多巴胺通常与抗坏血酸、尿酸等其它电活性物质共存,而共存物质的浓度比多巴胺的浓度高100~1000倍,因此用电化学方法高效检测生物样品中的多巴胺存在很多困难。有文献报道采用碳纳米材料、金属纳米粒子等纳米材料用作电极修饰材料以区分多巴胺和其它干扰物质的重叠峰,但它们的灵敏度、选择性和稳定性等分析性能并不能完全满足实际应用的要求。因此,开发一种高选择性和高灵敏度的电化学传感器用于生物样品中多巴胺的检测仍然是一个巨大的挑战。
适体是用配体指数富集法系统演化技术从人工体外合成的随机寡核苷酸序列库中反复筛选得到的能以极高亲和力和特异性与靶分子(如小分子、蛋白质甚至细胞)结合的一段寡核苷酸序列,包括RNA、单链DNA或双链DNA;近年来,文献中报道了一些基于适体传感器的分析方法,包括荧光光谱法、比色法、原子力显微镜法、表面等离子体共振法和电化学方法;众多生物、电子等传感器中,电化学适体传感器由于其灵敏度高、检测速度快、方法简单、成本低、并且可在活体中进行检测等优点,受到了广泛的关注。然而,由于受到仪器效率、传感器浓度和环境条件等一些内在和外在因素的影响,利用传统单信号电化学适体传感器检测的再现性、稳定性和可靠性都难以满足实际需要,而具有不同波长或氧化还原电位的双信号比率检测技术由于其良好的自校准功能,采用双峰电流强度比率法作为信号输出可以极大地提高再现性和准确性,已广泛应用于生物分子的荧光检测和电化学发光分析中。经文献检索,基于电化学单一信号检测多巴胺的工作已有报道,例如袁强等报道了一种用于检测多巴胺的PtNi纳米合金电化学传感器(公开号:CN106841355A);刘珂珂等报道了一种检测多巴胺的电化学生物传感器及其制备方法(公开号:CN103149267A)。迄今,尚未有关于利用比率电化学传感器方法来检测多巴胺的相关报道,也未见涉及到本申请技术方案的传感器制备工艺。
发明内容:
本发明的目的在于克服现有技术存在的缺陷,设计一种方法简单、成本低廉、灵敏度高的基于适体-金纳米颗粒/还原氧化石墨烯-耐尔蓝纳米复合物的多巴胺比率电化学适体传感器的制备方法。
为了实现上述目的,本发明涉及的一种比率电化学多巴胺适体传感器的制备工艺包括以下步骤:
(1)氧化石墨烯制备:将1.0克石墨加入三口瓶中,滴加25毫升质量浓度98%的浓硫酸碳化石墨,缓慢搅拌24小时,再加入1.5克高锰酸钾,将三口瓶转至冰浴中冷却,继续搅拌30分钟,升温至60℃,搅拌反应45分钟,每间隔15分钟加入3毫升蒸馏水,反应完毕后加入180毫升蒸馏水以终止反应,产物冷却至室温,经过滤、蒸馏水洗涤、干燥沉淀物,得到氧化石墨烯;
(2)氧化石墨烯-耐尔兰修饰的玻碳电极制备:在超声作用下将氧化石墨烯分散在蒸馏水中,然后加入质量浓度为1克/升的耐尔兰形成混合溶液,在室温下将混合溶液滴涂在新抛光的玻碳电极表面,制备出氧化石墨烯-耐尔兰修饰的玻碳电极;
(3)还原氧化石墨烯/金纳米颗粒复合物制备:将修饰的玻碳电极插入以质量浓度为1克/升的氯金酸为电解质的磷酸盐电解液中,在一定的电压下扫描一段时间,以便在玻碳电极表面电沉积生成金纳米颗粒,同时氧化石墨烯被电还原成为还原氧化石墨烯;
(4)适体-金纳米颗粒/还原氧化石墨烯-耐尔蓝纳米复合物的制备:通过Au-S键(金硫键)将终端修饰巯基的DNA单链(即多巴胺适体)与金纳米颗粒结合,在玻碳电极表面制备多巴胺适体-金纳米颗粒/还原氧化石墨烯-耐尔蓝纳米复合物,再加入巯基己醇占据剩余的金纳米颗粒表面活性位点;
(5)多巴胺传感器制备:加入不同浓度的多巴胺,使多巴胺与适体特异性结合,在玻碳电极表面形成卷曲缠绕的适体-多巴胺复合物,从而阻碍了耐尔兰电信号在电极表面传输,随着多巴胺浓度增大,多巴胺电流峰强度IDA增大,而耐尔兰电流峰强度INB随之减小,构建比率电流峰强度IDA/INB与多巴胺摩尔浓度之间的线性关系,发展比率电化学多巴胺适体传感器;实现适体传感器的制备,该适体传感器适用于生物流体样品中多巴胺摩尔浓度的高效检测。
步骤(1)中所述的氧化石墨烯的质量纯度为90~95%。
步骤(2)中所述的氧化石墨烯与耐尔兰的质量浓度比为1:5~5:1。
步骤(3)中所述的扫描电压为-2.0V~-0.1V,扫描时间10~180秒;。步骤(4)中所述的多巴胺适体摩尔浓度为1~50微摩/升,巯基己醇摩尔浓度为1~20微摩/升。
步骤(5)中所述的多巴胺浓度为1纳摩/升至1毫摩/升,对多巴胺摩尔浓度的检测极限可达0.1~1纳摩/升。
本发明与现有技术相比,以氧化石墨烯和耐尔兰修饰的玻碳电极为基底,采用一步共还原法在基底表面电化学沉积上金纳米颗粒和电化学还原生成还原氧化石墨烯,通过在金纳米颗粒表面连接多巴胺适体,多巴胺与其适体特异性结合引起多巴胺和耐尔兰电信号有规律的改变,可发展成为用于多巴胺检测的比率电化学适体传感器;其制备工艺简单,制备成本低,产品灵敏度高,能够发展成为一种新颖的比率电化学适体传感器,适用于生物样品中多巴胺的高效检测。
附图说明:
图1为本发明涉及的基于适体-金纳米颗粒/还原氧化石墨烯-耐尔蓝纳米复合物的一种比率电化学多巴胺适体传感器的制备与多巴胺比率电化学信号检测的原理示意图。
图2为本发明涉及的比率电化学多巴胺适体传感器随多巴胺浓度的增大对耐尔蓝和多巴胺电化学信号的响应,以及传感器电流峰强度比率与多巴胺浓度之间的线性关系图。
具体实施方式:
下面结合附图并通过具体实施例对本发明进行详细说明。
实施例1:
本实施例基于适体-金纳米颗粒/还原氧化石墨烯-耐尔蓝纳米复合物的一种比率电化学多巴胺适体传感器的制备与多巴胺比率电化学信号检测的原理示意图参见图1所示,将1.0克石墨加入三口瓶中,滴加25毫升浓硫酸碳化石墨,缓慢搅拌24小时,加入1.5克高锰酸钾,将三口瓶转至冰浴中冷却,继续搅拌30分钟,升温至60℃,搅拌反应45分钟,每间隔15分钟加入3毫升蒸馏水,反应完毕后加入180毫升蒸馏水以终止反应,产物冷却至室温,经过滤、蒸馏水洗涤、干燥沉淀物,得到氧化石墨烯;在超声作用下将氧化石墨烯分散在蒸馏水中,然后加入耐尔兰形成混合溶液,其中氧化石墨烯与耐尔兰的质量浓度比为2:1,在室温下将混合溶液滴涂在新抛光的玻碳电极表面,制备出氧化石墨烯-耐尔兰修饰的玻碳电极;将修饰的玻碳电极插入以氯金酸为电解质的磷酸盐电解液中,在一定的电压下扫描一段时间,以便在玻碳电极表面电沉积生成金纳米颗粒,同时氧化石墨烯被电还原成为还原氧化石墨烯,其中扫描电压为-1.0V,扫描时间100秒;通过Au-S键将终端修饰巯基的DNA单链(即多巴胺适体)与金纳米颗粒结合,在玻碳电极表面制备多巴胺适体-金纳米颗粒/还原氧化石墨烯-耐尔蓝纳米复合物,再加入巯基己醇占据剩余的金纳米颗粒表面活性位点,其中多巴胺适体摩尔浓度为20微摩/升,巯基己醇摩尔浓度为20微摩/升;加入不同浓度的多巴胺,使多巴胺与适体特异性结合,在玻碳电极表面形成卷曲缠绕的适体-多巴胺复合物,从而阻碍了耐尔兰电信号在电极表面传输,随着多巴胺浓度增大,多巴胺电流峰强度IDA增大,而耐尔兰电流峰强度INB随之减小,然后构建出比率电流峰强度IDA/INB与DNA摩尔浓度之间的线性关系(参见图2):lg(IDA/INB)=0.3972lgCDA–1.7826(R2=0.9922),发展比率电化学多巴胺适体传感器,其中多巴胺浓度范围为10纳摩/升至0.2毫摩/升,检测极限为1纳摩/升。
实施例2:
本实施例采用Hummers方法制备氧化石墨烯,具体方法同实施例1,然后在超声作用下将氧化石墨烯分散在蒸馏水中,然后加入耐尔兰形成混合溶液,其中氧化石墨烯与耐尔兰的质量浓度比为1:1,在室温下将混合溶液滴涂在新抛光的玻碳电极表面,制备出氧化石墨烯-耐尔兰修饰的玻碳电极;将修饰的玻碳电极插入以氯金酸为电解质的磷酸盐电解液中,在一定的电压下扫描一段时间,以便在玻碳电极表面电沉积生成金纳米颗粒,同时氧化石墨烯被电还原成为还原氧化石墨烯,其中扫描电压为-1.5V,扫描时间120秒;通过Au-S键将终端修饰巯基的DNA单链(即多巴胺适体)与金纳米颗粒结合,在玻碳电极表面制备多巴胺适体-金纳米颗粒/还原氧化石墨烯-耐尔蓝纳米复合物,再加入巯基己醇占据剩余的金纳米颗粒表面活性位点,其中多巴胺适体摩尔浓度为40微摩/升,巯基己醇摩尔浓度为30微摩/升;加入不同浓度的多巴胺,使多巴胺与适体特异性结合,在玻碳电极表面形成卷曲缠绕的适体-多巴胺复合物,从而阻碍了耐尔兰电信号在电极表面传输,随着多巴胺浓度增大,多巴胺电流峰强度IDA增大,而耐尔兰电流峰强度INB随之减小,然后构建出比率电流峰强度IDA/INB与DNA摩尔浓度之间的线性关系,发展比率电化学多巴胺适体传感器,其中多巴胺浓度范围为20纳摩/升至1毫摩/升,检测极限为5纳摩/升。
实施例3:
本实施例采用Hummers方法制备氧化石墨烯,具体方法同实施例1,然后在超声作用下将氧化石墨烯分散在蒸馏水中,然后加入耐尔兰形成混合溶液,其中氧化石墨烯与耐尔兰的质量浓度比为1:2,在室温下将混合溶液滴涂在新抛光的玻碳电极表面,制备出氧化石墨烯-耐尔兰修饰的玻碳电极;将修饰的玻碳电极插入以氯金酸为电解质的磷酸盐电解液中,在一定的电压下扫描一段时间,以便在玻碳电极表面电沉积生成金纳米颗粒,同时氧化石墨烯被电还原成为还原氧化石墨烯,其中扫描电压为-0.5V,扫描时间80秒;通过Au-S键将终端修饰巯基的DNA单链(即多巴胺适体)与金纳米颗粒结合,在玻碳电极表面制备多巴胺适体-金纳米颗粒/还原氧化石墨烯-耐尔蓝纳米复合物,再加入巯基己醇占据剩余的金纳米颗粒表面活性位点,其中多巴胺适体摩尔浓度为10微摩/升,巯基己醇摩尔浓度为20微摩/升;加入不同浓度的多巴胺,使多巴胺与适体特异性结合,在玻碳电极表面形成卷曲缠绕的适体-多巴胺复合物,从而阻碍了耐尔兰电信号在电极表面传输,随着多巴胺浓度增大,多巴胺电流峰强度IDA增大,而耐尔兰电流峰强度INB随之减小,然后构建出比率电流峰强度IDA/INB与DNA摩尔浓度之间的线性关系,发展比率电化学多巴胺适体传感器,其中多巴胺浓度范围为1纳摩/升至0.1毫摩/升,检测极限为0.5纳摩/升。

Claims (6)

1.一种比率电化学多巴胺适体传感器的制备方法,其特征在于具体工艺包括以下步骤:
(1)氧化石墨烯制备:将1.0克石墨加入三口瓶中,滴加25毫升质量浓度98%的浓硫酸碳化石墨,缓慢搅拌24小时,再加入1.5克高锰酸钾,将三口瓶转至冰浴中冷却,继续搅拌30分钟,升温至60℃,搅拌反应45分钟,每间隔15分钟加入3毫升蒸馏水,反应完毕后加入180毫升蒸馏水以终止反应,产物冷却至室温,经过滤、蒸馏水洗涤、干燥沉淀物,得到氧化石墨烯;
(2)氧化石墨烯-耐尔兰修饰的玻碳电极制备:在超声作用下将氧化石墨烯分散在蒸馏水中,然后加入质量浓度为1克/升的耐尔兰形成混合溶液,在室温下将混合溶液滴涂在新抛光的玻碳电极表面,制备出氧化石墨烯-耐尔兰修饰的玻碳电极;
(3)还原氧化石墨烯/金纳米颗粒复合物制备:将修饰的玻碳电极插入以质量浓度为1克/升的氯金酸为电解质的磷酸盐电解液中,在一定的电压下扫描一段时间,以便在玻碳电极表面电沉积生成金纳米颗粒,同时氧化石墨烯被电还原成为还原氧化石墨烯;
(4)适体-金纳米颗粒/还原氧化石墨烯-耐尔蓝纳米复合物的制备:通过Au-S键(金硫键)将终端修饰巯基的DNA单链(即多巴胺适体)与金纳米颗粒结合,在玻碳电极表面制备多巴胺适体-金纳米颗粒/还原氧化石墨烯-耐尔蓝纳米复合物,再加入巯基己醇占据剩余的金纳米颗粒表面活性位点;
(5)多巴胺传感器制备:加入不同浓度的多巴胺,使多巴胺与适体特异性结合,在玻碳电极表面形成卷曲缠绕的适体-多巴胺复合物,从而阻碍了耐尔兰电信号在电极表面传输,随着多巴胺浓度增大,多巴胺电流峰强度IDA增大,而耐尔兰电流峰强度INB随之减小,构建比率电流峰强度IDA/INB与多巴胺摩尔浓度之间的线性关系,发展比率电化学多巴胺适体传感器;实现适体传感器的制备,该适体传感器适用于生物流体样品中多巴胺摩尔浓度的高效检测。
2.根据权利要求1所述的一种比率电化学多巴胺适体传感器的制备方法,其特征在于,步骤(1)中所述的氧化石墨烯的质量纯度为90~95%。
3.根据权利要求1所述的一种比率电化学多巴胺适体传感器的制备方法,其特征在于,步骤(2)中所述的氧化石墨烯与耐尔兰的质量浓度比为1:5~5:1。
4.根据权利要求1所述的一种比率电化学多巴胺适体传感器的制备方法,其特征在于,步骤(3)中所述的扫描电压为-2.0V~-0.1V,扫描时间10~180秒。
5.根据权利要求1所述的一种比率电化学多巴胺适体传感器的制备方法,其特征在于,步骤(4)中所述的多巴胺适体摩尔浓度为1~50微摩/升,巯基己醇摩尔浓度为1~20微摩/升。
6.根据权利要求1所述的一种比率电化学多巴胺适体传感器的制备方法,其特征在于,步骤(5)中所述的多巴胺浓度为1纳摩/升至1毫摩/升,对多巴胺摩尔浓度的检测极限可达0.1~1纳摩/升。
CN201711070246.6A 2017-11-03 2017-11-03 一种比率电化学多巴胺适体传感器的制备方法 Active CN107860805B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711070246.6A CN107860805B (zh) 2017-11-03 2017-11-03 一种比率电化学多巴胺适体传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711070246.6A CN107860805B (zh) 2017-11-03 2017-11-03 一种比率电化学多巴胺适体传感器的制备方法

Publications (2)

Publication Number Publication Date
CN107860805A true CN107860805A (zh) 2018-03-30
CN107860805B CN107860805B (zh) 2019-08-30

Family

ID=61700590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711070246.6A Active CN107860805B (zh) 2017-11-03 2017-11-03 一种比率电化学多巴胺适体传感器的制备方法

Country Status (1)

Country Link
CN (1) CN107860805B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760852A (zh) * 2018-04-13 2018-11-06 江西师范大学 一种基于双重信号放大的光电化学赭曲霉毒素a检测方法
CN109030598A (zh) * 2018-07-06 2018-12-18 青岛大学 基于纳米复合物修饰电极的比率电化学肌酐传感器的制备方法
CN110208343A (zh) * 2019-05-10 2019-09-06 江苏大学 一种检测黄曲霉毒素b1的比率电化学生物传感器的制备方法
WO2021223316A1 (zh) * 2020-05-07 2021-11-11 青岛大学 基于锌配位黑磷纳米片复合物与生物酶催化的比率电化学尿酸传感器的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954346A (zh) * 2016-07-27 2016-09-21 济南大学 三维纸基电化学比率计的制备方法
CN106124581A (zh) * 2016-06-12 2016-11-16 青岛大学 同一体系构建两种比率电化学传感器检测抗肿瘤药物方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106124581A (zh) * 2016-06-12 2016-11-16 青岛大学 同一体系构建两种比率电化学传感器检测抗肿瘤药物方法
CN105954346A (zh) * 2016-07-27 2016-09-21 济南大学 三维纸基电化学比率计的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DI KANG ET AL.: "Survey of Redox-Active Moieties for Application in Multiplexed Electrochemical Biosensors", 《ANAL. CHEM.》 *
LI WANG ET AL.: "A novel ratiometric electrochemical biosensor for sensitive detection of ascorbic acid", 《SENSORS AND ACTUATORS B: CHEMICAL》 *
YUNLONG DAI ET AL.: "Voltammetric determination of paracetamol using a glassy carbon electrode modified with Prussian Blue and a molecularly imprinted polymer, and ratiometric read-out of two signals", 《MICROCHIM ACTA》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760852A (zh) * 2018-04-13 2018-11-06 江西师范大学 一种基于双重信号放大的光电化学赭曲霉毒素a检测方法
CN108760852B (zh) * 2018-04-13 2021-03-23 江西师范大学 一种基于双重信号放大的光电化学赭曲霉毒素a检测方法
CN109030598A (zh) * 2018-07-06 2018-12-18 青岛大学 基于纳米复合物修饰电极的比率电化学肌酐传感器的制备方法
CN109030598B (zh) * 2018-07-06 2020-09-04 青岛大学 检测肌酐的方法
CN110208343A (zh) * 2019-05-10 2019-09-06 江苏大学 一种检测黄曲霉毒素b1的比率电化学生物传感器的制备方法
CN110208343B (zh) * 2019-05-10 2021-04-20 江苏大学 一种检测黄曲霉毒素b1的比率电化学生物传感器的制备方法
WO2021223316A1 (zh) * 2020-05-07 2021-11-11 青岛大学 基于锌配位黑磷纳米片复合物与生物酶催化的比率电化学尿酸传感器的制备方法

Also Published As

Publication number Publication date
CN107860805B (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
Liu et al. A novel label-free electrochemical aptasensor based on graphene–polyaniline composite film for dopamine determination
CN107860805B (zh) 一种比率电化学多巴胺适体传感器的制备方法
Liu et al. Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes
Wang et al. An electrochemiluminescence aptasensor for thrombin using graphene oxide to immobilize the aptamer and the intercalated Ru (phen) 32+ probe
Zhou et al. A simple label-free electrochemical aptasensor for dopamine detection
Gao et al. Electrochemiluminescent lead biosensor based on GR-5 lead-dependent DNAzyme for Ru (phen) 3 2+ intercalation and lead recognition
Sheng et al. Ultrasensitive electrochemical detection of breast cancer cells based on DNA-rolling-circle-amplification-directed enzyme-catalyzed polymerization
CN105842321B (zh) 氧化铜纳米针/氮掺杂石墨烯复合材料的非酶葡萄糖电化学传感器的制备方法
Şenocak et al. Crosslinker polycarbazole supported magnetite MOF@ CNT hybrid material for synergetic and selective voltammetric determination of adenine and guanine
Geng et al. Molecularly imprinted electrochemical sensor based on multi-walled carbon nanotubes for specific recognition and determination of chloramphenicol in milk
Feng et al. Amperometric detection of microRNA based on DNA-controlled current of a molybdophosphate redox probe and amplification via hybridization chain reaction
Niu et al. Sensitive DNA biosensor improved by Luteolin copper (II) as indicator based on silver nanoparticles and carbon nanotubes modified electrode
quan Zhong et al. An electrochemical Hg2+ sensor based on signal amplification strategy of target recycling
Roushani et al. Rationally designed of hollow nitrogen doped carbon nanotubes double shelled with hierarchical nickel hydroxide nanosheet as a high performance surface substrate for cortisol aptasensing
Miao et al. Highly sensitive microRNA quantification with zero background signal from silver nanoparticles
Chen et al. Signal-off/on electrogenerated chemiluminescence deoxyribosensors for assay of early lung cancer biomarker (NAP2) based on target-caused DNA charge transfer
CN104152449A (zh) miRNA捕获探针及其修饰电极与捕获探针互补链及其修饰碳纳米管-金磁纳米粒复合物
CN110714011A (zh) 铅离子核酸适配体及电化学传感器与制备方法
CN109813787B (zh) 一种MnO2/Fe2O3@无定形碳复合材料、核酸适体传感器及其制备方法和应用
CN111060573A (zh) CoFe普鲁士蓝类似物修饰电极及其在同时测定多巴胺和5-羟色胺含量中的应用
CN110006968A (zh) 基于快速扫描循环伏安技术检测汞离子的电化学生物传感器的制备方法及其应用
CN113624823A (zh) 基于四面体纳米结构dna的信号探针、其制备方法和用途
Xie et al. Rapid nanomolar detection of ketamine in biofluids based on electrochemical aptamer-based sensor for drugged driving screening within 30 s
Shi et al. Sensitive detection of cancer biomarker with enzyme-free mediated cascade signal amplification empowered undisturbed dual-mode assay
CN111272843B (zh) 一种纳米线构建的FeCo网状结构纳米材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant