CN108760852A - 一种基于双重信号放大的光电化学赭曲霉毒素a检测方法 - Google Patents

一种基于双重信号放大的光电化学赭曲霉毒素a检测方法 Download PDF

Info

Publication number
CN108760852A
CN108760852A CN201810329879.2A CN201810329879A CN108760852A CN 108760852 A CN108760852 A CN 108760852A CN 201810329879 A CN201810329879 A CN 201810329879A CN 108760852 A CN108760852 A CN 108760852A
Authority
CN
China
Prior art keywords
ochratoxin
concentration
added
electrode
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810329879.2A
Other languages
English (en)
Other versions
CN108760852B (zh
Inventor
汤娟
程昱
熊鹏媛
黄亚培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN201810329879.2A priority Critical patent/CN108760852B/zh
Publication of CN108760852A publication Critical patent/CN108760852A/zh
Application granted granted Critical
Publication of CN108760852B publication Critical patent/CN108760852B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种基于双重信号放大的光电化学赭曲霉毒素A检测方法,采用氧化石墨烯/硫化镉/二硫化钼/纳米金复合物作为光电活性材料,通过依次将辅助DNA和赭曲霉毒素A适配体杂交修饰到电极构成生物传感界面,在卟啉嵌入到DNA双链结构,同时敏化基底光电材料,产生很强的光电流信号。检测目标物赭曲霉毒素A与适配体结合,一方面导致电极表面卟啉光敏剂脱落,从而显著减弱光电流信号;另一方面,二氧化硅纳米颗粒标记的DNA结合到电极表面,由于空间位阻效应,进一步减弱信号,光电流的变化与目标物浓度在一定范围内存在线性相关关系。该方法基于适配体与目标物的特异性识别,同时采用双重信号放大机制,因此可以实现对目标物浓度高灵敏,高选择性的检测。

Description

一种基于双重信号放大的光电化学赭曲霉毒素A检测方法
技术领域
本发明涉及一种基于双重信号放大的光电化学赭曲霉毒素A检测方法,包括氧化石墨烯/硫化镉/二硫化钼/纳米金复合物的光电化学生物传感器的构建,属于光电化学生物分析领域。
背景技术
赭曲霉毒素是曲霉菌属和青霉菌属的某些种产生的二级代谢产物,其污染范围较广,几乎可以污染各种粮食类商品(如小麦、玉米、大麦、黑麦、豆类、土豆、面包、干果、坚果、葡萄酒)。赭曲霉毒素主要由赭曲霉毒素A、B和C组成,其中赭曲霉毒素A(OTA)是毒性最大、分布最广,与人类健康关系最密切的一种。由于OTA对动物和人类的致毒、致畸、致癌、致突变和免疫抑制作用,因此,快速灵敏地检测OTA极具卫生学意义。
目前关于OTA的传统检测方法主要包括高效液相色谱法(HPLC)、液相色谱(LC)、荧光检测(HPLC-FLD)、电化学和薄层色谱法(TCL),尽管该类方法各具优势,但是复杂昂贵的设备,繁琐的预处理以及一定的操作技能要求,使得传统分析方法广泛应用还面临不少的困难。开发具有高灵敏和高选择性的新型OTA检测方法对环境监测,食品安全和疾病诊断都显得尤为重要。
近年来,与传统的检测方法相比具有独特优势的光电化学(PEC)检测技术受到众多研究人员的青睐。PEC方法以光子辐射下电荷分离和后续电荷转移为基础实现光电信号转换,因此光电化学检测性能很大程度上取决于所用的光电活性材料的性质。到目前为止,包括TiO2、ZnS、CdS和BiVO4等在内的半导体纳米材料被设计用于构建PEC传感平台。然而,合理利用两种或多种光电活性物质组合,抑制光生电子空穴对的复合,从而有效提高光电转换效率。此外,将激元金属纳米结构固定到半导体表面,由于其表面等离子体共振(SPR)效应影响电磁能量的分布,可显著提高半导体在可见光下的光催化活性和光电流响应。特别是将其运用到光电生物传感体系中,不仅提高光电转换效率,同时贵金属纳米结构的引入也为生物分子识别提供了具有良好的生物相容性界面。另一方面,合理的设计信号放大提高电流变化,对提高灵敏度方面起着至关重要的作用。在过去,生物酶被广泛用作信标探针放大生物传感中的信号,包括生物催化沉积,原位生成电子活性物种等。尽管该类放大技术在一定程度上可以实现信号放大,然而,生物酶信号放大在可操作性,稳定性以及成本上有待进一步的改善。开发新型信号放大策略以及多重信号放大级联对于扩大光电化学分析应用和性能具有重要意义。
发明内容
为克服以上的不足,本发明的目的在于提供基于双重信号放大的光电化学赭曲霉毒素A检测方法。
为实现上述目的,本发明采用的技术方案如下:
其技术原理是在没有目标物条件下,电极界面修饰的氧化石墨烯/硫化镉/二硫化钼/纳米金复合物在卟啉敏化剂作用下,产生很强的光电流信号。当目标物存在的时候,适配体与目标物特异性结合,使得嵌入的敏化剂脱落,显著减弱光电流信号;另一方面,适配体与目标物特异性结合后,电极上的辅助DNA单链与二氧化硅纳米颗粒标记的DNA杂交,引入的二氧化硅产生较大的空间位阻效应,从而进一步减弱光电流信号。信号的变化与目标物浓度在一定范围内成线性相关关系。
一种基于双重信号放大的光电化学赭曲霉毒素A检测方法,包含以下步骤:
(1)光电化学生物传感器的构建:取10μL浓度为2.5mg mL-1的氧化石墨烯/硫化镉/二硫化钼/纳米金复合物(GO-CdS-MoS2-Au)分散液滴加到干净的玻碳电极(GCE)表面,在红外灯下干燥后将10μL浓度为0.5-1.0μM巯基修饰的辅助DNA滴加到电极表面,25-37℃条件下孵育12小时以Au-S键结合到电极,然后淋洗电极除去未结合的辅助DNA;取5uL浓度为0.5-1.0μM的赭曲霉毒素A适配体滴加到电极表面孵育2.5小时,淋洗电极除去未结合的适配体;取5-10μL浓度为14μM的α,β,γ,δ-四(1-甲基吡啶嗡-4-基)卟啉对甲苯磺酸盐(TMPyP)滴加到电极表面,30分钟后淋洗电极除去未结合的TMPyP;
(2)赭曲霉毒素A光电化学检测:将步骤1制备的传感电极插入到系列含有不同浓度赭曲霉毒素A(OTA)的标准溶液中,OTA与适配体结合使辅助DNA与适配体之间的双链结构被破坏,导致嵌入的TMPyP脱落出来,40分钟后取出电极,淋洗除去残留的OTA,适配体和TMPyP;然后取5-10μL浓度为1μM的二氧化硅纳米颗粒标记的DNA(SiO2NPs-hDNA)滴加到电极孵育1-2小时,通过与电极上脱去适配体链的辅助DNA杂交形成双链结构,淋洗电极除去残留的SiO2NPs-hDNA;采用三电极系统,以0.1M Na2S和0.02M Na2SO3混合溶液为电解液,可见光为激发光,检测光电流,由于TMPyP的脱落和引入SiO2NPs都能导致光电流减弱,减弱幅度与OTA浓度具有确定的关系,从而实现对OTA的灵敏检测;用待测液代替OTA标准液进行上述检测,通过标准曲线获得浓度结果。
步骤(1)所述的GO-CdS-MoS2-Au由下述步骤制备:
(a)0.002-0.006mol Na2MoO4和等量的CdSO4加入到30mL浓度为0.1mg mL-1氧化石墨烯的水分散液中,随后,0.15-0.25mol硫脲加入到上述溶液搅拌2小时形成乳白色悬浮液;将该悬浮液转移至50mL的反应釜中,200摄氏度条件下反应18-24小时;所得固体产物离心水洗数次,然后重新分散至10mL水溶液中;
(b)纳米金修饰氧化石墨烯负载硫化镉硫化钼纳米复合物(GO-CdS-MoS2-Au):48.6μL柠檬酸钠(100mM),10μL吐温80(100mM)和6-10μL HAuCl4·3H2O(48.5mM)快速加入到将步骤(a)制备的GO-CdS-MoS2分散液中,微波加热到60℃反应5-10分钟,将所得产物用乙醇和水交替洗涤三次。
步骤(2)所述的SiO2NPs-hDNA由下述步骤制备:
(a)将1.8mL正己醇、7.5mL环己烷和1.77mL Triton X-100加入50mL烧杯,搅拌30分钟之后,3.4mL超纯水,100μL正硅酸乙酯(TEOS),100μL 3-氨丙基三乙氧基硅烷(APTES)和100-200μL氨水逐步添加到上述溶液中;避光搅拌20-24小时后离心洗涤数次,制得SiO2纳米颗粒;
(b)将步骤(a)制得的SiO2纳米颗粒分散到0.5mL水中,得到浓度为0.3-0.5mg mL-1的溶液,加入5-10μL浓度为100μg mL-1的sulfo-SMCC振荡1-2小时,然后将10μL浓度为10μMhDNA加入,形成SiO2NPs-hDNA结构。
本发明的优势如下:
(1)氧化石墨烯大的比表面积有利于负载大量的的CdS和MoS2,同时两者之间能级匹配,有效的的促进了光生电子空穴对的分离,显著提高光电流强度;
(2)纳米金的复合不仅由于引入局域表面等离子效应调高了光电流信号,同时为生物分子提供了高亲和力的结合位点,有利于固载大量的识别探针,有效的提高识别能力和灵敏度;
(3)采用双重信号放大技术:一方面,通过适配体与目标物的特异性结合,释放出有机敏化剂,降低检测信号;另一方面,通过适配体与目标物的特异性结合后,用二氧化硅纳米颗粒标记的DNA链与电极上的单链DNA结合,阻碍电子转移,进一步减弱信号,显著提高了检测灵敏度。
附图说明
图1为一种基于双重信号放大的光电化学赭曲霉毒素A检测方法原理示意图。
图2(A)为GO-CdS-MoS2-Au复合材料透射电镜图;图2(B)为SiO2纳米颗粒透射电镜图。
图3为GO-CdS-MoS2-Au复合材料能谱图。
图4为实施例1对标准样检测结果,A:实施例1光电流变化与检测目标物浓度对数线性图(插图为对应的光电流响应曲线),B:实施例1的选择性考察结果。
具体实施方式
下面通过具体实施示例对本发明的技术方案做进一步说明,但是不能以此限制本发明的范围。
实施例1
(1)0.006mol Na2MoO4和等量的CdSO4加入到30mL浓度为0.1mg mL-1氧化石墨烯的水分散液中,随后,0.25mol硫脲加入到上述溶液搅拌2小时形成乳白色悬浮液;将该悬浮液转移至50mL的反应釜中,200摄氏度条件下反应18小时;所得固体产物离心水洗数次,然后重新分散至10mL水溶液中。
(2)纳米金修饰氧化石墨烯负载硫化镉硫化钼纳米复合物(GO-CdS-MoS2-Au):48.6μL柠檬酸钠(100mM),10μL吐温80(100mM)和10μL HAuCl4·3H2O(48.5mM)快速加入到将步骤(1)制备的GO-CdS-MoS2分散液中,微波加热到60℃反应5分钟,将所得产物用乙醇和水交替洗涤三次。
(3)将1.8mL正己醇、7.5mL环己烷和1.77mL Triton X-100加入50mL烧杯,搅拌30分钟之后,3.4mL超纯水,100μL TEOS,100μL APTES和150μL氨水逐步添加到上述溶液中;避光搅拌22小时后离心洗涤数次,制得SiO2纳米颗粒。
(4)将步骤(3)制得的SiO2纳米颗粒分散到0.5mL水中,得到浓度为0.3mg mL-1的溶液,加入6μL浓度为100μg mL-1的sulfo-SMCC振荡2小时,然后将10μL浓度为10μMDNA链加入,形成SiO2NPs-hDNA结构。
(5)取10μL浓度为2.5mg mL-1上述步骤(2)制备的GO-CdS-MoS2-Au纳米复合物分散液滴加到干净的玻碳电极表面,在红外灯下干燥后将10μL浓度为1.0μM巯基修饰的辅助DNA滴加到电极表面,37℃条件下孵育12小时以Au-S键结合到电极,然后淋洗电极除去未结合的辅助DNA;取5μL浓度为0.8μM的赭曲霉毒素A适配体滴加到电极表面,37℃条件下孵育2.5小时,适配体通过与辅助DNA杂交形成双链结构,淋洗电极除去未结合的适配体;取10μL浓度为0.5mg的α,β,γ,δ-四(1-甲基吡啶嗡-4-基)卟啉对甲苯磺酸盐(TMPyP)滴加到步骤(2)电极表面,30分钟后淋洗电极除去未结合的TMPyP。
(6)将步骤(5)制备的传感电极插入到系列含有不同浓度OTA的标准溶液中,OTA与适配体结合使辅助DNA与适配体之间的双链结构被破坏,导致结合的TMPyP脱落出来,40分钟后取出电极,淋洗除去残留的OTA,适配体和TMPyP;然后取7μL浓度为1μM的二氧化硅纳米颗粒标记的DNA(SiO2NPs-hDNA)滴加到电极孵育1.5小时,通过与电极上脱去适配体链的辅助DNA杂交形成双链结构,淋洗电极除去残留的SiO2NPs-hDNA;采用三电极系统,以0.1MNa2S和0.02M Na2SO3混合溶液为电解液,500W Xe灯为光源,检测光电流,由于TMPyP的脱落和引入SiO2NPs-hDNA都能导致光电流减弱,减弱幅度与OTA浓度具有确定的关系,从而实现对OTA的灵敏检测;用待测液代替OTA标准液进行上述检测,通过标准曲线获得浓度结果
相同条件下,以黄曲霉毒素B1(AFB1)、黄曲霉毒素G1(AFG1)和赭曲霉毒素B(OTB)分别作为目标物,考察该方法的选择性。
实施例1所用DNA序列如下:
图1为本发明所涉及的一种基于双重信号放大的光电化学赭曲霉毒素A检测过程及原理图。图2为GO/CdS/MoS2/Au复合材料和SiO2纳米颗粒透射电镜图。透射电镜图显示该复合材料中石墨烯表面负载有不同形貌和尺寸的成分,分散性良好。EDS能谱结果表明该材料主要由碳、氧、硫、钼、镉和金元素组成(图3)。图4为实施例1对标准样检测结果(插图为对应的光电流响应曲线)。在0.5pg mL-1在0.5ng mL-1的目标物浓度范围内,光电流与目标物浓度对数存在良好的线性关系(图4A)。考虑到实用性的要求,我们考察该方法对特定目标物的特异性和选择性,选择以AFB1,AFG1和OTB作为干扰物对传感器相应信号的影响。实验结果证实该传感器对不同的干扰组分基本没有响应,对特定目标物响应明显,说明其具有良好的选择性和特异性(图4B)。
以上所述仅为本发明的最佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种基于双重信号放大的光电化学赭曲霉毒素A检测方法,其特征在于,包含以下步骤:
(1)光电化学生物传感器的构建:将GO-CdS-MoS2-Au分散液滴加到电极表面,干燥后将巯基修饰的辅助DNA滴加到电极表面,25-37℃条件下孵育以Au-S键结合到电极,然后除去未结合的巯基修饰的辅助DNA;将赭曲霉毒素A适配体滴加到电极表面孵育,然后洗涤除去未结合的赭曲霉毒素A适配体;将TMPyP滴加到电极表面,一段时间后除去未结合的TMPyP,得到光电化学生物传感器;
(2)赭曲霉毒素A光电化学检测:将步骤(1)制备的光电化学生物传感器分别插入到系列含有不同浓度赭曲霉毒素A的标准溶液中,一段时间后取出电极,除去残留的赭曲霉毒素A、赭曲霉毒素A适配体和TMPyP;然后将SiO2NPs-hDNA滴加到电极并孵育1-2小时,除去残留的SiO2NPs-hDNA;采用三电极系统,以Na2S和Na2SO3混合溶液为电解液,可见光为激发光,检测光电流,根据光电流响应变化值对标准样浓度绘制标准曲线;用待测液代替赭曲霉毒素A标准溶液进行上述检测,通过标准曲线获得浓度结果。
2.根据权利要求1所述的检测方法,其特征在于,所述的GO-CdS-MoS2-Au由下述步骤制备:
(a)将Na2MoO4和等量的CdSO4加入到氧化石墨烯的水分散液中,随后,将硫脲加入到上述溶液中并搅拌,形成乳白色悬浮液;将该乳白色悬浮液转移至反应釜中,200℃条件下反应18-24小时;所得固体产物离心水洗数次,然后重新分散至水溶液中,得到GO-CdS-MoS2分散液;
(b)柠檬酸钠、吐温和HAuCl4·3H2O快速加入到步骤(a)制备的GO-CdS-MoS2分散液中,加热到60℃并反应5-10分钟,将所得产物用乙醇和水交替洗涤三次,即得到GO-CdS-MoS2-Au。
3.根据权利要求1所述的检测方法,其特征在于,所述的SiO2NPs-hDNA由下述步骤制备:
(a)将正己醇、环己烷和Triton X-100加入到烧杯中,搅拌之后,将超纯水、正硅酸乙酯、3-氨丙基三乙氧基硅烷和氨水逐步添加到上述溶液中;避光搅拌20-24小时后离心洗涤数次,制得SiO2纳米颗粒;
(b)将步骤(a)制得的SiO2纳米颗粒分散到水中,加入sulfo-SMCC并振荡1-2小时,然后将hDNA加入,形成SiO2NPs-hDNA。
4.根据权利要求1所述的检测方法,其特征在于,所述的GO-CdS-MoS2-Au分散液的浓度为2.5mg mL-1;所述的巯基修饰的辅助DNA的浓度为0.5-1.0μM,所述的赭曲霉毒素A适配体的浓度为0.5-1.0μM,所述的TMPyP的浓度为14μM。
5.根据权利要求1所述的检测方法,其特征在于,所述的SiO2NPs-hDNA的浓度为1μM;所述的Na2S和Na2SO3混合溶液中,Na2S的浓度为0.1M,Na2SO3的浓度为0.02M。
CN201810329879.2A 2018-04-13 2018-04-13 一种基于双重信号放大的光电化学赭曲霉毒素a检测方法 Active CN108760852B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810329879.2A CN108760852B (zh) 2018-04-13 2018-04-13 一种基于双重信号放大的光电化学赭曲霉毒素a检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810329879.2A CN108760852B (zh) 2018-04-13 2018-04-13 一种基于双重信号放大的光电化学赭曲霉毒素a检测方法

Publications (2)

Publication Number Publication Date
CN108760852A true CN108760852A (zh) 2018-11-06
CN108760852B CN108760852B (zh) 2021-03-23

Family

ID=63981789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810329879.2A Active CN108760852B (zh) 2018-04-13 2018-04-13 一种基于双重信号放大的光电化学赭曲霉毒素a检测方法

Country Status (1)

Country Link
CN (1) CN108760852B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068601A (zh) * 2019-04-27 2019-07-30 山东理工大学 一种基于桑葚状Au@PtPd介孔棒标记的电化学传感器的制备方法及应用
CN110412097A (zh) * 2019-08-12 2019-11-05 济南大学 一种超灵敏检测microRNA的光电化学传感器的制备方法
CN111122677A (zh) * 2020-01-07 2020-05-08 安徽科技学院 一种定量检测赭曲霉毒素a的电化学适配体传感器及其应用
CN111272848A (zh) * 2020-03-06 2020-06-12 安徽大学 一种检测miRNA159c的高灵敏光电化学生物传感器及其制备和检测方法
CN111398391A (zh) * 2020-05-18 2020-07-10 河南工业大学 一种用于t-2毒素残留检测的电化学传感器制备方法
CN112526120A (zh) * 2020-11-19 2021-03-19 山东省农业科学院农业质量标准与检测技术研究所 一种基于spr技术检测沙丁胺醇的方法
CN112831544A (zh) * 2020-12-31 2021-05-25 华南农业大学 一种基于CRISPR/Cas12a系统的生物检测方法和生物检测装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330706A1 (en) * 2009-06-25 2010-12-30 The Regents Of The University Of California Probe immobilization and signal amplification for polymer-based biosensor
EP2657347A1 (en) * 2012-04-26 2013-10-30 Université Paris Diderot - Paris 7 Electrochemical competitive assay and use thereof
CN103439296A (zh) * 2013-07-31 2013-12-11 南昌大学 基于Au NPs和DNA循环双放大技术的适配体传感器构建及应用
CN103558275A (zh) * 2013-11-19 2014-02-05 安徽理工大学 一种核酸适配体基光电化学检测汞离子的方法
CN104597240A (zh) * 2015-02-02 2015-05-06 广西医科大学 石墨烯/类过氧化物酶双信号放大检测白血病的生物传感方法
CN106442690A (zh) * 2016-09-30 2017-02-22 南京理工大学 基于卟啉与dna双螺旋的沟槽镶嵌作用的无标记dna的ecl检测方法
CN107121462A (zh) * 2017-04-20 2017-09-01 济南大学 一种硫化铜/二氧化硅双重减弱硫化镉/碳掺杂二氧化钛胰岛素光电化学传感器的制备方法
WO2018010681A1 (zh) * 2016-07-14 2018-01-18 青岛大学 基于核酸适体/纳米银探针与exo i酶的电化学生物传感器
CN107860805A (zh) * 2017-11-03 2018-03-30 青岛大学 一种比率电化学多巴胺适体传感器的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330706A1 (en) * 2009-06-25 2010-12-30 The Regents Of The University Of California Probe immobilization and signal amplification for polymer-based biosensor
EP2657347A1 (en) * 2012-04-26 2013-10-30 Université Paris Diderot - Paris 7 Electrochemical competitive assay and use thereof
CN103439296A (zh) * 2013-07-31 2013-12-11 南昌大学 基于Au NPs和DNA循环双放大技术的适配体传感器构建及应用
CN103558275A (zh) * 2013-11-19 2014-02-05 安徽理工大学 一种核酸适配体基光电化学检测汞离子的方法
CN104597240A (zh) * 2015-02-02 2015-05-06 广西医科大学 石墨烯/类过氧化物酶双信号放大检测白血病的生物传感方法
WO2018010681A1 (zh) * 2016-07-14 2018-01-18 青岛大学 基于核酸适体/纳米银探针与exo i酶的电化学生物传感器
CN106442690A (zh) * 2016-09-30 2017-02-22 南京理工大学 基于卟啉与dna双螺旋的沟槽镶嵌作用的无标记dna的ecl检测方法
CN107121462A (zh) * 2017-04-20 2017-09-01 济南大学 一种硫化铜/二氧化硅双重减弱硫化镉/碳掺杂二氧化钛胰岛素光电化学传感器的制备方法
CN107860805A (zh) * 2017-11-03 2018-03-30 青岛大学 一种比率电化学多巴胺适体传感器的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BING WANG: "An in situ electron donor consumption strategy for photoelectrochemical biosensing of proteins based on ternary Bi2S3/Ag2S/TiO2 NT arrays", 《CHEMICAL COMMUNICATIONS》 *
GAO-CHAO FAN等: "Ultrasensitive Photoelectrochemical Immunoassay for Matrix Metalloproteinase-2 Detection Based on CdS:Mn/CdTe Cosensitized TiO2 Nanotubes and Signal Amplification of SiO2@Ab2 Conjugates", 《ANALYTICAL CHEMISTRY》 *
JUAN TANG: "Two-dimensional MoS2 as a Nano-binder for ssDNA:Ultrasensitive Aptamer based Amperometric Detection of Ochratoxin A", 《MICROCHIMICA ACTA》 *
MIN-QUAN YANG等: "Insight into the Effect of Highly Dispersed MoS versus Layer Structured MoS on the Photocorrosion and Photoactivity of CdS in Graphene-CdS-MoS Composites", 《THE JOURNAL OF PHYSICAL CHEMISTRY C》 *
师桂芳: "新型硫化物复合材料电化学发光适配体传感器的构建及应用研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068601A (zh) * 2019-04-27 2019-07-30 山东理工大学 一种基于桑葚状Au@PtPd介孔棒标记的电化学传感器的制备方法及应用
CN110412097A (zh) * 2019-08-12 2019-11-05 济南大学 一种超灵敏检测microRNA的光电化学传感器的制备方法
CN110412097B (zh) * 2019-08-12 2021-08-20 济南大学 一种超灵敏检测microRNA的光电化学传感器的制备方法
CN111122677A (zh) * 2020-01-07 2020-05-08 安徽科技学院 一种定量检测赭曲霉毒素a的电化学适配体传感器及其应用
CN111272848A (zh) * 2020-03-06 2020-06-12 安徽大学 一种检测miRNA159c的高灵敏光电化学生物传感器及其制备和检测方法
CN111272848B (zh) * 2020-03-06 2022-04-26 安徽大学 一种检测miRNA159c的高灵敏光电化学生物传感器及其制备和检测方法
CN111398391A (zh) * 2020-05-18 2020-07-10 河南工业大学 一种用于t-2毒素残留检测的电化学传感器制备方法
CN112526120A (zh) * 2020-11-19 2021-03-19 山东省农业科学院农业质量标准与检测技术研究所 一种基于spr技术检测沙丁胺醇的方法
CN112526120B (zh) * 2020-11-19 2024-05-14 山东省农业科学院农业质量标准与检测技术研究所 一种基于spr技术检测沙丁胺醇的方法
CN112831544A (zh) * 2020-12-31 2021-05-25 华南农业大学 一种基于CRISPR/Cas12a系统的生物检测方法和生物检测装置

Also Published As

Publication number Publication date
CN108760852B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
CN108760852A (zh) 一种基于双重信号放大的光电化学赭曲霉毒素a检测方法
Dadmehr et al. A stem-loop like aptasensor for sensitive detection of aflatoxin based on graphene oxide/AuNPs nanocomposite platform
CN110438200B (zh) 一种基于双信号放大的用于重金属铅离子检测的生物传感器
Andreescu et al. JEM Spotlight: Applications of advanced nanomaterials for environmental monitoring
Gattani et al. Recent progress in electrochemical biosensors as point of care diagnostics in livestock health
Aydin et al. Advances in electrochemical immunosensors
Shan et al. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins
Xia et al. Self-enhanced electrochemiluminescence of luminol induced by palladium–graphene oxide for ultrasensitive detection of aflatoxin B1 in food samples
Wang et al. Exonuclease III-assisted triple-amplified electrochemical aptasensor based on PtPd NPs/PEI-rGO for deoxynivalenol detection
Kumar et al. Biosensors as novel platforms for detection of food pathogens and allergens
Nguyen et al. Using nanomaterials in colorimetric toxin detection
CN111235234B (zh) 一种基于酶催化产物裂解二氧化锰纳米花@硫化镉核壳结构的光电化学检测马拉硫磷的方法
Ge et al. A collection of RPA-based photoelectrochemical assays for the portable detection of multiple pathogens
Ji et al. Progress in rapid detection techniques using paper-based platforms for food safety
CN105717180A (zh) 一种基于二维纳米复合材料的光电化学黄曲霉毒素生物传感器的制备方法及应用
Wang et al. Environmental routes of virus transmission and the application of nanomaterial-based sensors for virus detection
Bahadır et al. Biosensor technologies for analyses of food contaminants
Chen et al. Nanobody-based label-free photoelectrochemical immunoassay for highly sensitive detection of SARS-CoV-2 spike protein
Zahra et al. Graphene based nanohybrid aptasensors in environmental monitoring: concepts, design and future outlook
Mostafavi et al. Selenium-based nanomaterials for biosensing applications
Wang et al. Fluorescent/electrochemical dual-signal response biosensing strategy mediated by DNAzyme-ferrocene-triggered click chemistry for simultaneous rapid screening and quantitative detection of Vibrio parahaemolyticus
Ullah et al. Heavy metal ions detection using nanomaterials-based aptasensors
Shi et al. Supersensitive electrochemiluminescence aptasensor for malathion residues based on ATO@ TiO2 and AgNPs
Wang et al. A highly sensitive photoelectrochemical aptsensor based on photocathode CuInS2 for the detection of tobramycin
Laschi et al. Electrochemical arrays coupled with magnetic separators for immunochemistry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant