CN106098404A - 一种硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备和应用 - Google Patents

一种硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备和应用 Download PDF

Info

Publication number
CN106098404A
CN106098404A CN201610710948.5A CN201610710948A CN106098404A CN 106098404 A CN106098404 A CN 106098404A CN 201610710948 A CN201610710948 A CN 201610710948A CN 106098404 A CN106098404 A CN 106098404A
Authority
CN
China
Prior art keywords
nitrogen
carbon nano
doped carbon
cobalt sulfide
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610710948.5A
Other languages
English (en)
Other versions
CN106098404B (zh
Inventor
刘天西
宁学良
缪月娥
周宇
王开
李斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201610710948.5A priority Critical patent/CN106098404B/zh
Publication of CN106098404A publication Critical patent/CN106098404A/zh
Application granted granted Critical
Publication of CN106098404B publication Critical patent/CN106098404B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)

Abstract

本发明涉及一种硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备和应用,所述复合材料以三维网状的氮掺杂碳纳米纤维为基底,硫化钴镍纳米颗粒负载在氮掺杂碳纳米纤维表面;制备:首先通过酸性溶液氧化法制备聚吡咯/细菌纤维素复合材料,然后将其在管式炉中高温碳化制得氮掺杂碳纳米纤维,再通过水热法在氮掺杂碳纳米纤维表面原位生长硫化钴镍纳米颗粒,即得。作为超级电容器电极材料的应用;本发明制备的复合材料中,硫化钴镍纳米颗粒均匀地负载于氮掺杂碳纳米纤维表面,有效抑制了硫化钴镍纳米颗粒的团聚,并充分利用了细菌纤维素独特的三维网络结构,具有电容量高、制备过程环保、成本低廉等特点。

Description

一种硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备和应用
技术领域
本发明属于过渡金属硫族化合物-碳材料及其制备和应用领域,特别涉及一种硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备和应用。
背景技术
细菌纤维素是一种通过微生物发酵过程产生的天然纤维,不同于一些复杂设备和大型工厂需求的合成纤维,它具有价格低廉、机械强度高、来源丰富等优势。细菌纤维素的多孔结构和纳米级的孔径分布使其比表面大、孔隙率高,尤其是高温碳化后的纳米级碳纤维表面具有许多有效的反应活性位点,可作为一种良好的模板用于具有特定形貌或尺寸的纳米材料的可控合成。因此,这些特殊性质使其在能量转换与储存、电子传感器、高分子纳米复合材料等领域都具有极为广阔的应用前景,成为碳纳米材料领域中的研究热点之一。
导电聚合物(如聚吡咯)具有较高的导电性、良好的稳定性、可逆的氧化还原性、合成简便、无毒等特点,在电容器、电池、光电器件中有很好的应用前景。
硫化钴镍是一类典型的过渡金属硫族化合物,与同族的氧化钴镍相比,其导电性是氧化钴镍的100倍,电化学活性高于氧化钴镍,因此是一种理想的超级电容器电极材料。但是,硫化钴镍易于团聚,显著地抑制了其活性边缘的暴露,且在氧化还原反应过程中易发生严重的体积膨胀和收缩,导致其循环性能下降。因此,将硫化钴镍与其它高导电性的基底材料高效复合,获得兼具高活性和长循环寿命的复合电极材料具有重要意义。
发明内容
本发明所要解决的技术问题是提供一种硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备和应用,本发明所制备的氮掺杂碳纳米纤维具有化学性质稳定、导电性高、比表面积大等优点;本发明制备的复合材料中,硫化钴镍纳米颗粒均匀地负载于氮掺杂碳纳米纤维表面,有效抑制了硫化钴镍纳米颗粒的团聚,并充分利用了细菌纤维素独特的三维网络结构,具有电容量高、制备过程环保、成本低廉等特点。
本发明的一种硫化钴镍/氮掺杂碳纳米纤维复合材料,所述复合材料以三维网状的氮掺杂碳纳米纤维为基底,硫化钴镍纳米颗粒负载在氮掺杂碳纳米纤维表面,负载量为:45-55%(质量百分比)。
本发明的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,包括:
(1)将细菌纤维素膜剪切,然后分散于去离子水中,然后逐滴加入氢氧化钠至溶液显中性,取出呈中性的细菌纤维素后,冷却,冷冻干燥;
(2)将冷冻干燥后的细菌纤维素分散于盐酸中,同时加入吡咯,浸泡,得到细菌纤维素分散液,然后将三氯化铁酸性溶液逐滴加入到细菌纤维素分散液中,0-5℃条件下搅拌反应8-12h,得到聚吡咯/细菌纤维素复合材料,然后将将聚吡咯/细菌纤维素复合材料从溶液中分离出来,洗涤,冷冻干燥,然后在管式炉中高温碳化得到氮掺杂碳纳米纤维材料;其中细菌纤维素分散液中细菌纤维素、盐酸、吡咯的比例为300-500mg:200-400mL:0.5-1g;三氯化铁与吡咯的浓度比为1:1(1mol/L);
(3)将硝酸钴、硝酸镍、硫脲和六亚甲基四胺溶于去离子水中,得到混合溶液(水热反应溶液),然后与氮掺杂碳纳米纤维材料进行水热反应,洗涤,干燥,即得硫化钴镍/氮掺杂碳纳米纤维复合材料;其中混合溶液中硝酸钴、硝酸镍、硫脲和六亚甲基四胺的摩尔比为2:1:10:10。
步骤(1)中细菌纤维素膜剪切为4×5cm2,然后取40-50片4×5cm2大小的细菌纤维素分散于500mL去离子水中;氢氧化钠的浓度为1mol L-1
所述步骤(1)中冷却为液氮冷却;冷冻干燥为:放入冷冻干燥机中,冷冻干燥时间12~48h,优选24-30h。
所述步骤(2)中盐酸的浓度为0.5~1.5mol L-1,优选0.9~1.1mol L-1
所述步骤(2)中浸泡时间为8-12h。
所述步骤(2)中三氯化铁酸性溶液为:三氯化铁溶于盐酸溶液中,得到三氯化铁酸性溶液,三氯化铁酸性溶液的浓度为0.025mol L-1
所述步骤(2)中搅拌反应优选0-3℃,反应9-10h。
所述步骤(2)中碳化为氩气气氛中碳化,温度为700-800℃,优选740-760℃,时间为4-5小时,优选4小时。
所述步骤(3)中混合溶液中硝酸钴的浓度为30-50mmol L-1
所述步骤(3)中氮掺杂碳纳米纤维、混合溶液的比例为15-40mg:35-40mL。
所述步骤(3)中水热反应温度为150-190℃,时间为5-18h,优选温度为155-165℃。
步骤(3)中在反应溶液中加入六亚甲基四胺,可促使硫化钴镍纳米颗粒复合到氮掺杂纳米碳纤维上。
本发明的一种如权利要求1所述的硫化钴镍/氮掺杂碳纳米纤维复合材料的应用,其特征在于:硫化钴镍/氮掺杂碳纳米纤维复合材料作为超级电容器电极材料的应用。
本发明所提供的硫化钴镍/氮掺杂碳纳米纤维复合材料,是由六水合硝酸钴、六水合硝酸镍、硫脲和六亚甲基四胺通过一步水热法在氮掺杂碳纳米纤维表面原位生长硫化钴镍纳米颗粒制备得到;其制备原料组成包括:吡咯、细菌纤维素、硝酸钴、硝酸镍、硫脲和六亚甲基四胺。
本发明通过酸性溶液氧化法制备聚吡咯/细菌纤维素复合材料,然后将其在管式炉中高温碳化制得氮掺杂碳纳米纤维,再通过水热法在氮掺杂碳纳米纤维表面原位生长硫化钴镍纳米颗粒。
本发明通过简单的工艺设计,制备得到一种新型硫化钴镍/氮掺杂碳纳米纤维复合材料:氮掺杂碳纳米纤维具有很好的导电性,其三维网状的纳米结构有利于电解质进入,能显著增加电容器的倍率性能;硫化钴镍颗粒在氮掺杂碳纳米纤维表面的均匀生长,可增加硫化钴镍活性位点的暴露,极大提高材料的电容量。因此,将两者进行有效复合可以实现其良好的协同作用,以制备出性能优异的复合电极材料。
使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和循环伏安曲线(CV)来表征本发明所获得的硫化钴镍/氮掺杂碳纳米纤维复合材料的结构形貌和电化学性能,其结果如下:
(1)SEM测试结果表明:氮掺杂碳纳米纤维的直径约为30nm,硫化钴镍纳米颗粒直径约为15nm,硫化钴镍纳米颗粒均匀地负载在氮掺杂碳纳米纤维的表面,较好地抑制了硫化钴镍自身的团聚问题。
(3)XRD测试结果表明:氮掺杂碳纳米纤维在2θ=24.1°有一个较宽的衍射峰;硫化钴镍在2θ=16.3°,26.8°,31.6°,38.3°,47.4°,50.5°和55.3°的衍射峰分别对应于立方晶型硫化钴镍的(111),(220),(311),(400),(422),(511)和(440)晶面。所制备的硫化钴镍/氮掺杂碳纳米纤维复合材料显示出了硫化钴镍的特征峰,说明硫化钴镍纳米颗粒已成功负载于氮掺杂碳纳米纤维表面。
(4)从CV曲线可以看出一对氧化还原峰,说明制备的硫化钴镍/氮掺杂碳纳米纤维复合材料具有赝电容特性。同时,在5A g-1电流密度下测试硫化钴镍/氮掺杂碳纳米纤维复合材料的循环稳定性,结果表明所制备的硫化钴镍/氮掺杂碳纳米纤维复合材料在5000圈循环后的电容量仍高达918.5F g-1
有益效果
(1)本发明制备过程简单,易于操作,是一种有效快捷的制备方法;
(2)本发明选择的基底是氮掺杂碳纳米纤维,其独特的三维网状结构提高了基底的表面积,并且提供了更多的位点供硫化钴镍纳米颗粒的生长;氮掺杂碳纳米纤维具有优异的导电性,其三维交织网状结构有利于氧化还原过程中电极材料内部的电子以及离子的快速传输,从而进一步提高电极材料的电容量;
(3)本发明通过简单的水热方法实现了氮掺杂碳纳米纤维与硫化钴镍的复合,使得两者的优势得以充分发挥,从而构建了具有优异性能的复合材料;本发明制备的硫化钴镍/氮掺杂碳纳米纤维复合材料,有望作为一种理想的超级电容器电极材料。
附图说明
图1为实施例1中聚吡咯/细菌纤维素复合材料(a)和硫化钴镍/氮掺杂碳纳米纤维复合材料(b)的SEM图;
图2为硫化钴镍/氮掺杂碳纳米纤维复合材料(NiCo2S4/CBC-N)、纯的硫化钴镍(NiCo2S4)和氮掺杂碳纳米纤维(CBC-N)的XRD图谱;
图3是实施例1中硫化钴镍/氮掺杂碳纳米纤维复合材料的CV曲线;
图4是实施例1中硫化钴镍/氮掺杂碳纳米纤维复合材料的循环稳定性。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(1)将细菌纤维素膜切成4×5cm2大小,取出50片4×5cm2大小的细菌纤维素分散于500mL去离子水中,配制浓度为1mol L-1的氢氧化钾溶液,然后逐滴加入到上述分散液中至溶液显中性;
(2)将呈中性的细菌纤维素取出,放入液氮冷却后置于冷冻干燥机冷冻干燥24小时;
(3)称取500mg冷冻干燥后的细菌纤维素,分散于400mL、1mol L-1的盐酸中,同时加入0.67g吡咯,浸泡12h;
(4)另称取1.62g三氯化铁,溶于400mL 1mol L-1的盐酸中;
(5)将上述三氯化铁酸性溶液逐滴加入到细菌纤维素分散液中,随后在低温(0-3℃)环境下搅拌反应8小时,即得到聚吡咯/细菌纤维素复合材料;
(6)然后将其从溶液中分离出来,多次洗涤后放入冻干机中冷冻干燥10h;
(7)将冷冻干燥后的聚吡咯/细菌纤维素复合材料在管式炉中于750℃高温碳化,碳化4小时,得到氮掺杂碳纳米纤维材料;
(8)硝酸钴、硝酸镍、硫脲和六亚甲基四胺按摩尔比为2:1:10:10配得水热反应溶液,其中硝酸钴的浓度为33.3mmol L-1
(9)将制备得到的氮掺杂碳纳米纤维材料与上述反应溶液(氮掺杂细菌纤维素20毫克,反应混合溶液40毫升)在160℃水热反应12h,制备得到硫化钴镍/氮掺杂碳纳米纤维复合材料;
(10)将制备得到的硫化钴镍/氮掺杂碳纳米纤维复合材料用去离子水和乙醇反复洗涤多次,然后干燥,备用。
实施例2
将细菌纤维素膜切成4×5cm2大小,取出50片4×5cm2大小的细菌纤维素分散于500mL去离子水中,配制浓度为1mol L-1的氢氧化钾溶液,然后逐滴加入到上述分散液中至溶液显中性;
(2)将呈中性的细菌纤维素取出,放入液氮冷却后置于冷冻干燥机冷冻干燥24小时;
(3)称取500mg冷冻干燥后的细菌纤维素,分散于400mL、1mol L-1的盐酸中,同时加入0.67g吡咯,浸泡12h;
(4)另称取1.62g三氯化铁,溶于400mL 1mol L-1的盐酸中;
(5)将上述三氯化铁酸性溶液逐滴加入到细菌纤维素分散液中,随后在低温(0-3℃)环境下搅拌反应10小时,即得到聚吡咯/细菌纤维素复合材料;
(6)然后将其从溶液中分离出来,多次洗涤后放入冻干机中冷冻干燥10h;
(7)将冷冻干燥后的聚吡咯/细菌纤维素复合材料在管式炉中于750℃高温碳化四小时,得到氮掺杂碳纳米纤维材料;
(8)硝酸钴、硝酸镍、硫脲和六亚甲基四胺按摩尔比为2:1:10:10配得水热反应溶液,其中硝酸钴的浓度为35mmol L-1
(9)将制备得到的氮掺杂碳纳米纤维材料与上述反应溶液(氮掺杂细菌纤维素20毫克,反应混合溶液40毫升)在160℃水热反应12h,制备得到硫化钴镍/氮掺杂碳纳米纤维复合材料;
(10)将制备得到的硫化钴镍/氮掺杂碳纳米纤维复合材料用去离子水和乙醇反复洗涤多次,然后干燥,备用。
实施例3
将细菌纤维素膜切成4×5cm2大小,取出50片4×5cm2大小的细菌纤维素分散于500mL去离子水中,配制浓度为1mol L-1的氢氧化钾溶液,然后逐滴加入到上述分散液中至溶液显中性;
(2)将呈中性的细菌纤维素取出,放入液氮冷却后置于冷冻干燥机冷冻干燥24小时;
(3)称取500mg冷冻干燥后的细菌纤维素,分散于400mL、1mol L-1的盐酸中,同时加入0.67g吡咯,浸泡12h;
(4)另称取1.62g三氯化铁,溶于400mL 1mol L-1的盐酸中;
(5)将上述三氯化铁酸性溶液逐滴加入到细菌纤维素分散液中,随后在低温(0-3℃)环境下搅拌反应10小时,即得到聚吡咯/细菌纤维素复合材料;
(6)然后将其从溶液中分离出来,多次洗涤后放入冻干机中冷冻干燥10h;
(7)将冷冻干燥后的聚吡咯/细菌纤维素复合材料在管式炉中于800℃高温碳化四小时,得到氮掺杂碳纳米纤维材料;
(8)硝酸钴、硝酸镍、硫脲和六亚甲基四胺按摩尔比为2:1:10:10配得水热反应溶液,其中硝酸钴的浓度为33.3mmol L-1
(9)将制备得到的氮掺杂碳纳米纤维材料与上述反应溶液(氮掺杂细菌纤维素20毫克,反应混合溶液40毫升)在160℃水热反应12h,制备得到硫化钴镍/氮掺杂碳纳米纤维复合材料;
(10)将制备得到的硫化钴镍/氮掺杂碳纳米纤维复合材料用去离子水和乙醇反复洗涤多次,然后干燥,备用。

Claims (10)

1.一种硫化钴镍/氮掺杂碳纳米纤维复合材料,其特征在于:所述复合材料以三维网状的氮掺杂碳纳米纤维为基底,硫化钴镍纳米颗粒负载在氮掺杂碳纳米纤维表面,负载量为:45.0-55.0%。
2.一种如权利要求1所述的硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,包括:
(1)将细菌纤维素膜剪切,然后分散于去离子水中,然后逐滴加入氢氧化钠至溶液显中性,取出细菌纤维素后,冷却,冷冻干燥;
(2)将冷冻干燥后的细菌纤维素分散于盐酸中,同时加入吡咯,浸泡,得到细菌纤维素分散液,然后将三氯化铁酸性溶液逐滴加入到细菌纤维素分散液中,0-5℃条件下搅拌反应8-12h,分离,洗涤,冷冻干燥,碳化得到氮掺杂碳纳米纤维材料;其中细菌纤维素分散液中细菌纤维素、盐酸、吡咯的比例为300-500mg:200-400mL:0.5-1g;三氯化铁与吡咯的摩尔浓度比为1:1;
(3)将硝酸钴、硝酸镍、硫脲和六亚甲基四胺溶于去离子水中,得到混合溶液,然后与氮掺杂碳纳米纤维材料进行水热反应,洗涤,干燥,即得硫化钴镍/氮掺杂碳纳米纤维复合材料;其中混合溶液中硝酸钴、硝酸镍、硫脲和六亚甲基四胺的摩尔比为2:1:10:10。
3.根据权利要求2所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于:步骤(1)中细菌纤维素膜剪切为4×5cm2,然后取40-50片4×5cm2大小的细菌纤维素分散于500mL去离子水中;氢氧化钠的浓度为1mol L-1
4.根据权利要求2所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于:所述步骤(2)中盐酸的浓度为0.5~1.5mol L-1
5.根据权利要求2所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于:所述步骤(2)中浸泡时间为8-12h。
6.根据权利要求2所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于:所述步骤(2)中三氯化铁酸性溶液为:三氯化铁溶于盐酸溶液中,得到三氯化铁酸性溶液,三氯化铁酸性溶液的浓度为0.025mol L-1
7.根据权利要求2所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于:所述步骤(2)中碳化为氩气气氛中碳化,温度为700-800℃,时间为4-5小时。
8.根据权利要求2所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于:所述步骤(3)中混合溶液中硝酸钴的浓度为30-50mmol L-1
9.根据权利要求2所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于:所述步骤(3)中水热反应温度为150-190℃,时间为5-18h。
10.一种如权利要求1所述的硫化钴镍/氮掺杂碳纳米纤维复合材料的应用,其特征在于:硫化钴镍/氮掺杂碳纳米纤维复合材料作为超级电容器电极材料的应用。
CN201610710948.5A 2016-08-23 2016-08-23 一种硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备和应用 Expired - Fee Related CN106098404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610710948.5A CN106098404B (zh) 2016-08-23 2016-08-23 一种硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610710948.5A CN106098404B (zh) 2016-08-23 2016-08-23 一种硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备和应用

Publications (2)

Publication Number Publication Date
CN106098404A true CN106098404A (zh) 2016-11-09
CN106098404B CN106098404B (zh) 2018-10-23

Family

ID=57225792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610710948.5A Expired - Fee Related CN106098404B (zh) 2016-08-23 2016-08-23 一种硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备和应用

Country Status (1)

Country Link
CN (1) CN106098404B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460725A (zh) * 2017-07-13 2017-12-12 东华大学 一种硫掺杂的磷化钴‑碳纳米纤维复合材料及其制备方法
CN108221088A (zh) * 2017-12-19 2018-06-29 同济大学 一种制备高氮含量、掺氮种类可调的氮掺杂碳纳米纤维的制备方法
CN108355629A (zh) * 2018-01-09 2018-08-03 中国地质大学(武汉) 一种均匀负载碳质颗粒的碳纳米纤维复合材料及其应用
CN109776851A (zh) * 2019-01-04 2019-05-21 浙江工业大学 一种细菌纤维素/金属硫化物复合凝胶及其制备方法和导电处理方法
CN109994324A (zh) * 2019-04-02 2019-07-09 新疆大学 一种镍钴硫化物/氮掺杂有序介孔碳核壳异质结构纳米棒材料及其制备方法和应用
CN110797515A (zh) * 2019-10-09 2020-02-14 天津大学 一种制备三维介孔八硫化九钴-碳纳米纤维-硫锂硫电池正极材料的方法
CN110808177A (zh) * 2019-11-05 2020-02-18 武汉工程大学 一种蚕茧衍生碳/碳纳米管/硫化铜复合材料的制备方法及其应用
CN111203236A (zh) * 2020-01-15 2020-05-29 清创人和生态工程技术有限公司 一种二硫化钴/碳纤维复合材料的制备方法及其应用
CN111354935A (zh) * 2020-03-24 2020-06-30 东华大学 富缺陷硫化铼/氮掺杂生物质基碳纤维复合材料及其制备方法
CN111403707A (zh) * 2020-03-24 2020-07-10 东华大学 具有双缺陷结构的硫化铼/氮掺杂生物质基碳纤维复合材料及制备方法
CN113338038A (zh) * 2021-06-01 2021-09-03 晋江瑞碧科技有限公司 一种氮掺杂中空碳纳米线接枝聚吡咯的制备方法及其用途
CN114371202A (zh) * 2020-10-14 2022-04-19 东华大学 一种碳纤维复合材料及其制备方法和应用
CN114717572A (zh) * 2022-03-30 2022-07-08 上海工程技术大学 以氮掺杂碳为基底的钴铁双金属磷化纳米颗粒及其制备方法和应用
CN114813597A (zh) * 2022-04-22 2022-07-29 四川智立方博导科技有限责任公司 一种二维硫氧化钴纳米片状材料、制备方法及气敏应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104088016A (zh) * 2014-07-03 2014-10-08 浙江理工大学 活性炭纤维表面的一维NiCo2S4晶体阵列及其制备方法
CN105148970A (zh) * 2015-08-18 2015-12-16 广东南海普锐斯科技有限公司 一种一维掺氮碳纳米线氧还原电催化剂及其制备和应用
CN105280896A (zh) * 2015-09-12 2016-01-27 复旦大学 硫化钴镍/碳纳米纤维复合材料及其制备方法和应用
CN105293590A (zh) * 2015-10-16 2016-02-03 复旦大学 硫化钴镍/石墨烯/碳纳米纤维复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104088016A (zh) * 2014-07-03 2014-10-08 浙江理工大学 活性炭纤维表面的一维NiCo2S4晶体阵列及其制备方法
CN105148970A (zh) * 2015-08-18 2015-12-16 广东南海普锐斯科技有限公司 一种一维掺氮碳纳米线氧还原电催化剂及其制备和应用
CN105280896A (zh) * 2015-09-12 2016-01-27 复旦大学 硫化钴镍/碳纳米纤维复合材料及其制备方法和应用
CN105293590A (zh) * 2015-10-16 2016-02-03 复旦大学 硫化钴镍/石墨烯/碳纳米纤维复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LAIFA SHEN ETC: "NiCo 2 S 4 Nanosheets Grown on Nitrogen-Doped Carbon Foams as an Advanced Electrode for Supercapacitors", 《ADV. ENERGY MATER.》 *
LONGSHENG ZHANG ETC: "NiCo2S4 Nanosheets Grown on 3D Networks of Nitrogen-Doped Graphene/Carbon Nanotubes: Advanced AnodeMaterials for Lithium-Ion Batteries", 《CHEMELECTROCHEM》 *
张龙生 等: "硫化钴镍纳米棒-静电纺丝碳纳米纤维复合薄膜的制备及其在锂离子电池负极材料的应用", 《2015 年全国高分子学术论文报告会》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460725B (zh) * 2017-07-13 2020-05-05 东华大学 一种硫掺杂的磷化钴-碳纳米纤维复合材料及其制备方法
CN107460725A (zh) * 2017-07-13 2017-12-12 东华大学 一种硫掺杂的磷化钴‑碳纳米纤维复合材料及其制备方法
CN108221088A (zh) * 2017-12-19 2018-06-29 同济大学 一种制备高氮含量、掺氮种类可调的氮掺杂碳纳米纤维的制备方法
CN108355629A (zh) * 2018-01-09 2018-08-03 中国地质大学(武汉) 一种均匀负载碳质颗粒的碳纳米纤维复合材料及其应用
CN109776851A (zh) * 2019-01-04 2019-05-21 浙江工业大学 一种细菌纤维素/金属硫化物复合凝胶及其制备方法和导电处理方法
CN109994324A (zh) * 2019-04-02 2019-07-09 新疆大学 一种镍钴硫化物/氮掺杂有序介孔碳核壳异质结构纳米棒材料及其制备方法和应用
CN110797515A (zh) * 2019-10-09 2020-02-14 天津大学 一种制备三维介孔八硫化九钴-碳纳米纤维-硫锂硫电池正极材料的方法
CN110797515B (zh) * 2019-10-09 2022-03-04 天津大学 一种制备三维介孔八硫化九钴-碳纳米纤维-硫锂硫电池正极材料的方法
CN110808177B (zh) * 2019-11-05 2021-10-12 武汉工程大学 一种蚕茧衍生碳/碳纳米管/硫化铜复合材料的制备方法及其应用
CN110808177A (zh) * 2019-11-05 2020-02-18 武汉工程大学 一种蚕茧衍生碳/碳纳米管/硫化铜复合材料的制备方法及其应用
CN111203236A (zh) * 2020-01-15 2020-05-29 清创人和生态工程技术有限公司 一种二硫化钴/碳纤维复合材料的制备方法及其应用
CN111203236B (zh) * 2020-01-15 2023-04-18 清创人和生态工程技术有限公司 一种二硫化钴/碳纤维复合材料的制备方法及其应用
CN111403707A (zh) * 2020-03-24 2020-07-10 东华大学 具有双缺陷结构的硫化铼/氮掺杂生物质基碳纤维复合材料及制备方法
CN111354935A (zh) * 2020-03-24 2020-06-30 东华大学 富缺陷硫化铼/氮掺杂生物质基碳纤维复合材料及其制备方法
CN114371202A (zh) * 2020-10-14 2022-04-19 东华大学 一种碳纤维复合材料及其制备方法和应用
CN114371202B (zh) * 2020-10-14 2023-05-02 东华大学 一种碳纤维复合材料及其制备方法和应用
CN113338038A (zh) * 2021-06-01 2021-09-03 晋江瑞碧科技有限公司 一种氮掺杂中空碳纳米线接枝聚吡咯的制备方法及其用途
CN114717572A (zh) * 2022-03-30 2022-07-08 上海工程技术大学 以氮掺杂碳为基底的钴铁双金属磷化纳米颗粒及其制备方法和应用
CN114717572B (zh) * 2022-03-30 2023-09-05 上海工程技术大学 以氮掺杂碳为基底的钴铁双金属磷化纳米颗粒及其制备方法和应用
CN114813597A (zh) * 2022-04-22 2022-07-29 四川智立方博导科技有限责任公司 一种二维硫氧化钴纳米片状材料、制备方法及气敏应用
CN114813597B (zh) * 2022-04-22 2024-04-30 四川智立方博导科技有限责任公司 一种二维硫氧化钴纳米片状材料、制备方法及气敏应用

Also Published As

Publication number Publication date
CN106098404B (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
CN106098404B (zh) 一种硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备和应用
CN106298269B (zh) 硫化钴镍/氮掺杂碳纳米纤维复合材料、制备方法及应用
CN105633372B (zh) 硫化镍纳米颗粒/氮掺杂纤维基碳气凝胶复合材料及其制备方法
CN105948045B (zh) 一种氮掺杂淀粉基活性炭微球材料的制备方法及其应用
Sun et al. A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors
CN105293590B (zh) 硫化钴镍/石墨烯/碳纳米纤维复合材料及其制备方法
Wu et al. Embedding NiS nanoflakes in electrospun carbon fibers containing NiS nanoparticles for hybrid supercapacitors
CN105869912B (zh) 一种淀粉基均分散活性炭微球材料的制备方法及其应用
CN105355450B (zh) 一种氮掺杂碳纤维/氮掺杂石墨烯/细菌纤维素膜材料的制备方法及其应用
Li et al. Mesoporous RGO/NiCo2O4@ carbon composite nanofibers derived from metal-organic framework compounds for lithium storage
CN104009242A (zh) 一种金属/金属氧化物负载的氮掺杂的多孔碳网络结构材料制备方法
Huo et al. Facile synthesis of manganese cobalt oxide/nickel cobalt oxide composites for high-performance supercapacitors
CN110942924A (zh) 一种基于酵母细胞的负载Ni-Co-S多孔碳材料及其制备方法和应用
Illa et al. Catalytic graphitization of bacterial cellulose–derived carbon nanofibers for stable and enhanced anodic performance of lithium-ion batteries
CN105938761A (zh) 用作超级电容器电极材料的镁钴氧化物/石墨烯复合材料及其制备方法
CN108054020A (zh) 一种氮掺杂碳颗粒/石墨化碳氮复合材料的制备方法及应用
Yang et al. Ultrahigh Rate Capability and Lifespan MnCo2O4/Ni‐MOF Electrode for High Performance Battery‐Type Supercapacitor
CN110246700A (zh) 一种多层核壳氧化物/硫化物异质结构电极材料的制备方法
Lv et al. Construction of nickel ferrite nanoparticle-loaded on carboxymethyl cellulose-derived porous carbon for efficient pseudocapacitive energy storage
Zhang et al. Walnut shell-derived porous carbon integrated with Ni-MOF/SPANI composites for high-performance supercapacitor
Chen et al. Application of ZIF-8 coated with titanium dioxide in cathode material of lithium-sulfur battery
Sun et al. Controlled synthesis and lithium storage performance of NiCo2O4/PPy composite materials
CN113410473B (zh) 基于壳聚糖修饰纤维素气凝胶的铁镍多酚网络纳米复合碳材料电催化剂及其制备方法
Pang et al. MOF derived hierarchical carbon-enhanced MCo2S4 for high-performance hybrid supercapacitors
CN109888314A (zh) 一种锌空气电池用硼钴氮掺杂碳纳米材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181023

Termination date: 20210823