CN106086880A - 一种自清洁可复用sers衬底的制备及其应用 - Google Patents

一种自清洁可复用sers衬底的制备及其应用 Download PDF

Info

Publication number
CN106086880A
CN106086880A CN201610478428.6A CN201610478428A CN106086880A CN 106086880 A CN106086880 A CN 106086880A CN 201610478428 A CN201610478428 A CN 201610478428A CN 106086880 A CN106086880 A CN 106086880A
Authority
CN
China
Prior art keywords
automatically cleaning
sers substrate
tio
raman
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610478428.6A
Other languages
English (en)
Inventor
梁培
吴燕雄
曹艳亭
白阳
刘越
董前民
舒海波
黄杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201610478428.6A priority Critical patent/CN106086880A/zh
Publication of CN106086880A publication Critical patent/CN106086880A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3607Coatings of the type glass/inorganic compound/metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/255Au
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种自清洁可复用SERS衬底的制备及其应用。本发明利用TiO2在紫外光下能够光催化降解有机物的原理,提出自清洁可复用SERS衬底的制备方法,并给出了对应的应用,实现了可重复测量不同待测物质的SERS衬底的制备和应用,有效降低了基于SERS衬底的拉曼检测技术的检测成本,大大提高了基于SERS衬底的拉曼检测技术的检测效率。

Description

一种自清洁可复用SERS衬底的制备及其应用
技术领域
本发明涉及一种自清洁可复用SERS衬底的制备及其应用,属于SERS衬底制备及应用领域。
背景技术
表面增强拉曼散射(Surface Enhanced Raman Spectroscopy,SERS)效应是指分子等物种吸附或者非常靠近具有某种纳米结构基底表面时,其拉曼信号显著增强的现象。SERS光谱技术有效地克服了常规拉曼光谱灵敏度低的缺点,因而被广泛地应用于表面科学、分析科学和生物科学等各个领域。自SERS技术问世以来,相关领域的研究主要都聚焦在SERS衬底的制备方面,其实际应用取决于提供具有高灵敏度、高均一性、低检测极限、热点均匀、稳定的SERS衬底。
然而现阶段的基于SERS衬底的拉曼检测技术都是将待检测物质吸附在SERS衬底表面进行拉曼检测的,由于待检测物质一旦吸附在SERS衬底表面,就很难对SERS衬底进行清洁,因此无法重复使用SERS衬底,而一般SERS衬底采用的都是银或金的纳米结构作为原料,无法做到SERS衬底的可重复利使用,这就增加了基于SERS衬底的拉曼检测技术的检测成本,且每进行一次检测还需重新制作SERS活性基底,这大大影响了基于SERS衬底的拉曼检测技术的检测效率。
近些年来,使用半导体作为光催化剂(如TiO2)在紫外光下照射的光催化过程被广泛地应用于降解有机化合物。二氧化钛(TiO2)是一种化学性质稳定、无毒、无污染的半导体材料。已有很多研究成果证实了TiO2半导体作为优秀的光催化剂能够在紫外光下降解大范围的有机污染物。如中国专利申请号201310382115.7《一种光诱导自清洁玻璃的制备方法》具体提出了一种涂覆ZnO/TiO2复合薄膜的自清洁玻璃的制备方法,能够有效降解有机物或无机物。因此,本发明采用在SERS衬底中加入一层纳米TiO2薄膜,利用TiO2在紫外光的照射下,价带电子会跃迁到导带,价带上的空穴把周围的水分子和氧气激发成高活性的·OH自由基和·O2-自由基,这些高活性的自由基能够分解大部分有机物和无机物,并通过罗丹明6G(R6G)分子考察了自清洁可复用SERS衬底的自清洁性能。
发明内容
基于现有技术中存在的SERS活性基底无法可重复利用,检测成本高的问题,本发明专利提供一种自清洁可复用SERS衬底的制备及其应用,能实现SERS衬底的自清洁和可复用功能,克服了原有SERS衬底一次性使用的缺点,有效降低了基于SERS衬底的拉曼检测技术的检测成本,大大提高了基于SERS衬底的拉曼检测技术的检测效率。
为了解决上述技术问题,本申请采用如下技术方案予以实现:
一种自清洁可复用SERS衬底的制备及其应用,包括,首先,采用提拉方法在洁净的导电物质上涂覆纳米TiO2薄膜,然后,对涂覆了纳米TiO2薄膜的导电物质进行煅烧处理,接着,采用液相还原法制备纳米贵金属溶胶,最后将纳米贵金属溶胶沉积在涂覆了纳米TiO2薄膜的导电物质上,得自清洁可复用SERS衬底。
所述的导电物质为金属片,合金片,硅片或导电玻璃片。
所述的纳米贵金属溶胶为纳米银溶胶或纳米金溶胶。
所述的纳米银溶胶是以硝酸银为前驱物,抗坏血酸或柠檬酸钠或硼氢化钠为还原剂,聚乙烯吡咯烷酮(PVP)为表面活性剂来配置的;
所述的纳米金溶胶是以氯金酸为前驱物,柠檬酸钠或硼氢化钠或抗坏血酸为还原剂来配置的。
所述的煅烧处理包括如下:将涂覆了纳米TiO2薄膜的导电物质放入马沸炉中,升温至400~600℃,并且保温1~2h,而后自然冷却,完成煅烧处理。
所述的自清洁可复用SERS衬底的应用步骤如下:
第一步,将待测物质(固体或溶液)附着在自清洁可复用SERS衬底上,通过常规拉曼激光照射后,由拉曼探头接收到待测物质和自清洁可复用SERS衬底的拉曼信号;
第二步,将附着了待测物质的自清洁可复用SERS衬底放到紫外光下进行照射,并通入O2供自清洁可复用SERS衬底中的TiO2在紫外光下降解待测物质所需,紫外光下照射1~2h后,将待测物质经TiO2在紫外光下转化成的H2O和CO2用水或空气清洗掉,再次得到自清洁可复用SERS衬底;
第三步,将第二步清洗得到的自清洁可复用SERS衬底,通过常规拉曼激光照射,由拉曼探头接收到自清洁可复用SERS衬底的拉曼信号,比较与第一步中得到的拉曼信号,判断待测物质的拉曼特征峰是否已消失,若待测物质的拉曼特征峰已消失,则说明第二步的自清洁已完成,若待测物质的拉曼特征峰仍存在,则说明第二步的自清洁还未完成,需重复第二步,直到待测物质的拉曼特征峰消失为止。
上述技术方案具有如下有益效果:
(1)所述的一种自清洁可复用SERS衬底的制备及其应用,其自清洁可复用SERS衬底最上层采用纳米贵金属,其SERS性能能够得到很好的保证,并且能够得到很强的拉曼检测峰。
(2)所述的一种自清洁可复用SERS衬底的制备及其应用,采用TiO2在紫外光下光催化的原理,能够降解绝大部分有机物和无机物,使其转化为H2O和CO2,降解产物对仪器和环境都无毒无害,且产物很容易处理。
(3)所述的一种自清洁可复用SERS衬底的制备及其应用,其自清洁可复用SERS衬底采用导电物质作为最下层,可以通过加入微电压,加速自清洁过程,且有利于该衬底的其他性能的检测,如扫描电镜检测、透射电镜检测。
附图说明
图1是一种自清洁可复用SERS衬底的结构示意图;
图中1.纳米贵金属,2.纳米TiO2薄膜,3.导电物质.
具体实施方式
以下结合实施例和附图对本发明作进一步描述,但本发明不限于以下所述范围。
如图1是一种自清洁可复用SERS衬底的结构示意图:
最底下一层为导电物质(金属片,合金片,硅片或导电玻璃片);
中间一层为采用提拉方法和煅烧处理在洁净的导电物质上涂覆的纳米TiO2薄膜;
最上面一层为纳米贵金属(纳米银或纳米金),采用液相还原法制备纳米贵金属(纳米银或纳米金)溶胶,并将纳米贵金属溶胶沉积在涂覆了纳米TiO2薄膜的导电物质上,得自清洁可复用SERS衬底。
所述的纳米银溶胶是以硝酸银为前驱物,抗坏血酸或柠檬酸钠或硼氢化钠为还原剂,聚乙烯吡咯烷酮为表面活性剂来配置的。
所述的纳米金溶胶是以氯金酸为前驱物,柠檬酸钠或硼氢化钠或抗坏血酸为还原剂来配置的。
所述的煅烧处理包括如下:将涂覆了纳米TiO2薄膜的导电物质放入马沸炉中,升温至400~600℃,并且保温1~2h,而后自然冷却,完成煅烧处理。
实施例一:
为本发明专利一种自清洁可复用SERS衬底的制备及其应用,实施例一具体为Ag-TiO2衬底,并且采用罗丹明6G(R6G)分子作为标记分子,Ag-TiO2衬底的制备过程包括:
第一步:导电物质清洗和干燥
(1)将导电物质依次放入丙酮溶液、酒精溶液、去离子水中,各超声振荡清洗10分钟;
(2)将清洗好的导电物质放入真空干燥箱中,60℃干燥30分钟,取出自然冷却到室温。
第二步:导电物质涂覆上纳米TiO2薄膜并煅烧
将洁净的导电物质用提拉法涂覆上纳米TiO2薄膜,提拉镀膜机的提拉速度为10cm/min,提拉结束后,静置30s后将涂覆了纳米TiO2薄膜的导电物质放入煅烧专用的陶瓷杯中,并连同陶瓷杯一起放入马沸炉中,靠近温度探针,确保受热均匀,升温至600℃,并且保温2h,而后自然冷却,完成煅烧处理。
第三步:纳米银溶胶的制备
(1)取0.5ml硝酸银溶液(2mol/L)、3ml聚乙烯吡咯烷酮溶液(1.5%)和15ml去离子水于烧杯中;
(2)将混合溶液在磁力搅拌器下搅拌,搅拌均匀后迅速加入0.5ml抗坏血酸溶液(0.3mol/L),搅拌10min;
(3)将溶液倒入离心管中进行离心,离心速率8000r/min,离心时间为15min;
(4)将离心后的上清液倒掉,重新加入去离子水,将离心产物溶解后即得纳米银溶胶。
第四步:纳米银溶胶沉积
将制备的纳米银溶胶滴在涂覆了纳米TiO2薄膜的导电物质上,放入真空干燥箱里干燥,干燥结束,即得到Ag-TiO2衬底。
制得的Ag-TiO2衬底的具体应用如下:
a)将R6G溶液附着在Ag-TiO2衬底上,通过常规拉曼激光照射后,由拉曼探头接收到R6G和Ag-TiO2衬底的拉曼信号;
b)将附着了R6G的Ag-TiO2衬底放到紫外光下进行照射,并通入O2供Ag-TiO2的TiO2在紫外光下降解R6G所需,紫外光下照射1h后,将R6G经TiO2在紫外光下转化成的H2O和CO2用水清洗掉,再次得到Ag-TiO2衬底;
c)将b)中清洗得到的Ag-TiO2衬底,通过常规拉曼激光照射,由拉曼探头接收到Ag-TiO2衬底的拉曼信号,比较与a)中得到的拉曼信号,判断R6G的拉曼特征峰是否已消失,若R6G的拉曼特征峰已消失,则说明b)中的自清洁已完成,若R6G的拉曼特征峰仍存在,则说明b)的自清洁还未完成,需重复第二步,直到R6G的拉曼特征峰消失为止。
本实施例一中所述的导电物质为金属片,合金片,硅片或导电玻璃片。
实施例二:
为本发明专利一种自清洁可复用SERS衬底的制备及其应用,实施例二具体为Au-TiO2衬底,并且采用罗丹明6G(R6G)分子作为标记分子,Au-TiO2衬底的制备过程包括:
第一步:导电物质清洗和干燥
(1)将导电物质依次放入丙酮溶液、酒精溶液、去离子水中,各超声振荡清洗10分钟;
(2)将清洗好的导电物质放入真空干燥箱中,60℃干燥30分钟,取出自然冷却到室温。
第二步:导电物质涂覆上纳米TiO2薄膜并煅烧
将洁净的导电物质用提拉法涂覆上纳米TiO2薄膜,提拉镀膜机的提拉速度为10cm/min,提拉结束后,静置30s后将涂覆了纳米TiO2薄膜的导电物质放入煅烧专用的陶瓷杯中,并连同陶瓷杯一起放入马沸炉中,靠近温度探针,确保受热均匀,升温至500℃,并且保温2h,而后自然冷却,完成煅烧处理。
第三步:纳米金溶胶的制备
50ml的氯金酸溶液(0.24mmol/L)加热到沸腾保存15min后,迅速加入1ml柠檬酸钠(1%),保持沸腾20min,溶液变成酒红色。最后使溶液在搅拌下冷却到室温,即得到纳米金溶胶。
第四步:纳米金溶胶沉积
将制备的纳米金溶胶滴在涂覆了纳米TiO2薄膜的导电物质上,放入真空干燥箱里干燥,干燥结束,即得到Au-TiO2衬底。
制得的Au-TiO2衬底的具体应用如下:
a)将待测物质附着在Au-TiO2衬底上,通过常规拉曼激光照射后,由拉曼探头接收到待测物质和Au-TiO2衬底的拉曼信号;
b)将附着了待测物质的Au-TiO2衬底放到紫外光下进行照射,并通入O2供Au-TiO2的TiO2在紫外光下降解待测物质所需,紫外光下照射2h后,将待测物质经TiO2在紫外光下转化成的H2O和CO2用空气清洗掉,再次得到Au-TiO2衬底;
c)将b)中清洗得到的Au-TiO2衬底,通过常规拉曼激光照射,由拉曼探头接收到Au-TiO2衬底的拉曼信号,比较与a)中得到的拉曼信号,判断待测物质的拉曼特征峰是否已消失,若待测物质的拉曼特征峰已消失,则说明b)中的自清洁已完成,若待测物质的拉曼特征峰仍存在,则说明b)的自清洁还未完成,需重复第二步,直到待测物质的拉曼特征峰消失为止。
本实施例二中所述的导电物质为金属片,合金片,硅片或导电玻璃片。

Claims (5)

1.一种自清洁可复用SERS衬底的制备及其应用,其特征在于,首先,采用提拉方法在洁净的导电物质上涂覆纳米TiO2薄膜,然后,对涂覆了纳米TiO2薄膜的导电物质进行煅烧处理,接着,采用液相还原法制备纳米贵金属溶胶,最后将纳米贵金属溶胶沉积在涂覆了纳米TiO2薄膜的导电物质上,得自清洁可复用SERS衬底;
所述的导电物质为金属片,合金片,硅片或导电玻璃片;
所述的纳米贵金属溶胶为纳米银或纳米金溶胶。
2.根据权利要求1所述一种自清洁可复用SERS衬底的制备及其应用,其特征在于所述的纳米银溶胶是以硝酸银为前驱物,抗坏血酸或柠檬酸钠或硼氢化钠为还原剂,聚乙烯吡咯烷酮为表面活性剂来配置的。
3.根据权利要求1所述一种自清洁可复用SERS衬底的制备及其应用,其特征在于所述的纳米金溶胶是以氯金酸为前驱物,柠檬酸钠或硼氢化钠或抗坏血酸为还原剂来配置的。
4.根据权利要求1所述一种自清洁可复用SERS衬底的制备及其应用,其特征在于所述的煅烧处理包括如下:将涂覆了纳米TiO2薄膜的导电物质放入马沸炉中,升温至400~600℃,并且保温1~2h,而后自然冷却,完成煅烧处理。
5.根据权利要求1所述一种自清洁可复用SERS衬底的制备及其应用,其特征在于所述的自清洁可复用SERS衬底的应用步骤如下:
第一步,将待测物质(固体或溶液)附着在自清洁可复用SERS衬底上,通过常规拉曼激光照射后,由拉曼探头接收到待测物质和自清洁可复用SERS衬底的拉曼信号;
第二步,将附着了待测物质的自清洁可复用SERS衬底放到紫外光下进行照射,并通入O2供自清洁可复用SERS衬底中的TiO2在紫外光下降解待测物质所需,紫外光下照射1~2h后,将待测物质经TiO2在紫外光下转化成的H2O和CO2用水或空气清洗掉,再次得到自清洁可复用SERS衬底;
第三步,将第二步清洗得到的自清洁可复用SERS衬底,通过常规拉曼激光照射,由拉曼探头接收到自清洁可复用SERS衬底的拉曼信号,比较与第一步中得到的拉曼信号,判断待测物质的拉曼特征峰是否已消失,若待测物质的拉曼特征峰已消失,则说明第二步的自清洁已完成,若待测物质的拉曼特征峰仍存在,则说明第二步的自清洁还未完成,需重复第二步,直到待测物质的拉曼特征峰消失为止。
CN201610478428.6A 2016-06-20 2016-06-20 一种自清洁可复用sers衬底的制备及其应用 Pending CN106086880A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610478428.6A CN106086880A (zh) 2016-06-20 2016-06-20 一种自清洁可复用sers衬底的制备及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610478428.6A CN106086880A (zh) 2016-06-20 2016-06-20 一种自清洁可复用sers衬底的制备及其应用

Publications (1)

Publication Number Publication Date
CN106086880A true CN106086880A (zh) 2016-11-09

Family

ID=57253072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610478428.6A Pending CN106086880A (zh) 2016-06-20 2016-06-20 一种自清洁可复用sers衬底的制备及其应用

Country Status (1)

Country Link
CN (1) CN106086880A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108593607A (zh) * 2018-01-12 2018-09-28 中国计量大学 一种泡沫镍/go/纳米银sers基底的制备方法
CN111257303A (zh) * 2020-04-22 2020-06-09 张维 用于检测二噁英和多氯联苯的检测方法
CN116642873A (zh) * 2023-06-05 2023-08-25 江南大学 一种可重复使用的sers传感芯片及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759520A (zh) * 2012-05-14 2012-10-31 北京化工大学 一种具有表面增强拉曼散射效应的活性基底的制备方法
CN103048304A (zh) * 2012-12-07 2013-04-17 江苏大学 一种可循环使用的表面增强拉曼光谱活性基底的制备方法
CN104404512A (zh) * 2014-10-10 2015-03-11 清华大学 一种高稳定性可循环使用表面增强拉曼基底及制备方法
CN105158229A (zh) * 2015-08-13 2015-12-16 南京理工大学 一种高灵敏性可循环表面增强拉曼光谱基底制备方法
CN105158228A (zh) * 2015-07-30 2015-12-16 西北大学 基于勃姆石纳米薄膜的sers基底及制备方法
CN205679533U (zh) * 2016-05-31 2016-11-09 中国计量大学 一种纳米二氧化钛膜上沉积纳米银粒子层的表面增强拉曼基底

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759520A (zh) * 2012-05-14 2012-10-31 北京化工大学 一种具有表面增强拉曼散射效应的活性基底的制备方法
CN103048304A (zh) * 2012-12-07 2013-04-17 江苏大学 一种可循环使用的表面增强拉曼光谱活性基底的制备方法
CN104404512A (zh) * 2014-10-10 2015-03-11 清华大学 一种高稳定性可循环使用表面增强拉曼基底及制备方法
CN105158228A (zh) * 2015-07-30 2015-12-16 西北大学 基于勃姆石纳米薄膜的sers基底及制备方法
CN105158229A (zh) * 2015-08-13 2015-12-16 南京理工大学 一种高灵敏性可循环表面增强拉曼光谱基底制备方法
CN205679533U (zh) * 2016-05-31 2016-11-09 中国计量大学 一种纳米二氧化钛膜上沉积纳米银粒子层的表面增强拉曼基底

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108593607A (zh) * 2018-01-12 2018-09-28 中国计量大学 一种泡沫镍/go/纳米银sers基底的制备方法
CN111257303A (zh) * 2020-04-22 2020-06-09 张维 用于检测二噁英和多氯联苯的检测方法
CN116642873A (zh) * 2023-06-05 2023-08-25 江南大学 一种可重复使用的sers传感芯片及其制备方法和应用
CN116642873B (zh) * 2023-06-05 2024-07-30 江南大学 一种可重复使用的sers传感芯片及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN107313046B (zh) 一种sers基底及其制备方法
He et al. Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate
CN106086880A (zh) 一种自清洁可复用sers衬底的制备及其应用
US20210114868A1 (en) Bionic SERS substrate with metal-based compound eye bowl structure and its construction method and application
CN103048304A (zh) 一种可循环使用的表面增强拉曼光谱活性基底的制备方法
CN108867026B (zh) 一种可循环使用的柔性表面增强拉曼散射基底及其制备和应用
CN105300955B (zh) 集成液芯光波导和纳米金属的微流控sers芯片检测装置
CN103712972B (zh) 一种表面增强拉曼基底的制备方法
JP2009080109A (ja) 表面増強赤外吸収センサーとその製造方法
CN108709879B (zh) 基于介电高弹聚合物的表面增强拉曼散射活性薄膜及方法
WO2013132703A1 (ja) ナノ粒子分散液、ナノ粒子担持粉末、及びそれらの製造方法
CN104897639A (zh) 采用TiO2NTs/Ti片状电极的原位拉曼光电化学池及其应用
CN107860760A (zh) 氧化石墨烯/银纳米颗粒/金字塔形pmma三维柔性拉曼增强基底及制备方法和应用
CN111299606A (zh) 一种纳米金咖啡环的制备方法及其在sers检测中的应用
CN105669046A (zh) 一种荧光增强纳米薄膜及其制备方法
CN105461044A (zh) 一种降解亚甲基蓝溶液的方法
Mills et al. Indoor and outdoor monitoring of photocatalytic activity using a mobile phone app. and a photocatalytic activity indicator ink (paii)
CN109112601B (zh) 基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用
CN109655443A (zh) 银负载二氧化钛纳米阵列复合薄膜、制备方法及其在痕量物质检测中的应用
CN107877010B (zh) 一种微纳孔阵列的加工装置
Linnik et al. Gold nanoparticles into Ti1− xZnxO2 films: synthesis, structure and application
CN108613961A (zh) 一种三维灵敏度高、抗摩擦的拉曼活性基底
CN106950213A (zh) 一种纳米异质结表面增强拉曼活性基底的制备方法
CN107552049A (zh) 一种表面等离激元增强型钛酸锶光催化剂的制备方法
Jurov et al. Atmospheric pressure plasma jet–assisted impregnation of gold nanoparticles into PVC polymer for various applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161109