CN109112601B - 基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用 - Google Patents

基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用 Download PDF

Info

Publication number
CN109112601B
CN109112601B CN201810854151.1A CN201810854151A CN109112601B CN 109112601 B CN109112601 B CN 109112601B CN 201810854151 A CN201810854151 A CN 201810854151A CN 109112601 B CN109112601 B CN 109112601B
Authority
CN
China
Prior art keywords
substrate
sample
nano array
photoinduction
enhanced raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810854151.1A
Other languages
English (en)
Other versions
CN109112601A (zh
Inventor
张茂峰
陈吞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201810854151.1A priority Critical patent/CN109112601B/zh
Publication of CN109112601A publication Critical patent/CN109112601A/zh
Application granted granted Critical
Publication of CN109112601B publication Critical patent/CN109112601B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Composite Materials (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及拉曼光谱分析领域领域,具体涉及一种基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用,使用半导体贵金属复合基底,利用半导体的光诱导性质来增强基底的SERS性能,同时利用半导体的光催化性质来降解探针分子从而实现基底的可重复利用率,此外在基底上复合一层石墨烯一是增进基底的重复性,二是增强基底SERS性能,三是实现了基底的可重复利用,三维多孔纳米阵列结构在不增加总体面积的情况下扩大SERS活性基底的面积,此外激光激发和拉曼散射具有一定的穿透性深度,三维结构可以增加激光与样品的相互作用的体积而不需要增加SERS基底的尺寸或者激光强度,本发明提高了SERS基底的灵敏度,为未来的生物检测方面提供了很好的途径。

Description

基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用
技术领域
本发明涉及拉曼光谱分析领域领域,具体涉及一种基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用。
背景技术
表面增强拉曼光谱简称(SERS)作为一种功能强大,用途广泛的新型分析工具,由于其优越的灵敏性可以用来进行单分子检测或者多分子的追踪。SERS基底的制备一直是SERS的研究热点,基底的材质选择和表面形貌等因素可以明显的影响光谱的信号强度和重复性,从而决定了SERS这种检测方法在实际生活中的应用。制备SERS基底的主要原则是提高灵敏性、稳定性和重复性并且降低成本绿色环保。近年来,可重复循环使用的SERS基底是实验人员一直追求的目标,从而在化学、物理和药物等领域得到更广泛的应用。拉曼光谱分析速度快,且对药物具有指纹性,可以应用于分子结构研究,因此也可以用于药用辅料的质量控制及现场快检。
黄玉坤等应用表面增强曼光谱鉴别食品中的金黄色葡萄球菌,制备金纳米溶胶作为增强基底,可在不同种病原菌类中鉴别出金黄色葡萄球菌,可用于临床感染诊断及食品监管。拉曼光谱可以用来进行成分的鉴别,晶体结构的测定,晶体的结晶取向,温度和应力的测量等,因此在化学领域也有很好的应用。半导体纳米材料的SERS增强能力要弱于金属基底,但半导体纳米材料(如TiO2和ZnO等)具有无毒、廉价、易得、化学稳定及生物相容等特点,而且在某些特殊条件(如长时间放置、低温或高温等条件)下仍然具有较强的SERS增强能力;并且,半导体纳米材料是一类重要的无机功能材料,在许多领域(如太阳能电池、催化、光催化、传感器、生物医学材料等)中均具有重要的应用,因此基于半导体(特别是宽带隙半导体纳米材料)的SERS 研究正逐渐引起人们的广泛关注。利用半导体复合基底的光催化性能从而实现了SERS基底的可重复性,筛选出性能优越的复合基底,进行污染物和杀虫剂的超痕量检测,获得基底对有机污染物和杀虫剂的最低检测浓度。
表面增强拉曼光谱(SERS)技术是现如今世界上最有效的检测单分子结构和多分子追踪的手段之一。SERS检测至今主要使用的是贵金属(Au、Ag)作为检测基底,具有很大的局限性而且造价昂贵,很难制备出循环性优秀的基底。本发明的目的是找到一个可以代替目前主流的贵金属基底的基底,从而解决造价昂贵的问题,提高反复利用率,实现实际检测的目的。利用半导体基底的SERS增强效应和光催化、光诱导等化学性质对现用的检测基底进行改进。
发明内容
(一)解决的技术问题
针对现有技术所存在的上述缺点,本发明提供了基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用,该发明制备方法简单,制备出了重复性好、均匀性好、灵敏度高的二维半导体复合贵金属阵列和三维多孔纳米结构基底。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:
一种基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法,其特征在于:所述制备方法包括以下步骤:
一、阳极氧化法制备二氧化钛纳米阵列结构:
a、预处理:将钛片剪裁成等大的碎片,大小为20mm×30mm,然后将所述裁剪后的钛片放入酸性溶液中清洗10min,酸洗之后将样品依次用丙酮、异丙醇、甲醇、乙醇、去离子水超声清洗5min,烘干,得到样品A,将所述样品A放置在烧杯中备用;
b、乙二醇电解液配置:取用48ml乙二醇、2ml水和0.4wt%氟化铵,混合均匀,将步骤a中的样品A放置在60V条件下反应30min,得到样品B;
c、丙三醇电解液配置:取用25ml丙三醇、25ml水和0.3wt%氟化铵,混合均匀,将步骤b中的样品B放置在25V条件下反应4h,得到样品C;
d、后处理:将步骤c中得到的样品C用适量乙醇超声清洗,烘干,得到样品D;
e、热处理:将样品D放入马弗炉中进行加热处理,处理后取出并放置于空气中冷却至室温,得到二氧化钛纳米阵列结构;
二、制备复合在二氧化钛纳米阵列上的银纳米颗粒:
f、分别准确称取1.7g硝酸银、4ml氨水和7g葡萄糖,并将三种药品分别溶解于三个烧杯中;
g、使用移液枪逐滴向硝酸银溶液中滴加氨水,控制合适的滴加速率,反应后得到银氨溶液;
h、将上述步骤e中热处理后的二氧化钛纳米阵列结构样品分别在步骤g中制得的银氨溶液和葡萄糖溶液中浸泡30s,当所述样品表面变为黑色,得到复合在二氧化钛纳米阵列上的银纳米颗粒,将所述复合在二氧化钛纳米阵列上的银纳米颗粒用去离子水清洗,烘干,备用。
三、氧化石墨烯的复合:
i、制备0.3g/L氧化石墨烯溶液,并将所述石墨烯溶液置超声震荡 4h后,待用。
j、将步骤i中制得的所述氧化石墨烯溶液加入旋涂机内,并进行旋涂,得到最终产物;
k、将步骤j中的最终产物放置在真空干燥箱中进行烘干,得到 TiO2/Ag复合纳米阵列光诱导增强拉曼基底。
优选地,所述步骤a中酸性溶液各试剂配比为:HF:HNO3:H2O=1:4:5。
优选地,所述步骤e中马弗炉的升温速率为3℃/min,升温至500℃,保温时间为2h。
优选地,所述步骤f中三个烧杯内均盛放有50ml去离子水。
优选地,所述步骤g中溶液的转变过程为溶液颜色从无色到深棕色再到无色。
优选地,所述步骤j中旋转机上旋涂氧化石墨烯的次数为4,每次旋转速度为2000r/min,旋涂时间为1min。
优选地,所述步骤k中烘干时间为2min。
(三)有益效果
与现有技术相比,本发明所提供的一种基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用使用半导体贵金属复合基底,利用半导体的光诱导性质来增强基底的SERS性能,同时利用半导体的光催化性质来降解探针分子从而实现基底的可重复利用率,在基底上复合一层石墨烯可以增进基底的重复性,这样本发明就达到了既增强了基底SERS性能又实现了基底的可重复利用。三维多孔纳米阵列结构可以在不增加总体面积的情况下扩大SERS活性基底的面积,此外激光激发和拉曼散射具有一定的穿透性深度,二维结构往往是增加框架从而扩大SERS活性面积,而三维结构可以增加激光与样品的相互作用的体积而不需要增加SERS基底的尺寸或者激光强度,相比之下三维多孔结构可以很好的提高SERS基底的灵敏度,为未来的生物检测方面提供了很好的途径。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明制备的二氧化钛纳米管阵列示意图;
图2为本发明乙二醇体系的纳米阵列形貌示意图;
图3为本发明丙三醇体系的纳米阵列形貌示意图;
图4为本发明银及二氧化钛的XRD图谱;
图5为CV结晶紫(10-9M)和p-MBA(10-7M)拉曼检测图谱;
图6为基底在紫外照射前后的拉曼检测图谱;
图7为鱼鳞残留探针分子的拉曼检测图谱;
图8为杀虫剂的拉曼检测图谱;
图9为制备二氧化钛纳米阵列结构装置图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本实施例中,一种基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用,其特征在于:所述制备方法包括以下步骤:
一、阳极氧化法制备二氧化钛纳米阵列结构:
a、预处理:将钛片剪裁成等大的碎片,大小为20mm×30mm,然后将裁剪后的钛片放入酸性溶液中清洗10min,酸洗之后将样品依次用丙酮、异丙醇、甲醇、乙醇、去离子水超声清洗5min,烘干,得到样品A,将样品A放置在烧杯中备用;
b、乙二醇电解液配置:取用48ml乙二醇、2ml水和0.4wt%氟化铵,混合均匀,将步骤a中的样品A放置在60V条件下反应30min,得到样品B;
c、丙三醇电解液配置:取用25ml丙三醇、25ml水和0.3wt%氟化铵,混合均匀,将步骤b中的样品B放置在25V条件下反应4h,得到样品C;
d、后处理:将步骤c中得到的样品C用适量乙醇超声清洗,烘干,得到样品D;
e、热处理:将样品D放入马弗炉中进行加热处理,处理后取出并放置于空气中冷却至室温,得到二氧化钛纳米阵列结构;
二、制备复合在二氧化钛纳米阵列上的银纳米颗粒:
f、分别准确称取1.7g硝酸银、4ml氨水和7g葡萄糖,并将三种药品分别溶解于三个烧杯中;
g、使用移液枪逐滴向硝酸银溶液中滴加氨水,控制合适的滴加速率,反应后得到银氨溶液;
h、将上述步骤e中热处理后的二氧化钛纳米阵列结构样品分别在步骤g中制得的银氨溶液和葡萄糖溶液中浸泡30s,当样品表面变为黑色,得到复合在二氧化钛纳米阵列上的银纳米颗粒,将复合在二氧化钛纳米阵列上的银纳米颗粒用去离子水清洗,烘干,备用。
三、氧化石墨烯的复合:
i、制备0.3g/L氧化石墨烯溶液,并将石墨烯溶液置超声震荡4h 后,待用。
j、将步骤i中制得的氧化石墨烯溶液加入旋涂机内,并进行旋涂,得到最终产物;
k、将步骤j中的最终产物放置在真空干燥箱中进行烘干,得到 TiO2/Ag复合纳米阵列光诱导增强拉曼基底。
具体地,步骤a中酸性溶液各试剂配比为:HF:HNO3:H2O=1: 4:5;步骤e中马弗炉的升温速率为3℃/min,升温至500℃,保温时间为2h;步骤f中三个烧杯内均盛放有50ml去离子水;步骤g中溶液的转变过程为溶液颜色从无色到深棕色再到无色;步骤j中旋转机上旋涂氧化石墨烯的次数为4,每次旋转速度为2000r/min,旋涂时间为 1min;步骤k中烘干时间为2min。
图1为制备的二氧化钛纳米管阵列示意图,利用阳极氧化法制备均一有序的二氧化钛纳米管阵列,改进阳极氧化法的条件来控制纳米阵列的形状尺寸和表面结构,并通过改进镀银实验中的时间、浓度和次数以提高纳米阵列的表面增强拉曼性能,利用银镜反应在得到的纳米阵列表面镀上一层银颗粒,并复合一层氧化石墨烯颗粒。图2为乙二醇体系的纳米阵列形貌示意图,图3为本发明丙三醇体系的纳米阵列形貌示意图;由图可知,采用了乙二醇和丙三醇两种体系的电解液,阳极氧化法制备三维纳米基底时分别得到了不同形貌的纳米阵列。图4 为本发明银及二氧化钛的XRD图谱,该图谱证明了银以及二氧化钛的存在。图5为CV结晶紫(10-9M)和p-MBA(10-7M)拉曼检测图谱,证明所制备的基底具备很好的三维纳米结构,此外拉曼性能优越,在便携式拉曼上可以测到CV结晶紫(10-9M)、p-MBA(10-7M)。图6 为基底在紫外照射前后的拉曼检测图谱,从图中可以看出光诱导效应可以达到8倍左右,基底在紫外照射前后的拉曼强度可以达到8倍。
一种基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用,对于制得的基底另外进行了额外的生物检测,图7为鱼鳞残留探针分子的拉曼检测图谱,图8为杀虫剂的拉曼检测图谱,实验中杀虫剂选用的为西维因、福美双、辛硫磷。
综上所述,本发明所提供的一种基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用使用半导体贵金属复合基底,利用半导体的光诱导性质来增强基底的SERS性能,同时利用半导体的光催化性质来降解探针分子从而实现基底的可重复利用率,此外在基底上复合一层石墨烯也可以增进基底的重复性,这样本发明就达到了既增强了基底SERS性能又实现了基底的可重复利用。三维多孔纳米阵列结构可以在不增加总体面积的情况下扩大SERS活性基底的面积,此外激光激发和拉曼散射具有一定的穿透性深度,二维结构往往是增加框架从而扩大SERS活性面积,而三维结构可以增加激光与样品的相互作用的体积而不需要增加SERS基底的尺寸或者激光强度,相比之下三维多孔结构可以很好的提高SERS基底的灵敏度,为未来的生物检测方面提供了很好的途径。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不会使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (6)

1.一种基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法,其特征在于:所述制备方法包括以下步骤:
一、阳极氧化法制备二氧化钛纳米阵列结构:
a、预处理:将钛片剪裁成等大的碎片,大小为20mm×30mm,然后将所述剪裁后的钛片放入酸性溶液中清洗10min,酸洗之后将样品依次用丙酮、异丙醇、甲醇、乙醇、去离子水超声清洗5min,烘干,得到样品A,将所述样品A放置在烧杯中备用;
b、乙二醇电解液配置:取用48ml乙二醇、2ml水和0.4wt%氟化铵,混合均匀,将步骤a中的样品A放置在60V条件下反应30min,得到样品B;
c、丙三醇电解液配置:取用25ml丙三醇、25ml水和0.3wt%氟化铵,混合均匀,将步骤b中的样品B放置在25V条件下反应4h,得到样品C;
d、后处理:将步骤c中得到的样品C用适量乙醇超声清洗,烘干,得到样品D;
e、热处理:将样品D放入马弗炉中进行加热处理,处理后取出并放置于空气中冷却至室温,得到二氧化钛纳米阵列结构;
二、制备复合在二氧化钛纳米阵列上的银纳米颗粒:
f、分别准确称取1.7g硝酸银、4ml氨水和7g葡萄糖,并将三种药品分别溶解于三个烧杯中;
g、使用移液枪逐滴向硝酸银溶液中滴加氨水,控制合适的滴加速率,反应后得到银氨溶液;
h、将上述步骤e中热处理后的二氧化钛纳米阵列结构样品分别在步骤g中制得的银氨溶液和葡萄糖溶液中浸泡30s,当所述样品表面变为黑色,得到复合在二氧化钛纳米阵列上的银纳米颗粒,将所述复合在二氧化钛纳米阵列上的银纳米颗粒用去离子水清洗,烘干,备用;
三、氧化石墨烯的复合:
i、制备0.3g/L氧化石墨烯溶液,并将所述氧化石墨烯溶液置超声震荡4h后,待用;
j、将步骤i中制得的所述氧化石墨烯溶液加入旋涂机内,并进行旋涂4次,每次旋转速度为2000r/min,旋涂时间为1min,得到最终产物;
k、将步骤j中的最终产物放置在真空干燥箱中进行烘干,得到TiO2/Ag复合纳米阵列光诱导增强拉曼基底。
2.根据权利要求1所述的基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法,其特征在于:所述步骤a中酸性溶液各试剂配比为,HF:HNO3:H2O=1:4:5。
3.根据权利要求1所述的基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法,其特征在于:所述步骤e中马弗炉的升温速率为3℃/min,升温至500℃,保温时间为2h。
4.根据权利要求1所述的基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法,其特征在于:所述步骤f中三个烧杯内均盛放有50ml去离子水。
5.根据权利要求1所述的基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法,其特征在于:所述步骤g中溶液的转变过程为溶液颜色从无色到深棕色再到无色。
6.根据权利要求1所述的基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法,其特征在于:所述步骤k中烘干时间为2min。
CN201810854151.1A 2018-07-30 2018-07-30 基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用 Expired - Fee Related CN109112601B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810854151.1A CN109112601B (zh) 2018-07-30 2018-07-30 基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810854151.1A CN109112601B (zh) 2018-07-30 2018-07-30 基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用

Publications (2)

Publication Number Publication Date
CN109112601A CN109112601A (zh) 2019-01-01
CN109112601B true CN109112601B (zh) 2021-04-06

Family

ID=64863803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810854151.1A Expired - Fee Related CN109112601B (zh) 2018-07-30 2018-07-30 基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用

Country Status (1)

Country Link
CN (1) CN109112601B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655443A (zh) * 2019-01-14 2019-04-19 中国人民解放军火箭军工程大学 银负载二氧化钛纳米阵列复合薄膜、制备方法及其在痕量物质检测中的应用
CN113720827A (zh) * 2021-08-31 2021-11-30 安徽大学 纳米银修饰的氧化钛纳米管阵列及其制备方法和用途
CN114894771A (zh) * 2022-05-09 2022-08-12 合肥工业大学 AgNPs修饰的双MOFs衍生的半导体异质结SERS基底及其制备和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706853A (zh) * 2012-06-05 2012-10-03 湖南大学 一种拉曼增强基底材料及其制备和应用方法
CN102706857B (zh) * 2012-07-02 2014-03-19 中国科学院合肥物质科学研究院 一种多功能表面增强拉曼散射基底的制备方法
CN104237197B (zh) * 2014-07-30 2016-10-12 东南大学 一种氧化石墨烯-银纳米粒子-二氧化钛纳米管阵列材料及其制备方法与应用
CN105177671B (zh) * 2015-08-19 2018-05-08 苏州榕绿纳米科技有限公司 一种银纳米颗粒/二氧化钛纳米管阵列的制备方法

Also Published As

Publication number Publication date
CN109112601A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
Huang et al. Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing
Sulciute et al. ZnO nanostructures application in electrochemistry: influence of morphology
Zhang et al. Highly efficient photoinduced enhanced Raman spectroscopy (PIERS) from plasmonic nanoparticles decorated 3D semiconductor arrays for ultrasensitive, portable, and recyclable detection of organic pollutants
Masuda et al. Deposition mechanism of anatase TiO2 on self-assembled monolayers from an aqueous solution
CN109112601B (zh) 基于TiO2/Ag纳米阵列光诱导增强拉曼基底的制备方法与应用
Tong et al. Recent progressive preparations and applications of silver-based SERS substrates
Liu et al. Few-layer graphene-encapsulated metal nanoparticles for surface-enhanced Raman spectroscopy
Yao et al. Ag nanoparticle-sensitized WO3 hollow nanosphere for localized surface plasmon enhanced gas sensors
Wang et al. Highly oriented 1-D ZnO nanorod arrays on zinc foil: direct growth from substrate, optical properties and photocatalytic activities
Huang et al. Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin
Wang et al. Vertically aligned ZnO nanowire arrays tip-grafted with silver nanoparticles for photoelectrochemical applications
Tang et al. Photoinduced shape conversion and reconstruction of silver nanoprisms
Fularz et al. Oxygen incorporation-induced SERS enhancement in silver nanoparticle-decorated ZnO nanowires
Ge et al. Flexible and recyclable SERS substrate fabricated by decorated TiO 2 film with Ag NPs on the cotton fabric
Desai et al. Facile soft solution route to engineer hierarchical morphologies of ZnO nanostructures
He et al. Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate
He et al. Bilayer polyaniline–WO3 thin-film sensors sensitive to NO2
Bao et al. In situ SERS monitoring of photocatalytic organic decomposition using recyclable TiO2-coated Ag nanowire arrays
Soliveri et al. Microwave-assisted silver nanoparticle film formation for SERS applications
Zhang et al. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate
Vinoth Kumar et al. Two-dimensional copper tungstate nanosheets: application toward the electrochemical detection of mesalazine
Arya et al. Electrochemical detection of ammonia solution using tin oxide nanoparticles synthesized via sol–gel route
Sakir et al. SERS-active hydrophobic substrates fabricated by surface growth of Cu nanostructures
Yadav et al. Tuning the wettability of indium oxide nanowires from superhydrophobic to nearly superhydrophilic: Effect of oxygen-related defects
Vendamani et al. Silicon nanostructures for molecular sensing: a review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210406