CN106024392A - 一种柔性高光电转化石墨烯纤维光电极的制备方法 - Google Patents

一种柔性高光电转化石墨烯纤维光电极的制备方法 Download PDF

Info

Publication number
CN106024392A
CN106024392A CN201610355838.1A CN201610355838A CN106024392A CN 106024392 A CN106024392 A CN 106024392A CN 201610355838 A CN201610355838 A CN 201610355838A CN 106024392 A CN106024392 A CN 106024392A
Authority
CN
China
Prior art keywords
graphene
tio
photoelectric conversion
photoelectrode
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610355838.1A
Other languages
English (en)
Other versions
CN106024392B (zh
Inventor
杨政鹏
朱建平
张春静
张雪峰
张春雷
张武军
牛宇涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201610355838.1A priority Critical patent/CN106024392B/zh
Publication of CN106024392A publication Critical patent/CN106024392A/zh
Application granted granted Critical
Publication of CN106024392B publication Critical patent/CN106024392B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种柔性高光电转化石墨烯纤维光电极的制备方法。本发明制备的电极是以TiO2纳米颗粒/氧化石墨烯混合溶液为纺丝液,采用湿纺技术制备石墨烯/TiO2复合纤维,经过氧等离子刻蚀即得所述的石墨烯纤维光电极。本发明的制备方法包括:制备纺丝液;制备氧化石墨烯/TiO2复合纤维;制备石墨烯/TiO2复合纤维;最后将石墨烯/TiO2复合纤维放入氧等离子体处理器进行刻蚀,即得所述的石墨烯纤维光电极。本发明制备的石墨烯纤维光电极不仅使TiO2纳米颗粒嵌入在光电极表面,而且使得光电极表面嵌入的TiO2纳米颗粒部分裸露出来,提高了TiO2与光电极的结合牢固性和纤维光电极的光电转化性能;且具有柔韧性好、高光电转化性能等优点,在有机废水处理方面具有广阔的应用前景。

Description

一种柔性高光电转化石墨烯纤维光电极的制备方法
技术领域
本发明属于石墨烯纤维光电极材料领域,尤其涉及一种柔性高光电转化石墨烯纤维光电极的制备方法。
背景技术
二氧化钛(TiO2)是目前研究最广泛的一种光催化材料,具有无毒、化学稳定性好、光催化活性高等优点,在气体净化、有机/无机废水处理、太阳能电池等领域得到了广泛应用。石墨烯是一种由六角形晶格组成的碳薄膜,以其优异的力学、光学、电学、热学性能和独特的二维结构成为材料领域的研究热点。近年来,石墨烯已与TiO2纳米粒复合制备光电极,并将其应用于染料敏化太阳能电池、有机物的光催化降解与光电转化以及光电化学传感器。虽然这些制备的TiO2纳米粒/石墨烯光电极具有较好的光化学与光电响应性能,然而在应用过程中仍然受到低光活性、电极刚性且小型化的影响,导致光电转化效率不理想、光电极构建成本高且难以放大化。石墨烯纤维由于其具有良好的力学强度、柔韧性、导电性和可编织性,为有效解决石墨烯基光电极存在的问题提供了可能。
发明内容
综上所述,本发明目的在于提供一种具有柔性和高光电转化性能的石墨烯/TiO2纤维光电极的制备方法。
一种柔性高光电转化石墨烯纤维光电极, 以TiO2纳米颗粒/氧化石墨烯混合溶液为纺丝液,采用湿纺技术制备石墨烯/TiO2复合纤维,经过氧等离子刻蚀即得所述的石墨烯纤维光电极。
一种柔性高光电转化石墨烯纤维光电极的制备方法,包括以下步骤:
步骤1、将氧化石墨烯配制成18mg/mL的去离子水分散液,按TiO2质量分数为0~60%的比例加入TiO2纳米颗粒,磁力搅拌得到分散均匀的纺丝液;
步骤2、采用注射泵及~0.9 mm的注射针头将纺丝液注入到凝固浴中,浸泡10~30min后,取出并自然干燥得到氧化石墨烯/TiO2复合纤维;
步骤3、将干燥的氧化氧化石墨烯/TiO2复合纤维在Ar气氛中于250~450℃下热处理3~5h,得到石墨烯/TiO2复合纤维;
步骤4、将石墨烯/TiO2复合纤维两端固定后,采用氧等离子体处理器对石墨烯/TiO2复合纤维进行刻蚀,即得所述的石墨烯纤维光电极。
进一步,所述的步骤1中的质量分数为:TiO2纳米颗粒占纺丝液固含量的质量分数。
进一步,所述的步骤2中的凝固浴为:含有1~5 wt% CaCl2的乙醇/水溶液,其中乙醇/水溶液为按1:1的体积比将乙醇和水均匀混合制得。
进一步,所述的步骤4中的刻蚀条件为:氧气体流量400ml/min,工作功率为400W,刻蚀时间为1~7 min。
本发明的有益效果:
1. 本发明以氧化石墨烯/TiO2纳米颗粒为纺丝液,湿纺制备石墨烯纤维光电极,一方面,TiO2纳米颗粒在石墨烯片层表面分布均匀;另一方面,石墨烯纤维光电极中TiO2纳米颗粒的含量易于调控。
2. 本发明采用氧等离子刻蚀方法处理石墨烯纤维光电极,不仅使TiO2纳米颗粒嵌入在光电极表面,而且使得光电极表面嵌入的TiO2纳米颗粒部分裸露出来,提高了TiO2与光电极的结合牢固性和纤维光电极的光电转化性能。
3. 石墨烯纤维光电极制备方法简单,柔韧性好、可编织、易于放大化。
附图说明
图1a是石墨烯/TiO2(50%)纤维的SEM图;
图1b是石墨烯/TiO2(50%)纤维打结的SEM图;
图1c-f是石墨烯/TiO2(50%)纤维横截面的SEM图;
图2a-b是石墨烯/TiO2(50%)纤维在氧等离子体处理前后的SEM图;
图3是石墨烯、TiO2和石墨烯/TiO2纤维的拉曼图谱
图4是不同TiO2含量的石墨烯/TiO2纤维的强度;
图5是石墨烯/ TiO2(50%)纤维在不同氧等离子体处理时间下的光电流。
具体实施方式
为了更好地理解本发明,以下结合实施例对本发明作进一步说明:
实施例 1
一种柔性高光电转化石墨烯纤维光电极的制备方法,包括如下步骤:
1)将氧化石墨烯配制成18mg/mL的去离子水分散液,按TiO2纳米颗粒占纺丝液固含量为50%的比例加入TiO2纳米颗粒,磁力搅拌得到分散均匀的纺丝液;
2) 采用注射泵及的注射针头将纺丝液注入到有3wt% CaCl2的乙醇/水(1:1 v/v)凝固浴中,浸泡20min后,取出并自然干燥得到氧化石墨烯/TiO2复合纤维;
3)将干燥的复合纤维在Ar气氛中于450℃下热处理3h,得到石墨烯/TiO2复合纤维;
4)将石墨烯/TiO2复合纤维两端固定后,采用氧等离子体处理器在氧气体流量400ml/min、工作功率为400W的条件下刻蚀石墨烯/TiO2复合纤维5 min,即得所述的石墨烯纤维光电极。
将石墨烯纤维光电极编织成5×5cm网作为工作电极,饱和甘汞电极作为参比电极,铂丝作为辅助电极,KCl溶液(0.1 mol/L)作为电解液,测试2 ×105mol/L罗丹明B的光电转化,氙灯光照90min后,光电转化率为97%。
实施例 2
一种柔性高光电转化石墨烯纤维光电极的制备方法,包括如下步骤:
1)将氧化石墨烯配制成18mg/mL的去离子水分散液,按TiO2纳米颗粒占纺丝液固含量为30%的比例加入TiO2纳米颗粒,磁力搅拌得到分散均匀的纺丝液;
2) 采用注射泵及的注射针头将纺丝液注入到有4wt% CaCl2的乙醇/水(1:1 v/v)凝固浴中,浸泡25min后,取出并自然干燥得到氧化石墨烯/TiO2复合纤维;
3)将干燥的复合纤维在Ar气氛中于350℃下热处理4h,得到石墨烯/TiO2复合纤维;
4)将石墨烯/TiO2复合纤维两端固定后,采用氧等离子体处理器在氧气体流量400ml/min、工作功率为400W的条件下刻蚀石墨烯/TiO2复合纤维3 min,即得所述的石墨烯纤维光电极。
将石墨烯纤维光电极编织成5×5cm网作为工作电极,饱和甘汞电极作为参比电极,铂丝作为辅助电极,KCl溶液(0.1mol/L)作为电解液,测试2 ×105mol/L罗丹明B的光电转化,氙灯光照90min后,光电转化率为91%。
实施例 3
一种柔性高光电转化石墨烯纤维光电极的制备方法,包括如下步骤:
1)将氧化石墨烯配制成18mg/mL的去离子水分散液,按TiO2纳米颗粒占纺丝液固含量为40%的比例加入TiO2纳米颗粒,磁力搅拌得到分散均匀的纺丝液;
2) 采用注射泵及的注射针头将纺丝液注入到有5wt% CaCl2的乙醇/水(1:1 v/v)凝固浴中,浸泡15min后,取出并自然干燥得到氧化石墨烯/TiO2复合纤维;
3)将干燥的复合纤维在Ar气氛中于250℃下热处理5h,得到石墨烯/TiO2复合纤维;
4)将石墨烯/TiO2复合纤维两端固定后,采用氧等离子体处理器在氧气体流量400ml/min、工作功率为400W的条件下刻蚀石墨烯/TiO2复合纤维7 min,即得所述的石墨烯纤维光电极。
将石墨烯纤维光电极编织成5×5cm网作为工作电极,饱和甘汞电极作为参比电极,铂丝作为辅助电极,KCl溶液(0.1 mol/L)作为电解液,测试2 ×105mol/L罗丹明B的光电转化,氙灯光照90min后,光电转化率为94%。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (5)

1.一种柔性高光电转化石墨烯纤维光电极,其特征在于:以TiO2纳米颗粒/氧化石墨烯混合溶液为纺丝液,采用湿纺技术制备石墨烯/TiO2复合纤维,经过氧等离子刻蚀即得所述的石墨烯纤维光电极。
2.一种柔性高光电转化石墨烯纤维光电极的制备方法,其特征在于,包括以下步骤:
步骤1、将氧化石墨烯配制成18mg/mL的去离子水分散液,按TiO2质量分数为0~60%的比例加入TiO2纳米颗粒,磁力搅拌得到分散均匀的纺丝液;
步骤2、采用注射泵及Ø0.5~0.9 mm的注射针头将纺丝液注入到凝固浴中,浸泡10~30min后,取出并自然干燥得到氧化石墨烯/TiO2复合纤维;
步骤3、将干燥的氧化氧化石墨烯/TiO2复合纤维在Ar气氛中于250~450℃下热处理3~5h,得到石墨烯/TiO2复合纤维;
步骤4、将石墨烯/TiO2复合纤维两端固定后,采用氧等离子体处理器对石墨烯/TiO2复合纤维进行刻蚀,即得所述的石墨烯纤维光电极。
3.根据权利要求2所述的一种柔性高光电转化石墨烯纤维光电极的制备方法,其特征在于,所述的步骤1中的质量分数为:TiO2纳米颗粒占纺丝液固含量的质量分数。
4.根据权利要求2所述的一种柔性高光电转化石墨烯纤维光电极的制备方法,其特征在于,所述的步骤2中的凝固浴为:含有1~5 wt% CaCl2的乙醇/水溶液,其中乙醇/水溶液为按1:1的体积比将乙醇和水均匀混合制得。
5.根据权利要求2所述的一种柔性高光电转化石墨烯纤维光电极的制备方法,其特征在于,所述的步骤4中的刻蚀条件为:氧气体流量400ml/min,工作功率为400W,刻蚀时间为1~7 min。
CN201610355838.1A 2016-05-26 2016-05-26 一种柔性高光电转化石墨烯纤维光电极的制备方法 Expired - Fee Related CN106024392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610355838.1A CN106024392B (zh) 2016-05-26 2016-05-26 一种柔性高光电转化石墨烯纤维光电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610355838.1A CN106024392B (zh) 2016-05-26 2016-05-26 一种柔性高光电转化石墨烯纤维光电极的制备方法

Publications (2)

Publication Number Publication Date
CN106024392A true CN106024392A (zh) 2016-10-12
CN106024392B CN106024392B (zh) 2018-08-03

Family

ID=57095122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610355838.1A Expired - Fee Related CN106024392B (zh) 2016-05-26 2016-05-26 一种柔性高光电转化石墨烯纤维光电极的制备方法

Country Status (1)

Country Link
CN (1) CN106024392B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470638A (zh) * 2018-03-13 2018-08-31 东华大学 一种多孔石墨烯纤维与柔性全固态超级电容器的制备方法
CN110911168A (zh) * 2019-11-26 2020-03-24 西安戴森电子技术有限公司 一种太阳能光阳极用石墨烯复合材料的制备方法
CN111701565A (zh) * 2020-06-28 2020-09-25 南京工业大学 一种负载氮化碳的石墨烯基柔性纤维的制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151173A (zh) * 2013-03-25 2013-06-12 东南大学 石墨烯掺杂于染料敏化太阳能电池的阳极材料及其制法和应用
US20140154464A1 (en) * 2012-11-30 2014-06-05 Empire Technology Development, Llc Graphene membrane with size-tunable nanoscale pores
CN104264260A (zh) * 2014-07-28 2015-01-07 四川大学 一种石墨烯/纳米纤维素复合纤维及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140154464A1 (en) * 2012-11-30 2014-06-05 Empire Technology Development, Llc Graphene membrane with size-tunable nanoscale pores
CN103151173A (zh) * 2013-03-25 2013-06-12 东南大学 石墨烯掺杂于染料敏化太阳能电池的阳极材料及其制法和应用
CN104264260A (zh) * 2014-07-28 2015-01-07 四川大学 一种石墨烯/纳米纤维素复合纤维及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
魏芹芹等: ""氧等离子体刻蚀对石墨烯性能的影响"", 《功能材料》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470638A (zh) * 2018-03-13 2018-08-31 东华大学 一种多孔石墨烯纤维与柔性全固态超级电容器的制备方法
CN110911168A (zh) * 2019-11-26 2020-03-24 西安戴森电子技术有限公司 一种太阳能光阳极用石墨烯复合材料的制备方法
CN111701565A (zh) * 2020-06-28 2020-09-25 南京工业大学 一种负载氮化碳的石墨烯基柔性纤维的制备方法和应用
CN111701565B (zh) * 2020-06-28 2021-09-07 南京工业大学 一种负载氮化碳的石墨烯基柔性纤维的制备方法和应用

Also Published As

Publication number Publication date
CN106024392B (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
Liu et al. Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays
Lv et al. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO 2 nanotube array
CN102658108B (zh) 电纺法制备基于石墨烯/半导体光催化滤膜的方法
CN106732738B (zh) 一种石墨烯/g-C3N4三维网络复合薄膜及其制备和应用
Lv et al. Large size, high efficiency fiber-shaped dye-sensitized solar cells
CN106024392A (zh) 一种柔性高光电转化石墨烯纤维光电极的制备方法
CN101814375A (zh) 一种氮掺杂二氧化钛纳米线电极的制备方法
CN102887567B (zh) 一种应用于电芬顿体系的石墨毡材料的改性方法
CN103390507B (zh) 一种石墨烯/铂纳米粒子复合纤维电极材料及其制备方法
CN102468492A (zh) 一种提高钒电池电极材料活性的表面修饰处理方法
CN103354283A (zh) 金纳米粒子修饰树枝状二氧化钛纳米棒阵列电极及其制备方法和光电解水制氢应用
CN104313663B (zh) 一种N、Ti3+共掺杂的可见光催化TiO2纳米管阵列的制备方法
Ali et al. Flexible, low cost, and platinum-free counter electrode for efficient dye-sensitized solar cells
Xie et al. Photochemical performance and electrochemical capacitance of titania nanocomplexes
CN107326394B (zh) 一种制备具有核壳结构氮化碳修饰二氧化钛光阳极的方法
Uddin et al. Self-aligned carbon nanotubes yarns (CNY) with efficient optoelectronic interface for microyarn shaped 3D photovoltaic cells
CN102140660A (zh) 超声辅助TiO2/Ag3PO4复合纳米管阵列材料的电化学制备方法
Weerasinghe et al. Efficiency enhancement of low-cost metal free dye sensitized solar cells via non-thermal atmospheric pressure plasma surface treatment
CN102267738A (zh) 磁性光电极及其制备方法
Tang et al. Fe2O3/TiO2 film electrodes prepared by the forced hydrolysis method and their photoelectrocatalytic performance
Sun et al. Needle-shaped 3D dye-sensitized solar cells using anodized Ti wire and Pt nanoparticle/carbon fiber electrodes
CN106098154B (zh) 一种芯鞘型石墨烯纤维复合光电极及其制备方法
CN106757056A (zh) 一种钛酸钡/二氧化钛纳米复合薄膜材料的制备方法
CN102347140B (zh) 一种染料敏化太阳能电池对电极的制备方法
CN105734641B (zh) 一种复合结构二氧化钛纳米管阵列的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180803