CN106098154B - 一种芯鞘型石墨烯纤维复合光电极及其制备方法 - Google Patents

一种芯鞘型石墨烯纤维复合光电极及其制备方法 Download PDF

Info

Publication number
CN106098154B
CN106098154B CN201610354940.XA CN201610354940A CN106098154B CN 106098154 B CN106098154 B CN 106098154B CN 201610354940 A CN201610354940 A CN 201610354940A CN 106098154 B CN106098154 B CN 106098154B
Authority
CN
China
Prior art keywords
fiber
graphene
sheath
core
complex light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610354940.XA
Other languages
English (en)
Other versions
CN106098154A (zh
Inventor
杨政鹏
张春静
张雪峰
张春雷
赵威
牛宇涛
管学茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201610354940.XA priority Critical patent/CN106098154B/zh
Publication of CN106098154A publication Critical patent/CN106098154A/zh
Application granted granted Critical
Publication of CN106098154B publication Critical patent/CN106098154B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • H01B5/04Single bars, rods, wires, or strips wound or coiled
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/13Ammonium halides or halides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种芯鞘型石墨烯纤维复合光电极及其制备方法,本发明以浸涂聚合物凝胶电解质的石墨烯纤维为内电极,将石墨烯/氢化TiO2纳米棒纤维顺序紧密缠绕在内电极上,构建所述的芯鞘型石墨烯纤维复合光电极。本发明的制备方法包括:制备氧化石墨烯纤维;还原制备石墨烯纤维;制备石墨烯/氢化TiO2纳米棒纤维;最后将石墨烯/氢化TiO2纳米棒纤维顺序紧密缠绕在纤维电极上,即构建成所述的芯鞘型石墨烯纤维复合光电极。本发明制备的光电极具有制备简单、导电性好、可见光活性高、柔性好、可编织等优点。本发明可用于太阳能转化及有机废气光催化降解,在光电转化领域具有广泛的应用前景。

Description

一种芯鞘型石墨烯纤维复合光电极及其制备方法
技术领域
本发明属于柔性光电转化器件材料领域,具体涉及一种芯鞘型石墨烯纤维复合光电极及其制备方法。
背景技术
石墨烯是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体,因其具有优异的力学、光学、电学、热学性能以及独特的二维结构,引起了世界各国学者的广泛关注。为了推动石墨烯材料的实际应用,需将其制成一维的纤维、二维的薄膜以及三维的气凝胶等宏观组装结构。其中,石墨烯纤维以其良好的力学强度、柔韧性、导电性和可编织性,迅速成为石墨烯领域的研究热点之一。目前,石墨烯纤维已在光伏电池、超级电容器、柔性纤维状驱动器、固相微萃取、催化等方面显示出潜在的应用价值,如中国专利CN103390507 B公布了一种石墨烯/铂纳米粒子复合纤维电极材料及其制备方法,以它为对电极的纤维状染料敏化太阳能电池达到了8.45%的光电转化效率,是迄今为止所报导的线状太阳能电池最高效率;中国专利CN 104916453 A公布了一种同轴石墨烯纤维超级电容器及其制备方法,该电容器比电容高、循环性良好、有很好的韧性;中国专利CN 104949609 A公开了一种石墨烯柔性传感器及其制造方法,该传感器具有优良形变能力和较高电阻应变灵敏系数。这些基于石墨烯纤维的器件呈现出良好的柔韧性和可编织性,在可穿戴电子器件领域具有广阔的应用前景。
发明内容
本发明的目的在于提供一种芯鞘型石墨烯纤维复合光电极及其制备方法。
为达到上述目的,本发明采用以下技术方案:
一种芯鞘型石墨烯纤维复合光电极,其内电极为表面浸涂聚合物凝胶电解质的石墨烯纤维,外电极为石墨烯/氢化TiO2纳米棒纤维,由所述外电极顺序紧密缠绕在内电极上构建。
一种芯鞘型石墨烯纤维复合光电极的制备方法,包括如下步骤:
步骤1、将氧化石墨烯配制成10~20mg/ml的去离子水分散液,采用注射泵及Ø0.5~0.9mm的注射针头将分散液注入到凝固浴中,浸泡10~30min后,取出并自然干燥得到氧化石墨烯纤维,备用;
步骤2、将步骤1制得的氧化石墨烯纤维置于还原氛围中,60~90℃下还原6~12h,得到石墨烯纤维;
步骤3、将步骤2制得的石墨烯纤维浸涂聚合物凝胶电解质,得到凝胶电解质包裹的石墨烯纤维状电极,备用;
步骤4、将步骤1制得的氧化石墨烯纤维置于钛酸丁酯-去离子水-盐酸混合溶液中,密闭于反应釜中,经过水热反应在石墨烯纤维表面修饰TiO2纳米棒,清洗干燥后在H2/Ar气氛中热处理即得石墨烯/氢化TiO2纳米棒纤维;
步骤5、将步骤4制得的石墨烯/氢化TiO2纳米棒纤维顺序紧密缠绕在步骤3制得的纤维电极上,即构建成所述的芯鞘型石墨烯纤维复合光电极。
进一步,所述的步骤1中的凝固浴为:含有1~5 wt% CaCl2的乙醇/水溶液,其中乙醇/水溶液为按1:1的体积比将乙醇和水均匀混合制得。
进一步,所述的步骤2中的还原氛围为35~45% HI溶液。
进一步,所述的步骤3中的聚合物凝胶电解质为聚乙烯醇/磷酸凝胶电解质,其包含1份的聚乙烯醇,9份水和1份磷酸。
进一步,所述的步骤4中的钛酸丁酯-去离子水-盐酸混合溶液各组分的体积比为1:8~12:8~12。
进一步,所述的步骤4中的水热反应温度为120~180℃,水热反应时间为8~12 h。
进一步,所述的步骤4中的H2/Ar气氛中热处理方法为:H2(5~20%)/Ar气氛中250~450℃下加热3~6h。
本发明的有益效果:
1、本发明在石墨烯纤维表面负载氢化TiO2纳米棒,一方面,TiO2纳米棒降低了光生电子-正穴的再结合几率;另一方面,氢化TiO2具有较高的可见光活性及导电性;致使石墨烯/氢化TiO2纳米棒纤维具有高光电转化性能。
2、石墨烯纤维复合光电极的芯鞘型结构具有较高接触面积,有利于电子的快速传递和转移,进而提高复合光电极的光电转化性能。
3、石墨烯对有机废弃物吸附能力强,有利于石墨烯纤维复合光电极对有机污染物的光催化降解及光电转化。
4、石墨烯纤维复合光电极柔韧性好,可编织,易于放大化。
附图说明
图1是芯鞘型石墨烯纤维复合光电极制备流程示意图
图2是石墨烯纤维复合光电极的光学图片
具体实施方式
为了更好地理解本发明,以下结合实施例对本发明作进一步说明:
实施例1:
一种芯鞘型石墨烯纤维复合光电极的制备方法,包括如下步骤:
步骤1、将氧化石墨烯配制成15mg/mL的去离子水分散液,采用注射泵及Ø0.7mm的注射针头将分散液注入到含3wt% CaCl2的乙醇/水(1:1 v/v)凝固浴中,浸泡20min后,取出并自然干燥得到氧化石墨烯纤维,备用;
步骤2、将步骤1制得的氧化石墨烯纤维置于40%HI溶液中,80℃下还原10h,得到石墨烯纤维;
步骤3、将步骤2制得的石墨烯纤维浸涂聚乙烯醇/磷酸凝胶电解质,得到凝胶电解质包裹的纤维状电极,备用;
步骤4、将步骤1制得的氧化石墨烯纤维置于体积比为1:10:10的钛酸丁酯-去离子水-盐酸混合溶液中,密闭于反应釜中,在150℃温度下水热反应10 h,清洗干燥后在H2(10%)/Ar气氛中250℃下加热5h即得石墨烯/氢化TiO2纳米棒纤维;
步骤5、将步骤4制得的石墨烯/氢化TiO2纳米棒纤维顺序紧密缠绕在步骤3制得的纤维电极上,即构建成所述的芯鞘型石墨烯纤维复合光电极。
实施例2:
一种芯鞘型石墨烯纤维复合光电极的制备方法,包括如下步骤:
步骤1、将氧化石墨烯配制成10mg/mL的去离子水分散液,采用注射泵及Ø0.5mm的注射针头将分散液注入到含5wt% CaCl2的乙醇/水(1:1 v/v)凝固浴,浸泡15min后,取出并自然干燥得到氧化石墨烯纤维,备用;
步骤2、将步骤1制得的氧化石墨烯纤维置于35%HI溶液中,60℃下还原12h,得到石墨烯纤维;
步骤3、将步骤2制得的石墨烯纤维浸涂聚乙烯醇/磷酸凝胶电解质,得到凝胶电解质包裹的纤维状电极,备用;
步骤4、将步骤1制得的氧化石墨烯纤维置于体积比为1:8:8的钛酸丁酯-去离子水-盐酸混合溶液中,密闭于反应釜中,在120℃温度下水热反应18 h,清洗干燥后在H2(15%)/Ar气氛中250℃下加热6h即得石墨烯/氢化TiO2纳米棒纤维;
步骤5、将步骤4制得的石墨烯/氢化TiO2纳米棒纤维顺序紧密缠绕在步骤3制得的纤维电极上,即构建成所述的芯鞘型石墨烯纤维复合光电极。
实施例3:
一种芯鞘型石墨烯纤维复合光电极的制备方法,包括如下步骤:
步骤1、将氧化石墨烯配制成20mg/mL的去离子水分散液,采用注射泵及Ø0.9mm的注射针头将分散液注入到含2wt% CaCl2的乙醇/水(1:1 v/v)凝固浴中,浸泡30min后,取出并自然干燥得到氧化石墨烯纤维,备用;
步骤2、将步骤1制得的氧化石墨烯纤维置于45%HI溶液中, 90℃下还原6h,得到石墨烯纤维;
步骤3、将步骤2制得的石墨烯纤维浸涂聚乙烯醇/磷酸凝胶电解质,得到凝胶电解质包裹的纤维状电极,备用;
步骤4、将步骤1制得的氧化石墨烯纤维置于体积比为1:12:12的钛酸丁酯-去离子水-盐酸混合溶液中,密闭于反应釜中,在180℃温度下水热反应10 h,清洗干燥后在H2(15%)/Ar气氛中450℃下加热3h即得石墨烯/氢化TiO2纳米棒纤维;
步骤5、将步骤4制得的石墨烯/氢化TiO2纳米棒纤维顺序紧密缠绕在步骤3制得的纤维电极上,即构建成所述的芯鞘型石墨烯纤维复合光电极。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (7)

1.一种芯鞘型石墨烯纤维复合光电极的制备方法,其特征在于:所述的电极其内电极为表面浸涂聚合物凝胶电解质的石墨烯纤维,外电极为石墨烯/氢化TiO2纳米棒纤维,所述外电极顺序紧密缠绕在内电极上构建;
所述芯鞘型石墨烯纤维复合光电极的制备方法,包括以下步骤:
步骤1、将氧化石墨烯配制成10~20mg/ml的去离子水分散液,采用注射泵及Ø0.5~0.9mm的注射针头将分散液注入到凝固浴中,浸泡10~30min后,取出并自然干燥得到氧化石墨烯纤维,备用;
步骤2、将步骤1制得的氧化石墨烯纤维置于还原氛围中,60~90℃下还原6~12h,得到石墨烯纤维;
步骤3、将步骤2制得的石墨烯纤维浸涂聚合物凝胶电解质,得到凝胶电解质包裹的石墨烯纤维状电极,备用;
步骤4、将步骤1制得的氧化石墨烯纤维置于钛酸丁酯-去离子水-盐酸混合溶液中,密闭于反应釜中,经过水热反应在石墨烯纤维表面修饰TiO2纳米棒,清洗干燥后在H2/Ar气氛中热处理即得石墨烯/氢化TiO2纳米棒纤维;
步骤5、将步骤4制得的石墨烯/氢化TiO2纳米棒纤维顺序紧密缠绕在步骤3制得的纤维电极上,即构建成所述的芯鞘型石墨烯纤维复合光电极。
2.根据权利要求1所述的一种芯鞘型石墨烯纤维复合光电极的制备方法,其特征在于,所述的步骤1中的凝固浴为:含有1~5wt% CaCl2的乙醇/水溶液,其中乙醇/水溶液为按1:1的体积比将乙醇和水均匀混合制得。
3.根据权利要求1所述的一种芯鞘型石墨烯纤维复合光电极的制备方法,其特征在于:所述的步骤2中的还原氛围为35~45% HI溶液。
4.根据权利要求1所述的一种芯鞘型石墨烯纤维复合光电极的制备方法,其特征在于,所述的步骤3中的聚合物凝胶电解质为聚乙烯醇/磷酸凝胶电解质,其包含1份的聚乙烯醇,9份水和1份磷酸。
5.根据权利要求1所述的一种芯鞘型石墨烯纤维复合光电极的制备方法,其特征在于,所述的步骤4中的钛酸丁酯-去离子水-盐酸混合溶液各组分的体积比为1:8~12:8~12。
6.根据权利要求1所述的一种芯鞘型石墨烯纤维复合光电极的制备方法,其特征在于,所述的步骤4中的水热反应温度为120~180℃,水热反应时间为8~12h。
7.根据权利要求1所述的一种芯鞘型石墨烯纤维复合光电极的制备方法,其特征在于,所述的步骤4中的H2/Ar气氛中热处理方法为:H2(5~20%)/Ar气氛中250~450℃下加热3~6h。
CN201610354940.XA 2016-05-26 2016-05-26 一种芯鞘型石墨烯纤维复合光电极及其制备方法 Expired - Fee Related CN106098154B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610354940.XA CN106098154B (zh) 2016-05-26 2016-05-26 一种芯鞘型石墨烯纤维复合光电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610354940.XA CN106098154B (zh) 2016-05-26 2016-05-26 一种芯鞘型石墨烯纤维复合光电极及其制备方法

Publications (2)

Publication Number Publication Date
CN106098154A CN106098154A (zh) 2016-11-09
CN106098154B true CN106098154B (zh) 2017-09-15

Family

ID=57230734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610354940.XA Expired - Fee Related CN106098154B (zh) 2016-05-26 2016-05-26 一种芯鞘型石墨烯纤维复合光电极及其制备方法

Country Status (1)

Country Link
CN (1) CN106098154B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117839B (zh) * 2019-05-22 2021-06-29 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 螺旋形TiO2/石墨烯复合纤维、其制备方法及应用
CN110528113A (zh) * 2019-09-11 2019-12-03 长沙学院 一种TiO2掺杂石墨烯基电纺丝增强纳米纤维材料及其制备方法和应用
CN111701565B (zh) * 2020-06-28 2021-09-07 南京工业大学 一种负载氮化碳的石墨烯基柔性纤维的制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347147A (zh) * 2010-07-30 2012-02-08 北京大学 一种染料敏化太阳能电池
CN102664104B (zh) * 2012-05-04 2014-07-02 东南大学 电纺法制备一维石墨烯/半导体纳米线复合光阳极的方法
CN103400889B (zh) * 2013-07-02 2016-03-30 宁国市龙晟柔性储能材料科技有限公司 全固态纤维状同轴聚合物太阳电池和超级电容器集成器件及其制备方法
CN103390507B (zh) * 2013-07-04 2016-04-13 宁国市龙晟柔性储能材料科技有限公司 一种石墨烯/铂纳米粒子复合纤维电极材料及其制备方法
KR102257243B1 (ko) * 2014-01-28 2021-05-27 삼성전자주식회사 튜너블 배리어를 구비한 그래핀 트랜지스터
CN104916453A (zh) * 2015-04-17 2015-09-16 浙江大学 一种同轴石墨烯纤维超级电容器及其制备方法

Also Published As

Publication number Publication date
CN106098154A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
Scalia et al. A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration
Liu et al. Novel integration of perovskite solar cell and supercapacitor based on carbon electrode for hybridizing energy conversion and storage
Li et al. Plasmonic TiN boosting nitrogen-doped TiO2 for ultrahigh efficient photoelectrochemical oxygen evolution
Liu et al. Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays
An et al. Enhanced Photoconversion Efficiency of All‐Flexible Dye‐Sensitized Solar Cells Based on a Ti Substrate with TiO2 Nanoforest Underlayer
Mohan et al. Polyaniline nanotube/reduced graphene oxide aerogel as efficient counter electrode for quasi solid state dye sensitized solar cell
Jang et al. Moderately reduced graphene oxide as transparent counter electrodes for dye-sensitized solar cells
CN106098154B (zh) 一种芯鞘型石墨烯纤维复合光电极及其制备方法
Yue et al. A dye-sensitized solar cell based on PEDOT: PSS counter electrode
Wu et al. Construction of nanocrystalline film on nanowire array via swelling electrospun polyvinylpyrrolidone-hosted nanofibers for use in dye-sensitized solar cells
Cai et al. Dye‐sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers
CN103390507B (zh) 一种石墨烯/铂纳米粒子复合纤维电极材料及其制备方法
Sedghi Effect of multi walled carbon nanotubes as counter electrode on dye sensitized solar cells
Zhang et al. Monolithic perovskite solar capacitor enabled by double-sided TiO2 nanotube arrays
Sun et al. Needle-shaped 3D dye-sensitized solar cells using anodized Ti wire and Pt nanoparticle/carbon fiber electrodes
Saberi Motlagh et al. Performance modelling of textile solar cell developed by carbon fabric/polypyrrole flexible counter electrode
Du et al. A carbon nanotube-based transparent conductive substrate for flexible ZnO dye-sensitized solar cells
Kohlrausch et al. Advances in Carbon Materials Applied to Carbon‐Based Perovskite Solar Cells
Arsyad et al. Revealing the limiting factors that are responsible for the working performance of quasi-solid state DSSCs using an ionic liquid and organosiloxane-based polymer gel electrolyte
Wu et al. Synthesis and performance of La 2 O 3@ MWCNT composite materials as Pt-free counter electrodes for dye-sensitized solar cells
Kulesza et al. Development of solid-state photo-supercapacitor by coupling dye-sensitized solar cell utilizing conducting polymer charge relay with proton-conducting membrane based electrochemical capacitor
Siwach et al. Effect of carbonaceous counter electrodes on the performance of ZnO-graphene nanocomposites based dye sensitized solar cells
CN106024392B (zh) 一种柔性高光电转化石墨烯纤维光电极的制备方法
Wan et al. Pt/graphene nanocomposites with low Pt-loadings: Synthesis through one-and two-step chemical reduction methods and their use as promising counter electrodes for DSSCs
CN101752105A (zh) 碳纳米管掺杂的染料敏化太阳电池电极及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170915