CN106012011A - 一种LaB6-ZrB2共晶复合材料的制备方法 - Google Patents

一种LaB6-ZrB2共晶复合材料的制备方法 Download PDF

Info

Publication number
CN106012011A
CN106012011A CN201610316213.4A CN201610316213A CN106012011A CN 106012011 A CN106012011 A CN 106012011A CN 201610316213 A CN201610316213 A CN 201610316213A CN 106012011 A CN106012011 A CN 106012011A
Authority
CN
China
Prior art keywords
zrb
lab
eutectic
powder
coupon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610316213.4A
Other languages
English (en)
Other versions
CN106012011B (zh
Inventor
杨新宇
王翔
张久兴
胡可
李志�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201610316213.4A priority Critical patent/CN106012011B/zh
Publication of CN106012011A publication Critical patent/CN106012011A/zh
Application granted granted Critical
Publication of CN106012011B publication Critical patent/CN106012011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B21/00Unidirectional solidification of eutectic materials
    • C30B21/04Unidirectional solidification of eutectic materials by zone-melting

Abstract

本发明公开了一种LaB6‑ZrB2共晶复合材料的制备方法,其特征在于:首先将ZrB2粉末和LaB6粉末混合并在放电等离子烧结炉中烧结,获得LaB6/ZrB2共晶预制体;然后通过光学区熔炉对预制体进行定向凝固,即得产品。本发明采用四个高功率氙灯聚焦加热,具有较高的温度梯度;制备过程高纯石英管通入氩气并通过气流带走杂质及挥发物保证了样品的纯度;样品自下而上实现良好的定向凝固,从而获得ZrB2纤维分布均匀的LaB6‑ZrB2共晶复合材料,提高了材料的性能。

Description

一种LaB6-ZrB2共晶复合材料的制备方法
技术领域
本发明属于材料制备领域,具体是一种LaB6-ZrB2共晶复合材料的制备方法。
背景技术
定向凝固LaB6-ZrB2共晶复合材料是近年新发展起来的一种新型高性能复合材料。它是利用液固相变过程中的共晶反应、使得LaB6与ZrB2在准热力学平衡条件下直接从熔体中生长出来的复合材料,避免了人工复合带来的污染、界面反应等问题,形成的复合材料很好的继承了LaB6的高熔点、低蒸发率、强耐离子轰击性以及ZrB2的高熔点、高硬度、高弹性模量等特性,在保证LaB6优异功能特性的前提下,高弹性模量ZrB2纤维一方面可分担复合材料大部分应力、提高其强度,另一方面,当裂纹扩展至与纤维接触时,它可吸收裂纹能量,阻碍其扩展,对裂纹扩展有“钉扎”作用,因此具有很好的断裂韧性。因此LaB6-ZrB2共晶复合材料具有优异的结构与功能特性,具有很好的工业化应用前景。
目前,常用的LaB6-ZrB2共晶复合材料的制备方法有以下几种:
1、高频感应区熔法。文献“Y.B.Paderno,V.N.Paderno,V.B.Filippov.Directionallycrystallized ceramic fiberreinforced boride composites.Refract.Ind.Ceram.,2000,41:373-378.”提出了采用感应区熔定向凝固制备LaB6-ZrB2共晶复合材料的方法。高频感应区熔是利用高频感应线圈使加热的熔区自下而上通过所制备的材料,由于高频线圈产生的磁场力的引入使得晶体生长过程中受磁场力和涡流的影响,不利于材料稳定地定向凝固。
2、电子束和电弧区熔法。文献“Chen C M,Zhang L T,Zhou W C.Characterization ofLaB6–ZrB2eutectic composite grown by the floating zone method[J].Journal of crystal growth,1998,191(4):873-878.”采用电子束区熔和电弧区熔法制备了LaB6-ZrB2共晶复合材料。由于电子束区熔是在高真空下,无法抑制材料的挥发,导致合金成份发生变化;另外灯丝的蒸发会进入熔区,从而引入杂质;这两者都会对合金的性能产生不利影响。电弧区熔过程中产生的电弧力包括电弧收缩力和等离子流压力会扰动熔区的稳定性,从而最终影响到合金的质量。
发明内容
为避免上述现有技术所存在的制备LaB6-ZrB2共晶复合材料组织成分不均匀、杂质影响复合材料的性能等问题,同时为了进一步提高材料的电子发射性能,本发明提出了一种制备高质量LaB6-ZrB2共晶复合材料的方法。
本发明解决技术问题,采用如下技术方案:
本发明LaB6-ZrB2共晶复合材料的制备方法,包括以下步骤:
步骤一、制备LaB6-ZrB2共晶预制体:
以纯度不低于99.5%的ZrB2粉末和纯度不低于99%的LaB6粉末为原材料,按21wt.%ZrB2-79wt.%LaB6共晶相图的质量百分比配粉、装料,然后在行星式球磨机上进行高能球磨,氩气气氛下球磨4h,获得LaB6/ZrB2混合粉末;将所述LaB6/ZrB2混合粉末置于电热真空干燥箱内,100℃干燥10h;将干燥后LaB6/ZrB2混合粉末放入石墨模具内并预压成型(压力优选为10MPa),利用放电等离子烧结制得LaB6/ZrB2共晶预制体;
放电等离子烧结的步骤为:将预压后石墨模具置于放电等离子烧结炉的炉腔内,抽真空、施加30MPa的轴向压力、设置升温速率;开始烧结后,电流以特定速率逐渐增大,当模具温度达到设定烧结温度1500℃时,开始保温;保温1min,切断电流,试样随炉冷却,在炉温低于50℃时取出试样,即获得LaB6/ZrB2共晶预制体;升温的速率不高于100℃/min。
步骤二、填装试棒:
用电火花线切割将所述LaB6-ZrB2共晶预制体切割成试棒:将试棒依次置于酒精和丙酮中超声波各清洗30min;
将两根清洗干净的试棒用钼丝固定在陶瓷管上,并分别拧紧在光学区熔炉的上抽拉杆和下抽拉杆上,调整两试棒位置,安装固定好石英管,关闭炉门;
步骤三、定向凝固
首先向光学区熔炉中通入氩气,然后开启氙灯对试棒局部进行加热,当上、下试棒局部完全熔化且形成一个稳定的熔区后,开始以1-1000mm/h的速率定向运行抽拉杆,从而实现LaB6-ZrB2共晶复合材料的定向生长。
本发明采用的光学悬浮区熔技术制备LaB6-ZrB2共晶复合材料的实验在耐高压的石英管中进行,可有效抑制各组元挥发,高能束功率密度的光源为大尺寸试样的制备提供了技术保障,较宽的工艺参数范围(晶体生长速度在0.1-9600mm/h)为系统研究材料的组织特性及生长机理提供了可能,高能束光源均匀分布以及料棒和籽晶的相互旋转可保证晶体均匀、稳态的生长。CCD观察系统可实时监控晶体生长过程并适时进行调整,显著提升了高质量晶体生长的成功率,有效降低了实验成本,另外快速的高真空(5×10-5torr)获取能力,相比于其它晶体生长技术,极大的缩短了试样的制备周期,节省了时间成本。
附图说明
图1为本发明实施例3所制备的LaB6-ZrB2共晶复合材料的纵截面微观组织(凝固速率为200mm/h)。
图2为本发明实施例3所制备的LaB6-ZrB2共晶复合材料的横截面微观组织(凝固速率为200mm/h)。
具体实施方式
实施例1
本实施例按如下步骤制备LaB6-ZrB2共晶复合材料:
步骤一、制备LaB6-ZrB2共晶预制体:
以纯度不低于99.5%的ZrB2粉末和纯度不低于99%的LaB6粉末为原材料,按21wt.%ZrB2-79wt.%LaB6共晶相图的质量百分比配粉、装料,然后在行星式球磨机上进行高能球磨,氩气气氛下球磨4h,获得LaB6/ZrB2混合粉末;将所述LaB6/ZrB2混合粉末置于电热真空干燥箱内,100℃干燥10h;
将干燥后LaB6/ZrB2混合粉末放入石墨模具内并预压成型,预压的压力为10MPa;
将预压后石墨模具置于放电等离子烧结炉的炉腔内,抽真空、施加30MPa的轴向压力、设置升温速率为100℃/min;开始烧结后,电流以特定速率逐渐增大,当模具温度达到设定烧结温度1500℃时,开始保温;保温1min,切断电流,试样随炉冷却,在炉温低于50℃时取出试样,即获得LaB6/ZrB2共晶预制体。
步骤二、填装试棒:
用电火花线切割将LaB6-ZrB2共晶预制体切割成试棒;将试棒依次置于酒精和丙酮中超声波各清洗30min;
将两根清洗干净的试棒用钼丝固定在陶瓷管上,并分别拧紧在光学区熔炉的上抽拉杆和下抽拉杆上,调整两试棒位置,安装固定好石英管,关闭炉门;
步骤三、定向凝固
首先向光学区熔炉中通入氩气,然后开启氙灯对试棒局部进行加热,当上、下试棒局部完全熔化且形成一个稳定的熔区后,开始以1mm/h的速率定向运行抽拉杆,从而实现LaB6-ZrB2共晶复合材料的定向生长。
为了验证本实施例的效果,在试样棒的稳态生长区分别截取一纵截面和一横截面,并对所截取的纵截面和横截面试样进行常规金相处理。将获得的金相试样在扫描电镜(SEM)下进行观察,可知所获得的LaB6-ZrB2二元共晶复合材料相分布均匀,纤维直径5.27μm,纤维间距是8.52μm。
实施例2
本实施例按如下步骤制备LaB6-ZrB2共晶复合材料:
步骤一、制备LaB6-ZrB2共晶预制体:
以纯度不低于99.5%的ZrB2粉末和纯度不低于99%的LaB6粉末为原材料,按21wt.%ZrB2-79wt.%LaB6共晶相图的质量百分比配粉、装料,然后在行星式球磨机上进行高能球磨,氩气气氛下球磨4h,获得LaB6/ZrB2混合粉末;将所述LaB6/ZrB2混合粉末置于电热真空干燥箱内,100℃干燥10h;
将干燥后LaB6/ZrB2混合粉末放入石墨模具内并预压成型,预压的压力为10MPa;
将预压后石墨模具置于放电等离子烧结炉的炉腔内,抽真空、施加30MPa的轴向压力、设置升温速率为100℃/min;开始烧结后,电流以特定速率逐渐增大,当模具温度达到设定烧结温度1500℃时,开始保温;保温1min,切断电流,试样随炉冷却,在炉温低于50℃时取出试样,即获得LaB6/ZrB2共晶预制体。
步骤二、填装试棒:
用电火花线切割将LaB6-ZrB2共晶预制体切割成试棒;将试棒依次置于酒精和丙酮中超声波各清洗30min;
将两根清洗干净的试棒用钼丝固定在陶瓷管上,并分别拧紧在光学区熔炉的上抽拉杆和下抽拉杆上,调整两试棒位置,安装固定好石英管,关闭炉门;
步骤三、定向凝固
首先向光学区熔炉中通入氩气,然后开启氙灯对试棒局部进行加热,当上、下试棒局部完全熔化且形成一个稳定的熔区后,开始以50mm/h的速率定向运行抽拉杆,从而实现LaB6-ZrB2共晶复合材料的定向生长。
为了验证本实施例的效果,在试样棒的稳态生长区分别截取一纵截面和一横截面,并对所截取的纵截面和横截面试样进行常规金相处理。将获得的金相试样在扫描电镜(SEM)下进行观察,可知所获得的LaB6-ZrB2二元共晶复合材料相分布均匀,纤维直径1.47μm,纤维间距是1.52μm。
实施例3
本实施例按如下步骤制备LaB6-ZrB2共晶复合材料:
步骤一、制备LaB6-ZrB2共晶预制体:
以纯度不低于99.5%的ZrB2粉末和纯度不低于99%的LaB6粉末为原材料,按21wt.%ZrB2-79wt.%LaB6共晶相图的质量百分比配粉、装料,然后在行星式球磨机上进行高能球磨,氩气气氛下球磨4h,获得LaB6/ZrB2混合粉末;将所述LaB6/ZrB2混合粉末置于电热真空干燥箱内,100℃干燥10h;
将干燥后LaB6/ZrB2混合粉末放入石墨模具内并预压成型,预压的压力为10MPa;
将预压后石墨模具置于放电等离子烧结炉的炉腔内,抽真空、施加30MPa的轴向压力、设置升温速率为100℃/min;开始烧结后,电流以特定速率逐渐增大,当模具温度达到设定烧结温度1500℃时,开始保温;保温1min,切断电流,试样随炉冷却,在炉温低于50℃时取出试样,即获得LaB6/ZrB2共晶预制体。
步骤二、填装试棒:
用电火花线切割将LaB6-ZrB2共晶预制体切割成试棒;将试棒依次置于酒精和丙酮中超声波各清洗30min;
将两根清洗干净的试棒用钼丝固定在陶瓷管上,并分别拧紧在光学区熔炉的上抽拉杆和下抽拉杆上,调整两试棒位置,安装固定好石英管,关闭炉门;
步骤三、定向凝固
首先向光学区熔炉中通入氩气,然后开启氙灯对试棒局部进行加热,当上、下试棒局部完全熔化且形成一个稳定的熔区后,开始以200mm/h的速率定向运行抽拉杆,从而实现LaB6-ZrB2共晶复合材料的定向生长。
为了验证本实施例的效果,在试样棒的稳态生长区分别截取一纵截面和一横截面,并对所截取的纵截面和横截面试样进行常规金相处理。将获得的金相试样在扫描电镜(SEM)下进行观察,结果如图1和图2所示,可知所获得的LaB6-ZrB2二元共晶复合材料相分布均匀,纤维直径0.91μm,纤维间距是0.96μm。
实施例4
本实施例按如下步骤制备LaB6-ZrB2共晶复合材料:
步骤一、制备LaB6-ZrB2共晶预制体:
以纯度不低于99.5%的ZrB2粉末和纯度不低于99%的LaB6粉末为原材料,按21wt.%ZrB2-79wt.%LaB6共晶相图的质量百分比配粉、装料,然后在行星式球磨机上进行高能球磨,氩气气氛下球磨4h,获得LaB6/ZrB2混合粉末;将所述LaB6/ZrB2混合粉末置于电热真空干燥箱内,100℃干燥10h;
将干燥后LaB6/ZrB2混合粉末放入石墨模具内并预压成型,预压的压力为10MPa;
将预压后石墨模具置于放电等离子烧结炉的炉腔内,抽真空、施加30MPa的轴向压力、设置升温速率为100℃/min;开始烧结后,电流以特定速率逐渐增大,当模具温度达到设定烧结温度1500℃时,开始保温;保温1min,切断电流,试样随炉冷却,在炉温低于50℃时取出试样,即获得LaB6/ZrB2共晶预制体。
步骤二、填装试棒:
用电火花线切割将LaB6-ZrB2共晶预制体切割成试棒;将试棒依次置于酒精和丙酮中超声波各清洗30min;
将两根清洗干净的试棒用钼丝固定在陶瓷管上,并分别拧紧在光学区熔炉的上抽拉杆和下抽拉杆上,调整两试棒位置,安装固定好石英管,关闭炉门;
步骤三、定向凝固
首先向光学区熔炉中通入氩气,然后开启氙灯对试棒局部进行加热,当上、下试棒局部完全熔化且形成一个稳定的熔区后,开始以300mm/h的速率定向运行抽拉杆,从而实现LaB6-ZrB2共晶复合材料的定向生长。
为了验证本实施例的效果,在试样棒的稳态生长区分别截取一纵截面和一横截面,并对所截取的纵截面和横截面试样进行常规金相处理。将获得的金相试样在扫描电镜(SEM)下进行观察,结果如图1和图2所示,可知所获得的LaB6-ZrB2二元共晶复合材料相分布均匀,纤维直径0.61μm,纤维间距是0.66μm。
实施例5
本实施例是一种制备LaB6-ZrB2共晶复合材料的方法。其具体过程包括以下步骤:
步骤一、制备LaB6-ZrB2共晶预制体:
以纯度不低于99.5%的ZrB2粉末和纯度不低于99%的LaB6粉末为原材料,按21wt.%ZrB2-79wt.%LaB6共晶相图的质量百分比配粉、装料,然后在行星式球磨机上进行高能球磨,氩气气氛下球磨4h,获得LaB6/ZrB2混合粉末;将所述LaB6/ZrB2混合粉末置于电热真空干燥箱内,100℃干燥10h;
将干燥后LaB6/ZrB2混合粉末放入石墨模具内并预压成型,预压的压力为10MPa;
将预压后石墨模具置于放电等离子烧结炉的炉腔内,抽真空、施加30MPa的轴向压力、设置升温速率为100℃/min;开始烧结后,电流以特定速率逐渐增大,当模具温度达到设定烧结温度1500℃时,开始保温;保温1min,切断电流,试样随炉冷却,在炉温低于50℃时取出试样,即获得LaB6/ZrB2共晶预制体。
步骤二、填装试棒:
用电火花线切割将LaB6-ZrB2共晶预制体切割成试棒;将试棒依次置于酒精和丙酮中超声波各清洗30min;
将两根清洗干净的试棒用钼丝固定在陶瓷管上,并分别拧紧在光学区熔炉的上抽拉杆和下抽拉杆上,调整两试棒位置,安装固定好石英管,关闭炉门;
步骤三、定向凝固
首先向光学区熔炉中通入氩气,然后开启氙灯对试棒局部进行加热,当上、下试棒局部完全熔化且形成一个稳定的熔区后,开始以1000mm/h的速率定向运行抽拉杆,从而实现LaB6-ZrB2共晶复合材料的定向生长。
为了验证本实施例的效果,在试样棒的稳态生长区分别截取一纵截面和一横截面,并对所截取的纵截面和横截面试样进行常规金相处理。将获得的金相试样在扫描电镜(SEM)下进行观察,可知所获得的LaB6-ZrB2二元共晶复合材料相分布均匀,纤维直径0.31μm,纤维间距是0.37μm。

Claims (3)

1.一种LaB6-ZrB2共晶复合材料的制备方法,其特征在于,包括以下步骤:
步骤一、制备LaB6-ZrB2共晶预制体:
以纯度不低于99.5%的ZrB2粉末和纯度不低于99%的LaB6粉末为原材料,按21wt.%ZrB2-79wt.%LaB6共晶相图的质量百分比配粉、装料,然后在行星式球磨机上进行高能球磨,获得LaB6/ZrB2混合粉末;将所述LaB6/ZrB2混合粉末置于电热真空干燥箱内,100℃干燥10h;
将干燥后LaB6/ZrB2混合粉末放入石墨模具内并预压成型,利用放电等离子烧结制得LaB6/ZrB2共晶预制体;
步骤二、填装试棒:
用电火花线切割将所述LaB6-ZrB2共晶预制体切割成试棒:将试棒依次置于酒精和丙酮中超声波清洗;
将两根清洗干净的试棒分别拧紧在光学区熔炉的上抽拉杆和下抽拉杆上,调整两试棒位置,安装固定石英管,关闭炉门;
步骤三、定向凝固:
首先向光学区熔炉中通入氩气,然后开启氙灯对试棒局部进行加热,当上、下试棒局部完全熔化且形成一个稳定的熔区后,开始以1-1000mm/h的速率定向运行抽拉杆,从而实现LaB6-ZrB2共晶复合材料的定向生长。
2.根据权利要求1所述的制备方法,其特征在于:步骤一中预压成型的压力为10MPa。
3.根据权利要求1所述的制备方法,其特征在于:步骤一中放电等离子烧结的步骤为:将预压后石墨模具置于放电等离子烧结炉的炉腔内,抽真空、施加30MPa的轴向压力、升温至1500℃,保温1min,试样随炉冷却,在炉温低于50℃时取出试样,即获得LaB6/ZrB2共晶预制体。
CN201610316213.4A 2016-05-11 2016-05-11 一种LaB6-ZrB2共晶复合材料的制备方法 Active CN106012011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610316213.4A CN106012011B (zh) 2016-05-11 2016-05-11 一种LaB6-ZrB2共晶复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610316213.4A CN106012011B (zh) 2016-05-11 2016-05-11 一种LaB6-ZrB2共晶复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN106012011A true CN106012011A (zh) 2016-10-12
CN106012011B CN106012011B (zh) 2018-05-18

Family

ID=57099448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610316213.4A Active CN106012011B (zh) 2016-05-11 2016-05-11 一种LaB6-ZrB2共晶复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106012011B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106882966A (zh) * 2017-01-19 2017-06-23 合肥工业大学 一种通过光学区熔技术制备SiC/LaB6共晶复合材料的方法
CN107032767A (zh) * 2017-04-26 2017-08-11 西北工业大学 热压烧结氧化铝基共晶复合陶瓷材料的方法
CN109763170A (zh) * 2019-03-25 2019-05-17 合肥工业大学 一种高性能四元稀土六硼化物-二硼化锆复合材料的制备方法
CN115386778A (zh) * 2022-08-12 2022-11-25 合肥工业大学 一种六硼化镧共晶复合材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133993B (zh) * 2018-08-09 2021-12-14 合肥工业大学 一种LaB6-(Zr,V)B2共晶复合材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433587A (zh) * 2011-09-19 2012-05-02 北京工业大学 多元大尺寸稀土硼化物LaxCe1-xB6单晶块体阴极材料的制备方法
CN102703971A (zh) * 2012-06-01 2012-10-03 西北工业大学 一种制备Si基二元共晶自生复合材料的方法
CN103205801A (zh) * 2013-03-23 2013-07-17 北京工业大学 一种大尺寸稀土硼化物SmB6单晶体的制备方法
CN103993356A (zh) * 2014-05-06 2014-08-20 上海大学 一种高压光学区熔生长易挥发材料高取向晶体的方法
CN105350075A (zh) * 2015-11-29 2016-02-24 北京工业大学 一种高纯度拓扑绝缘体YbB6单晶体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433587A (zh) * 2011-09-19 2012-05-02 北京工业大学 多元大尺寸稀土硼化物LaxCe1-xB6单晶块体阴极材料的制备方法
CN102703971A (zh) * 2012-06-01 2012-10-03 西北工业大学 一种制备Si基二元共晶自生复合材料的方法
CN103205801A (zh) * 2013-03-23 2013-07-17 北京工业大学 一种大尺寸稀土硼化物SmB6单晶体的制备方法
CN103993356A (zh) * 2014-05-06 2014-08-20 上海大学 一种高压光学区熔生长易挥发材料高取向晶体的方法
CN105350075A (zh) * 2015-11-29 2016-02-24 北京工业大学 一种高纯度拓扑绝缘体YbB6单晶体的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN CHANGMING,ET AL.: "STUDY ON THE MICROSTRUCTURE OF LaB6-ZrB2 IN-SITU COMPOSITE", 《CHINESE JOURNAL OF AERONAUTICS》 *
曾毅等: "《装甲防护材料技术》", 31 January 2014 *
李嘉荣等: "《先进高温结构材料与技术(上)》", 30 June 2012 *
陈昌明等: "LaB6–ZrB2自生复合材料的组织特征及结晶学关系", 《自然科学进展》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106882966A (zh) * 2017-01-19 2017-06-23 合肥工业大学 一种通过光学区熔技术制备SiC/LaB6共晶复合材料的方法
CN107032767A (zh) * 2017-04-26 2017-08-11 西北工业大学 热压烧结氧化铝基共晶复合陶瓷材料的方法
CN109763170A (zh) * 2019-03-25 2019-05-17 合肥工业大学 一种高性能四元稀土六硼化物-二硼化锆复合材料的制备方法
CN109763170B (zh) * 2019-03-25 2021-03-09 合肥工业大学 一种高性能四元稀土六硼化物-二硼化锆复合材料的制备方法
CN115386778A (zh) * 2022-08-12 2022-11-25 合肥工业大学 一种六硼化镧共晶复合材料及其制备方法

Also Published As

Publication number Publication date
CN106012011B (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
CN106012011B (zh) 一种LaB6-ZrB2共晶复合材料的制备方法
CN108048907B (zh) 一种大尺寸、高性能六硼化镧单晶的制备方法
CN102703971B (zh) 一种制备Si基二元共晶自生复合材料的方法
Nakagawa et al. Thermal emission properties of Al2O3/Er3Al5O12 eutectic ceramics
CN111763926A (zh) 一种基于高温常压微波等离子体的材料合成系统
CN113088848B (zh) 一种同时提高激光熔覆沉积tc4钛合金强度和塑性的热处理方法
CN107032795B (zh) 一种ZrB2-SiC共晶复合陶瓷的凝固制备方法
CN102779711A (zh) 具有超大离子束发散角的离子源
CN105755540B (zh) 一种采用光学区熔技术制备LaB6-VB2共晶复合材料的方法
CN105950878B (zh) 一种有效去除铀金属中杂质的装置和方法
Li et al. Effects of high-temperature annealing on the microstructure and properties of C/SiC–ZrC composites
CN106381519B (zh) 一种控制大尺寸钼铌合金单晶棒材等径生长的方法
CN109133993A (zh) 一种LaB6-(Zr,V)B2共晶复合材料的制备方法
CN108178632B (zh) 具有定向层片组织的ZrB2-SiC共晶陶瓷制备方法
Wang et al. Microstructure and properties of directionally solidified LaB6 (100)-ZrB2 eutectic composite prepared by the optical zone melting method
KR20000023788A (ko) 기상 합성에 의한 다이아몬드 필름 제조방법
Kawasaki et al. Discharge characteristics in liquid helium preparatory to fabrication of carbon nanomaterials
CN114985737A (zh) 一种多元六硼化物[100]单晶及其制备方法
CN102683135B (zh) 天鹅绒复合阴极及其制备方法
US6586093B1 (en) Nanostructures, their applications and method for making them
CN106882966B (zh) 一种通过光学区熔技术制备SiC/LaB6共晶复合材料的方法
CN115386778B (zh) 一种六硼化镧共晶复合材料及其制备方法
CN1417388A (zh) 一种拉制单晶时加快多晶原料熔化法及底部发热体装置
CN109763170B (zh) 一种高性能四元稀土六硼化物-二硼化锆复合材料的制备方法
CN101962801B (zh) 一种快速生长Nb2O5晶体的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant