CN109133993A - 一种LaB6-(Zr,V)B2共晶复合材料的制备方法 - Google Patents

一种LaB6-(Zr,V)B2共晶复合材料的制备方法 Download PDF

Info

Publication number
CN109133993A
CN109133993A CN201810901744.9A CN201810901744A CN109133993A CN 109133993 A CN109133993 A CN 109133993A CN 201810901744 A CN201810901744 A CN 201810901744A CN 109133993 A CN109133993 A CN 109133993A
Authority
CN
China
Prior art keywords
lab
zrb
powder
eutectic
coupon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810901744.9A
Other languages
English (en)
Other versions
CN109133993B (zh
Inventor
张久兴
王正红
杨新宇
王衍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201810901744.9A priority Critical patent/CN109133993B/zh
Publication of CN109133993A publication Critical patent/CN109133993A/zh
Application granted granted Critical
Publication of CN109133993B publication Critical patent/CN109133993B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种LaB6‑(Zr,V)B2共晶复合材料的制备方法,其是以ZrB2、LaB6及VB2粉末为原料,经球磨、预压烧结后,通过光学区熔获得。本发明采用光学区熔技术,通过工艺参数的精确控制,获得了组织均匀、力学与热发射性能良好的高性能LaB6‑(Zr,V)B2共晶复合材料,具有广阔的应用前景。

Description

一种LaB6-(Zr,V)B2共晶复合材料的制备方法
技术领域
本发明属于材料制备领域,具体是一种高性能LaB6-(Zr,V)B2共晶复合材料的制备方法。
背景技术
定向凝固自生复合材料是在定向凝固过程中,增强相和基体直接从热力学平衡条件下的液相中生长出来的共晶复合材料,具有很高的热力学稳定性;同时采用该熔体技术可避免人工复合带来的污染、润湿等问题,形成的共晶复合材料共晶两相连接非常好。定向凝固LaB6-MeB2(Me=Zr,Cr,Hf,Mo)共晶复合材料继承了LaB6的高熔点、低蒸发率、强耐离子轰击性,较高的发射电流密度等特点,同时又兼有高弹性模量MeB2优异的力学性能,因此是一类非常具有应用前景的结构功能一体化的共晶复合材料。
在LaB6-MeB2共晶复合材料中,LaB6-ZrB2共晶复合材料的力学性能最好、LaB6-VB2共晶复合材料的热发射性能最好,为了更加充分发挥这类材料的潜力,有必要发展LaB6-(Zr,V)B2共晶复合材料,然而目前没有关于LaB6-(Zr,V)B2共晶复合材料的制备方法及性能的报道。
发明内容
本发明提出了一种高性能LaB6-(Zr,V)B2共晶复合材料的制备方法,旨在采用光学区熔技术,通过工艺参数的精确控制,从而获得组织均匀、力学与热发射性能良好的高性能LaB6-(Zr,V)B2共晶复合材料
本发明解决技术问题,采用如下技术方案:
本发明公开了一种LaB6-(Zr,V)B2共晶复合材料的制备方法,其包括以下步骤:
步骤一、配粉:
将纯度不低于99.5%的ZrB2粉末、纯度不低于99.9%的LaB6粉末和纯度不低于99.9%的VB2粉末,按照共晶质量百分比LaB6:ZrB2:VB2=22:6:1混合,再置于高能球磨机中进行球磨,从而获得成分均匀的LaB6/ZrB2/VB2混合粉末;
进一步地,所述球磨是采用干磨的方式,球粉比为7:1,球磨时频率设置为45Hz,球磨时间为4h。
步骤二、烧结:
将所述LaB6/ZrB2/VB2混合粉末填装进石墨模具内并以10MPa的压力预压成型,然后置于放电等离子烧结炉的炉腔内,抽真空至10Pa,施加40MPa的轴向压力,升温至1700℃,保温2min,试样随炉冷却,获得LaB6/ZrB2/VB2块体;
本步骤利用放电等离子体瞬时产生的脉冲电流和单向压力共同作用于粉末,形成很强的体积扩散和晶界扩散,从而使得具有很强共价键的LaB6/ZrB2/VB2粉末迅速致密,形成致密度均匀的LaB6/ZrB2/VB2块体。
步骤三、LaB6/ZrB2/VB2块体的机械加工与净化:
将所述LaB6/ZrB2/VB2块体利用电火花线切割成试棒,对试棒表面依次采用丙酮和乙醇进行清洗和净化,然后干燥备用;
步骤四、定向凝固LaB6-(Zr,V)B2共晶复合材料的光学区熔:
将两根试棒分别固定在光学区熔炉的上抽拉杆和下抽拉杆上,保证上、下试棒同轴,安装石英管进行密封,关闭炉门;
向光学区熔炉中通入高纯氩气,气体压强为0.15MPa、气流量为4~5L/min;然后依次开启四个氙灯对试棒进行加热,通过调节功率控制加热温度,待上、下试棒局部完全熔化且形成一个稳定的熔区后,以1-300mm/h的速率定向的离开加热区,从而实现LaB6-(Zr,V)B2共晶复合材料的定向生长,获得LaB6-(Zr,V)B2共晶复合材料。
本发明的有益效果体现在:
1、本发明采用光学区熔技术,通过工艺参数的精确控制,获得了组织均匀、力学与热发射性能良好的高性能LaB6-(Zr,V)B2共晶复合材料,具有广阔的应用前景。
2、本发明采用光学区熔技术制备LaB6-(Zr,V)B2共晶复合材料:四个氙灯均匀分布在试样四周,可以提供均匀稳定的温度场和溶质场,获得均匀组织;光学区熔系统自带的CCD系统,可对晶体生长过程进行监控和及时调整,显著提升了高质量晶体生长的成功率,降低实验成本。
附图说明
图1为本发明实施例2中制备的LaB6-(Zr,V)B2共晶复合材料的纵截面组织形貌(抽拉速率为20mm/h);
图2为本发明实施例2中制备的LaB6-(Zr,V)B2共晶复合材料的热发射电流密度(抽拉速率为20mm/h);
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合实施例对本发明的具体实施方式做详细的说明。以下内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
实施例1
本实施例LaB6-(Zr,V)B2共晶复合材料的制备方法,包括以下步骤:
步骤一、配粉:
将纯度不低于99.5%的ZrB2粉末、纯度不低于99.9%的LaB6粉末和纯度不低于99.9%的VB2粉末,按照共晶质量百分比LaB6:ZrB2:VB2=22:6:1混合,再置于高能球磨机中进行球磨(采用干磨的方式,球粉比为7:1,球磨时频率设置为45Hz,球磨时间为4h。),从而获得成分均匀的LaB6/ZrB2/VB2混合粉末;
步骤二、烧结:
将LaB6/ZrB2/VB2混合粉末填装进Φ20×70mm石墨模具内并以10MPa的压力预压成型,然后置于放电等离子烧结炉的炉腔内,抽真空至10Pa、施加40MPa的轴向压力、升温至1700℃,保温2min,试样随炉冷却,获得LaB6/ZrB2/VB2块体;
步骤三、LaB6/ZrB2/VB2块体的机械加工与净化:
将直径为Φ20的LaB6/ZrB2/VB2块体利用电火花线切割成Φ5mm×48mm的试棒,对试棒表面依次采用丙酮和乙醇进行清洗和净化,然后在50℃下干燥5h备用。
步骤四、定向凝固LaB6-(Zr,V)B2共晶复合材料的光学区熔:
将Φ5mm×48mm的两根试棒分别固定在光学区熔炉的上抽拉杆和下抽拉杆上,保证上、下试棒同轴,安装石英管进行密封,关闭炉门;通入高纯氩气,气体压强为0.15MPa,气流量为4~5L/min;依次开启四个氙灯对样品进行加热,通过调节功率精确的控制温度,待上、下试棒局部完全熔化且形成一个稳定的熔区后,以V=1mm/h的速率定向的离开加热区,从而实现LaB6-(Zr,V)B2共晶复合材料的定向生长,获得LaB6-(Zr,V)B2共晶复合材料;
为了验证本实施例的效果,在所得试样棒的稳态生长区分别截取一纵截面和一横截面,并对所截取的纵截面和横截面试样进行常规金相处理。将获得的金相试样在扫描电镜(SEM)下进行观察,可知所获得的LaB6-(Zr,V)B2复合材料相分布相对不均匀,且横纵截面微观组织相差不大。同时,利用金刚石线切割,沿着复合材料生长方向,将试棒切割成1mm×1mm×3mm的小样品,用丙酮超声清洗15min,再用NaOH饱和溶液沸水超声清洗30min后,用去离子水超声清洗三次(每次10min),再用稀盐酸溶液沸水超声清洗30min,随后在沸水中用去离子水超声清洗两次(每次10min)。清洗结束后,用酒精冲洗吹干,然后进行热发射性能测试。经测试,在外场加速电压为3500V、温度为1873K的条件下,其最大热发射电流密度为30.12A/cm2
实施例2
本实施例按实施例1相同的方法和步骤制备LaB6-(Zr,V)B2共晶复合材料,区别仅在于步骤四中V=20mm/h。
为了验证本实施例的效果,在所得试样棒的稳态生长区进行标准的金相处理。采用扫描电镜对样品形貌进行观察。从图1可以看出样品的规整性非常好,与实施例1相比,纤维的尺寸随着速率的升高而细化。同时按实施例1相同的方法进行热发射性能测试。经测试,在外场加速电压为3500V、温度为1873K的条件下,最大热发射电流密度为35.12A/cm2
实施例3
本实施例按实施例1相同的方法和步骤制备LaB6-(Zr,V)B2共晶复合材料,区别仅在于步骤四中V=300mm/h。
为了验证本实施例的效果,在所得试样棒的稳态生长区进行标准的金相处理。采用扫描电镜对样品形貌进行观察。结果表明,与实施例1、2相比,随着凝固速率的升高,纤维的规整性并没有变差,而纤维的尺寸也是越来越细。
同时按实施例1相同的方法进行热发射性能测试。经测试,在外场加速电压为3500V、温度为1873K的条件下,最大热发射电流密度为32.12A/cm2

Claims (2)

1.一种LaB6-(Zr,V)B2共晶复合材料的制备方法,其特征在于,包括以下步骤:
步骤一、配粉:
将纯度不低于99.5%的ZrB2粉末、纯度不低于99.9%的LaB6粉末和纯度不低于99.9%的VB2粉末,按照共晶质量百分比LaB6:ZrB2:VB2=22:6:1混合,再置于高能球磨机中进行球磨,从而获得成分均匀的LaB6/ZrB2/VB2混合粉末;
步骤二、烧结:
将所述LaB6/ZrB2/VB2混合粉末填装进石墨模具内并以10MPa的压力预压成型,然后置于放电等离子烧结炉的炉腔内,抽真空至10Pa,施加40MPa的轴向压力,升温至1700℃,保温2min,试样随炉冷却,获得LaB6/ZrB2/VB2块体;
步骤三、LaB6/ZrB2/VB2块体的机械加工与净化:
将所述LaB6/ZrB2/VB2块体利用电火花线切割成试棒,对试棒表面依次采用丙酮和乙醇进行清洗和净化,然后干燥备用;
步骤四、定向凝固LaB6-(Zr,V)B2共晶复合材料的光学区熔:
将两根试棒分别固定在光学区熔炉的上抽拉杆和下抽拉杆上,保证上、下试棒同轴,安装石英管进行密封,关闭炉门;
向光学区熔炉中通入高纯氩气,气体压强为0.15MPa、气流量为4~5L/min;然后依次开启四个氙灯对试棒进行加热,通过调节功率控制加热温度,待上、下试棒局部完全熔化且形成一个稳定的熔区后,以1-300mm/h的速率定向的离开加热区,从而实现LaB6-(Zr,V)B2共晶复合材料的定向生长,获得LaB6-(Zr,V)B2共晶复合材料。
2.根据权利要求1所述的一种LaB6-(Zr,V)B2共晶复合材料的制备方法,其特征在于:步骤一所述球磨是采用干磨的方式,球粉比为7:1,球磨时频率设置为45Hz,球磨时间为4h。
CN201810901744.9A 2018-08-09 2018-08-09 一种LaB6-(Zr,V)B2共晶复合材料的制备方法 Active CN109133993B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810901744.9A CN109133993B (zh) 2018-08-09 2018-08-09 一种LaB6-(Zr,V)B2共晶复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810901744.9A CN109133993B (zh) 2018-08-09 2018-08-09 一种LaB6-(Zr,V)B2共晶复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN109133993A true CN109133993A (zh) 2019-01-04
CN109133993B CN109133993B (zh) 2021-12-14

Family

ID=64792481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810901744.9A Active CN109133993B (zh) 2018-08-09 2018-08-09 一种LaB6-(Zr,V)B2共晶复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN109133993B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109763170A (zh) * 2019-03-25 2019-05-17 合肥工业大学 一种高性能四元稀土六硼化物-二硼化锆复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688145A (ja) * 1992-09-09 1994-03-29 Casio Comput Co Ltd 帯融精製方法
CN107245758A (zh) * 2017-06-13 2017-10-13 合肥工业大学 一种多元稀土六硼化物(La0.6CexPr0.4‑x)B6单晶体的制备方法
CN105755540B (zh) * 2016-05-11 2018-05-01 合肥工业大学 一种采用光学区熔技术制备LaB6-VB2共晶复合材料的方法
CN106012011B (zh) * 2016-05-11 2018-05-18 合肥工业大学 一种LaB6-ZrB2共晶复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688145A (ja) * 1992-09-09 1994-03-29 Casio Comput Co Ltd 帯融精製方法
CN105755540B (zh) * 2016-05-11 2018-05-01 合肥工业大学 一种采用光学区熔技术制备LaB6-VB2共晶复合材料的方法
CN106012011B (zh) * 2016-05-11 2018-05-18 合肥工业大学 一种LaB6-ZrB2共晶复合材料的制备方法
CN107245758A (zh) * 2017-06-13 2017-10-13 合肥工业大学 一种多元稀土六硼化物(La0.6CexPr0.4‑x)B6单晶体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BACK, T.C.; FAIRCHILD, S.B.; SOUKIASSIAN, P.ET AL.: "Low energy electron microscopy study of directionally solidified LaB6-(Zr, V)B2 eutectics", 《2016 29TH INTERNATIONAL VACUUM NANOELECTRONICS CONFERENCE (IVNC)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109763170A (zh) * 2019-03-25 2019-05-17 合肥工业大学 一种高性能四元稀土六硼化物-二硼化锆复合材料的制备方法
CN109763170B (zh) * 2019-03-25 2021-03-09 合肥工业大学 一种高性能四元稀土六硼化物-二硼化锆复合材料的制备方法

Also Published As

Publication number Publication date
CN109133993B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
CN107326218B (zh) 一种3d打印用dd5镍基高温合金粉末的制备方法
Suganuma et al. Pulsed electric current sintering of silicon nitride
CN106012011B (zh) 一种LaB6-ZrB2共晶复合材料的制备方法
CN109202080A (zh) 一种激光选区熔化制备TiAl合金结构件的方法
CN107140960A (zh) 放电等离子烧结氧化铝基共晶陶瓷复合材料的方法
CN107032767A (zh) 热压烧结氧化铝基共晶复合陶瓷材料的方法
CN105755540B (zh) 一种采用光学区熔技术制备LaB6-VB2共晶复合材料的方法
CN113088848B (zh) 一种同时提高激光熔覆沉积tc4钛合金强度和塑性的热处理方法
CN110317987A (zh) 一种高金刚石体积分数的金刚石/铜复合材料的制备方法
CN107140959A (zh) 一种氧化物共晶结构陶瓷粉末的制备方法
Zhai et al. Effect of Si content on microstructure and properties of Si/Al composites
CN114875398A (zh) 一种稀土元素改性的耐磨难熔高熵合金涂层及制备方法
CN107236989B (zh) 一种五元稀土硼化物单晶热阴极材料及其制备方法
CN112662904A (zh) 一种TiB和La2O3增强钛基复合材料的制备方法
CN109133993A (zh) 一种LaB6-(Zr,V)B2共晶复合材料的制备方法
CN107032795B (zh) 一种ZrB2-SiC共晶复合陶瓷的凝固制备方法
KR20180045100A (ko) Pvd 코팅공정용 다성분계 합금타겟 제조방법
Xu et al. Preparation, characterization and property of high-quality LaB6 single crystal grown by the optical floating zone melting technique
Zhang et al. Crack analysis in Ti-6Al-4V alloy produced by selective laser melting
Chen et al. Characterization of LaB6–ZrB2 eutectic composite grown by the floating zone method
CN108178632B (zh) 具有定向层片组织的ZrB2-SiC共晶陶瓷制备方法
CN109763170B (zh) 一种高性能四元稀土六硼化物-二硼化锆复合材料的制备方法
CN114985737A (zh) 一种多元六硼化物[100]单晶及其制备方法
Kardashova Technology of spark plasma sintering as an innovative solution of synthesis high-density of SiC ceramics
CN110343932A (zh) 一种具有高强度的WVTaZrSc难熔高熵合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant