CN105925938B - 一种Cs2SnI6薄膜的激光脉冲沉积制备方法 - Google Patents
一种Cs2SnI6薄膜的激光脉冲沉积制备方法 Download PDFInfo
- Publication number
- CN105925938B CN105925938B CN201610537507.XA CN201610537507A CN105925938B CN 105925938 B CN105925938 B CN 105925938B CN 201610537507 A CN201610537507 A CN 201610537507A CN 105925938 B CN105925938 B CN 105925938B
- Authority
- CN
- China
- Prior art keywords
- sni
- film
- target
- preparation
- precursor thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 238000004549 pulsed laser deposition Methods 0.000 title claims abstract description 11
- 239000010408 film Substances 0.000 claims abstract description 42
- 239000010409 thin film Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000002243 precursor Substances 0.000 claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 13
- 238000000151 deposition Methods 0.000 claims abstract description 11
- 230000008021 deposition Effects 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000000243 solution Substances 0.000 claims description 8
- 239000003708 ampul Substances 0.000 claims description 7
- 239000010453 quartz Substances 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 230000009977 dual effect Effects 0.000 claims description 5
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 3
- 239000005357 flat glass Substances 0.000 claims description 3
- 229910000474 mercury oxide Inorganic materials 0.000 claims description 3
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 claims description 3
- 239000012467 final product Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 10
- 238000000137 annealing Methods 0.000 abstract description 4
- 230000005693 optoelectronics Effects 0.000 abstract description 4
- 238000011160 research Methods 0.000 abstract description 3
- 238000004062 sedimentation Methods 0.000 abstract description 3
- 238000005245 sintering Methods 0.000 abstract description 3
- 239000012535 impurity Substances 0.000 abstract description 2
- 239000012528 membrane Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002061 vacuum sublimation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种Cs2SnI6薄膜的激光脉冲沉积制备方法,是以溶液法合成CsSnI3粉末;在I2气氛下烧结得到Cs2SnI6靶材;采用激光脉冲沉积法(PLD)制备Cs2SnI6前驱薄膜;最后将所制薄膜进行退火处理,即得到高质量Cs2SnI6薄膜。本方法具有组分可控、沉积速率高、可防止杂质污染、能轻易实现高质量化合物薄膜的低温沉积等众多优点,而所制Cs2SnI6薄膜表面光滑均匀、厚度可调,并在空气中具有良好的稳定性。本发明薄膜质量高、操作简单、易于放大,为Cs2SnI6新型光电材料及器件的研究及应用提供了技术支持。
Description
一、技术领域
本发明涉及一种无机钙钛矿衍生物Cs2SnI6薄膜的激光脉冲沉积法(PLD)制备方法,属于光电薄膜材料制备技术领域。
二、背景技术
Cs2SnI6是钙钛矿结构的CsSnI3一种衍生物,是具有直接带隙约1.32eV的n型的半导体材料,在室温全空气环境下能够稳定存在。且其合成原材料在自然界中大量存在、无毒且便于加工,可用简单的物理和化学法来合成Cs2SnI6块材及粉末等。在光电器件中其具有广泛的应用前景,如作光电探测器材料、太阳能电池光吸收层材料、电子及空穴传输层材料等。而目前关于Cs2SnI6的研究甚少,为进一步研究开发Cs2SnI6的光电特性,必须制备出高质量的 Cs2SnI6薄膜材料。
两年前,Kantzidis和Chang等采用溶液喷涂法制备出p型的Cs2SnI6薄膜,并作为空穴传输层在太阳能电池中得以应用(见Journal of the American Chemical Society,2014,136, 15379-15385)。最近,Mitzi等采用真空热蒸发法制备出n型的Cs2SnI6薄膜(见Chemistry of Materials,2016,28,2315-2322)。但溶液法难以制备出高质量薄膜,不但化学反应过程复杂、重复性差,而且组分控制困难;而真空蒸发法不但设备昂贵、制程复杂,也存在组分控制困难,易出现CsI杂相等。而激光沉积技术具有众多优点,比如沉积速率高、适合高熔点化合物薄膜的沉积、能实现低温衬底沉积高质量薄膜、可防止氧化及杂质污染等,而激光沉积最大优点在于靶材成分和薄膜成分一致,有利于薄膜组分的控制。
三、发明内容
针对以上现有技术的缺陷,本发明提供一种Cs2SnI6薄膜的激光脉冲沉积制备方法,即首先采用溶液法合成CsSnI3粉末,然后在I2气氛下烧结得到Cs2SnI6靶材,随后采用激光脉冲沉积法(PLD)制备Cs2SnI6前驱薄膜,最后将所制薄膜进行退火处理,即得到高质量Cs2SnI6薄膜。
本发明Cs2SnI6薄膜的激光脉冲沉积制备方法,包括如下步骤:
(1)CsSnI3粉末的制备:配制浓度为1.55M的CsI水溶液20mL与浓度为1.03M的SnCl2乙醇溶液10mL;将SnCl2乙醇溶液加入到CsI水溶液中,持续搅拌1hr,得到黄色沉淀;在 85℃下真空干燥12hrs,即得到CsSnI3粉末;
(2)Cs2SnI6靶材的制备:将3~8g所述CsSnI3粉末装入孔径15mm的圆柱形模具中,加压2~10MPa并保压5分钟,即得到Cs2SnI6前驱体靶材;将所述Cs2SnI6前驱体靶材放入双温区真空管式炉的一个加热区处,在另一个加热区处放置I2颗粒;Cs2SnI6前驱体靶材所处的温区加热至100~200℃,I2颗粒所处的温区加热至45℃;反应过程中石英管保持通入N2,恒温反应12hrs,即得到Cs2SnI6靶材;
(3)Cs2SnI6前驱体薄膜的制备:将干净的玻璃片固定在沉积台上,高真空(<10- 6torr) 下以脉冲激光照射所述Cs2SnI6靶材;脉冲能量为220mJ,脉冲频率为5Hz,脉冲时间为2~60 min,即得到Cs2SnI6前驱体薄膜;
(4)Cs2SnI6薄膜的制备:将所述Cs2SnI6前驱体薄膜放入双温区真空管式炉的一个加热区处,在另一个加热区处放置I2颗粒;Cs2SnI6前驱体薄膜所处的温区加热至100~200℃,I2颗粒所处的温区加热至45℃;反应过程中石英管保持通入N2,恒温反应60min,即得到Cs2SnI6薄膜。
与已有技术相比,本发明具有如下优点:
1、薄膜组分可控:溶液法及蒸发法难以精确控制薄膜组成,因而无法得到符合化学剂量比的高质量Cs2SnI6薄膜;而本发明首先制备出均匀组分的Cs2SnI6靶材,利用脉冲激光沉积技术靶材与薄膜成分一致的优势,可实现Cs2SnI6薄膜的组分精确调控。
2、薄膜质量高:溶液法经常出现针孔、颗粒团聚、薄膜粗糙不均匀,而本发明所制的 Cs2SnI6薄膜光滑、均匀、致密、无针孔、衬底覆盖性佳。
3、薄膜稳定性及重复性好、材料利用率高:本发明首先制备出空气中非常稳定的Cs2SnI6靶材,进而制备出稳定的Cs2SnI6薄膜,不存在相变及氧化等问题,靶材可重复使用,因而具有较好的重复性和利用率,而溶液喷涂或者真空蒸发法材料利用率则非常低。
4、本方法制备流程及操作均较为简单、易于放大,可为Cs2SnI6新型光电材料及器件的研究及应用提供技术支持。
四、附图说明
图1为靶材烧结及前驱薄膜退火所用的双温区管式炉结构示意图;
图2为本发明实施例所制备的Cs2SnI6靶材的XRD图;
图3为本发明实施例所制备的Cs2SnI6薄膜的XRD图;
图4为本发明实施例所制备的Cs2SnI6薄膜的SEM图;
图1中标号:1 石英管;2 双温区管式炉;3 I2颗粒加热区;4 靶材或衬底加热区;5阀门及真空表;6 N2进气通道 7 I2颗粒;8 靶材或衬底;9 机械泵抽真空通道。
五、具体实施方式
实施例1:
本实施例Cs2SnI6薄膜的制备方法,通过如下步骤实现:
本实施例的靶材烧结及前驱薄膜退火所用的双温区管式炉结构示意图如图1所示,是以溶液法合成的CsSnI3粉末压成圆柱状块材,在双温区管式炉中I2气氛下烧结圆柱状块材得到 Cs2SnI6靶材,然后以脉冲激光沉积(PLD)法在玻璃衬底上制备Cs2SnI6前驱薄膜,最后在双温区管式炉中I2气氛下退火Cs2SnI6前驱薄膜,具体制备方法为:
1、CsSnI3粉末的制备:配制浓度为1.55M的CsI水溶液20mL与浓度为1.03M的SnCl2乙醇溶液10mL;将SnCl2乙醇溶液加入到CsI水溶液中,持续搅拌1hr,得到黄色沉淀;在 85℃下真空干燥12hrs,即得到CsSnI3粉末;
2、Cs2SnI6靶材的制备:将4g所述CsSnI3粉末装入孔径15mm的圆柱形模具中,加压4MPa并保压5分钟,即得到Cs2SnI6前驱体靶材;将所述Cs2SnI6前驱体靶材放入双温区真空管式炉的一个加热区处,在另一个加热区处放置I2颗粒;Cs2SnI6前驱体靶材所处的温区加热至165℃,I2颗粒所处的温区加热至45℃;反应过程中石英管保持通入N2,恒温反应12hrs,即得到Cs2SnI6靶材;
3、Cs2SnI6前驱体薄膜的制备:将干净的玻璃片固定在沉积台上,高真空(<10- 6torr)下以脉冲激光照射Cs2SnI6靶材;脉冲能量为220mJ,脉冲频率为5Hz,脉冲时间为20min,即得到Cs2SnI6前驱体薄膜;
4、Cs2SnI6薄膜的制备:将所述Cs2SnI6前驱体薄膜放入双温区真空管式炉的一个加热区处,在另一个加热区处放置I2颗粒;Cs2SnI6前驱体薄膜所处的温区加热至165℃,I2颗粒所处的温区加热至45℃;反应过程中石英管保持通入N2,恒温反应60min,即得到Cs2SnI6薄膜。
图2为合成的Cs2SnI6靶材的XRD图,图3为所制备Cs2SnI6薄膜的XRD图,图4为制备的Cs2SnI6薄膜的SEM图。从图2可以看出Cs2SnI6靶材的衍射峰与标准峰相比,峰位置与峰强度基本完全一致,验证所得到的靶材即为Cs2SnI6材料;从图3可以看出Cs2SnI6在13.2°、15.2°、26.5°、30.7°、54.6°、64.0°处衍射峰明显,其分别对应Cs2SnI6的(111)、(200)、(222)、 (400)、(444)、(800)晶面的衍射峰,可见本方法制备的薄膜生长方向具有较强的择优取向。由图4可以看出所制备的Cs2SnI6薄膜致密,厚度均匀,表面平整,其厚度约为2790nm。
实施例2:
本实施例按实施例1相同的方式制备Cs2SnI6薄膜,不同之处在于:步骤2)中加压2MPa。
实施例3:
本实施例按实施例1相同的方式制备Cs2SnI6薄膜,不同之处在于:步骤2)中加压10MPa。
实施例4:
本实施例按实施例1相同的方式制备Cs2SnI6薄膜,不同之处在于:步骤2)中Cs2SnI6前驱体靶材所处的温区加热至110℃;步骤4)中Cs2SnI6前驱体薄膜所处的温区加热至165 ℃。
实施例5:
本实施例按实施例1相同的方式制备Cs2SnI6薄膜,不同之处在于:步骤2)中Cs2SnI6前驱体靶材所处的温区加热至190℃;步骤4)中Cs2SnI6前驱体薄膜所处的温区加热至190 ℃。
实施例6:
本实施例按实施例1相同的方式制备Cs2SnI6薄膜,不同之处在于:步骤3)中脉冲沉积时间为5min。
Claims (2)
1.一种Cs2SnI6薄膜的激光脉冲沉积制备方法,其特征在于包括如下步骤:
(1)CsSnI3粉末的制备:配制浓度为1.55 M的CsI水溶液20 mL与浓度为1.03 M的SnCl2乙醇溶液10 mL;将SnCl2乙醇溶液加入到CsI水溶液中,持续搅拌1 hr,得到黄色沉淀;在85℃下真空干燥12 hrs,即得到CsSnI3粉末;
(2)Cs2SnI6靶材的制备:将3~8 g所述CsSnI3粉末装入孔径15 mm的圆柱形模具中,加压2~10MPa并保压5分钟,即得到Cs2SnI6前驱体靶材;将所述Cs2SnI6前驱体靶材放入双温区真空管式炉的一个加热区处,在另一个加热区处放置I2颗粒,反应过程中石英管保持通入N2,恒温反应12 hrs,即得到Cs2SnI6靶材;步骤(2)中Cs2SnI6前驱体靶材所处的温区加热至100~200℃,I2颗粒所处的温区加热至45℃;
(3)Cs2SnI6前驱体薄膜的制备:将干净的玻璃片固定在沉积台上,高真空下以脉冲激光照射所述Cs2SnI6靶材,即得到Cs2SnI6前驱体薄膜;步骤(3)中脉冲能量为220 mJ,脉冲频率为5 Hz,脉冲时间为2~60 min;
(4)Cs2SnI6薄膜的制备:将所述Cs2SnI6前驱体薄膜放入双温区真空管式炉的一个加热区处,在另一个加热区处放置I2颗粒,反应过程中石英管保持通入N2,恒温反应60 min,即得到Cs2SnI6薄膜;步骤(4)中Cs2SnI6前驱体薄膜所处的温区加热至100~200℃,I2颗粒所处的温区加热至45℃。
2.根据权利要求1所述的方法,其特征在于:
步骤(3)中高真空是指压强<10-6 torr。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610537507.XA CN105925938B (zh) | 2016-07-08 | 2016-07-08 | 一种Cs2SnI6薄膜的激光脉冲沉积制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610537507.XA CN105925938B (zh) | 2016-07-08 | 2016-07-08 | 一种Cs2SnI6薄膜的激光脉冲沉积制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105925938A CN105925938A (zh) | 2016-09-07 |
CN105925938B true CN105925938B (zh) | 2018-05-01 |
Family
ID=56827236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610537507.XA Active CN105925938B (zh) | 2016-07-08 | 2016-07-08 | 一种Cs2SnI6薄膜的激光脉冲沉积制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105925938B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107805779B (zh) * | 2017-10-10 | 2019-07-12 | 东南大学 | 一种激光溅射法制备CsPbBr3薄膜的方法 |
CN108855156A (zh) * | 2018-07-18 | 2018-11-23 | 河南工业大学 | 一种全无机非铅钙钛矿复合TiO2纳米线及其制备方法 |
CN108823627A (zh) * | 2018-07-18 | 2018-11-16 | 河南工业大学 | 一种全无机非铅钙钛矿复合H-TiO2基纳米管阵列的制备 |
CN111933730B (zh) * | 2020-08-20 | 2024-02-23 | 西安电子科技大学 | 基于无铅钙钛矿单晶的核辐射探测器及其制备方法 |
CN112054126B (zh) * | 2020-08-28 | 2021-10-29 | 河南大学 | 一种铯锡碘薄膜、其制备方法及应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101425467A (zh) * | 2008-11-25 | 2009-05-06 | 中国科学院安徽光学精密机械研究所 | 在柔性衬底上制备透明导电薄膜及透明异质结的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4200215B2 (ja) * | 2004-03-29 | 2008-12-24 | 独立行政法人産業技術総合研究所 | デュエルターゲット同時パルスレーザ蒸着手法による炭化ケイ素のp型半導体の結晶薄膜の作製方法 |
KR101502449B1 (ko) * | 2012-11-22 | 2015-03-13 | 한국과학기술연구원 | 분할 타겟 펄스 레이저 증착 장치 및 이를 이용한 초박막 다층구조 증착 방법 |
-
2016
- 2016-07-08 CN CN201610537507.XA patent/CN105925938B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101425467A (zh) * | 2008-11-25 | 2009-05-06 | 中国科学院安徽光学精密机械研究所 | 在柔性衬底上制备透明导电薄膜及透明异质结的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105925938A (zh) | 2016-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105925938B (zh) | 一种Cs2SnI6薄膜的激光脉冲沉积制备方法 | |
Pawar et al. | Effect of laser incident energy on the structural, morphological and optical properties of Cu2ZnSnS4 (CZTS) thin films | |
CN107805779B (zh) | 一种激光溅射法制备CsPbBr3薄膜的方法 | |
WO2019085678A1 (zh) | 多元合金化合物及其油墨、薄膜吸收层和它们的制备方法 | |
WO2019218567A1 (zh) | 一种有机铵金属卤化物薄膜的制备装置及制备和表征方法 | |
CN105679880A (zh) | 一种光解水用大面积钒酸铋薄膜的简易制备方法 | |
CN105777800B (zh) | 氧化铅薄膜制备有机钙钛矿甲基胺基碘化铅薄膜的方法 | |
CN113481602B (zh) | 一种具有超导特性的无限层型镍酸盐薄膜的制备方法 | |
CN110699745A (zh) | 一种钙钛矿单晶的制备方法 | |
CN107887514A (zh) | 一种钙钛矿薄膜的制备方法及其应用 | |
CN105779956A (zh) | 一种两步法制备有机钙钛矿甲基胺基碘化铅薄膜的方法 | |
CN112853270B (zh) | 一种生长高质量均匀硒化锗薄膜的装置及方法 | |
CN101114719A (zh) | 一种以多孔衬底材料为支撑的梯度结构薄膜的制备方法 | |
CN105671486B (zh) | 一种氮掺杂二氧化钛薄膜材料的制备方法 | |
CN108330543A (zh) | 一种N型SnSe单晶及其制备方法 | |
CN101805131B (zh) | 一种二氧化钒薄膜的低温制备方法与应用 | |
CN117107193A (zh) | 锡酸锌单晶薄膜及其制备方法 | |
CN113667992B (zh) | 一种喷雾热聚合制备石墨相氮化碳薄膜电极的方法 | |
CN107699856B (zh) | 采用蒸发镀膜-电场诱导可控制备定向Bi-Te-Se纳米柱阵列的方法 | |
CN106086796A (zh) | 一种立方结构MgZnO薄膜及其制备方法 | |
CN108892172B (zh) | 一种高相变潜热的vo2粉体的制备方法 | |
CN100549221C (zh) | 一种钛酸锶钡薄膜材料的制备方法 | |
CN111647848A (zh) | 一种磁控溅射制备大面积CsPbBr3光电薄膜的方法和应用 | |
CN109943821A (zh) | 立方尖晶石结构CuGa2O4薄膜的制备方法及相应的结构 | |
CN107419235A (zh) | 一种低温下氧化锌微纳米线化学气相沉积制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |