CN105908131B - 一种可热生长氧化铝膜的TiAl涂层及其制备方法 - Google Patents

一种可热生长氧化铝膜的TiAl涂层及其制备方法 Download PDF

Info

Publication number
CN105908131B
CN105908131B CN201610422884.9A CN201610422884A CN105908131B CN 105908131 B CN105908131 B CN 105908131B CN 201610422884 A CN201610422884 A CN 201610422884A CN 105908131 B CN105908131 B CN 105908131B
Authority
CN
China
Prior art keywords
tial
coatings
coating
aluminium film
thermally grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610422884.9A
Other languages
English (en)
Other versions
CN105908131A (zh
Inventor
沈明礼
朱圣龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201610422884.9A priority Critical patent/CN105908131B/zh
Publication of CN105908131A publication Critical patent/CN105908131A/zh
Application granted granted Critical
Publication of CN105908131B publication Critical patent/CN105908131B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种可热生长氧化铝膜的TiAl涂层及其制备方法,属于涂层技术领域,可用于钛合金及钛铝金属间化合物等材料的高温氧化防护。所述的具备选择性氧化铝膜形成能力的TiAl涂层,TiAl合金靶材,Al原子比含量为38%‑58%。以TiAl为靶材,通过在物理气相沉积过程中,掺杂微量碳或氮,获得一种具备选择性氧化铝膜形成能力的TiAl涂层,为钛合金和钛铝金属间化合物抗氧化防护涂层设计提供了新的思路和方法,涂层与基体化学相容性好,脆性低;而且工艺简单可控,绿色环保,成本低,适合工业化应用;与现有相关防护涂层相比,具有明显的技术优势。

Description

一种可热生长氧化铝膜的TiAl涂层及其制备方法
技术领域
本发明涉及及涂层技术,特别提供了一种可热生长氧化铝膜的TiAl涂层及其制备方法。
背景技术
钛合金以及钛铝金属间化合物密度小、比强度高、抗腐蚀性能优异,且具有一定的高温强度,在航空航天、船舶、动力等领域应用广泛。特别对于航空发动机来说,使用钛合金及钛铝金属间化合物压气机叶片可大大降低发动机重量,提高推重比。然而,由于钛具有较高的亲氧活性,高温下(>500℃)即便钛铝金属间化合物也无法形成保护性氧化铝膜,因而,改善钛合金及钛铝金属间化合物的抗氧化能力需要通过施加防护涂层获得。
众所周知,是否具备选择性氧化铝膜形成能力(亦即高温氧化条件下,具备自发形成单一连续氧化铝膜的能力)是决定涂层抗高温氧化性能优异的前提。现有适于钛合金基体且具备氧化铝形成能力的涂层包括热扩散渗铝涂层以及包覆涂层如MCrAlY(M=Ni、Co或NiCo)。热扩散渗铝涂层是通过包埋法、料浆法或热浸渗等工艺在TiAl金属间化合物表面富铝至60-70at%(原子比)形成TiAl2或TiAl3相,TiAl2或TiAl3相虽具备形成选择性氧化铝膜的能力,但该涂层往往脆性较高[参见文献:Z.G.Zhang,X.Teng,Y.L.Mao,C.X.Cao,S.J.Wang,L.Wang,Improvement of Oxidation Resistance of γ-TiAl at 900 and1000℃Through Hot-dip Aluminizing,Oxidation of Metals 73(2010)455-466.],而且涂层制备工艺不环保。典型包覆涂层MCrAlY因与基体间存在严重的互扩散,导致界面易于形成大量的柯肯达尔孔洞以及脆性互扩散带,降低涂层保护性能,需增加中间扩散阻挡层,以消除涂层/基体互扩散导致的性能恶化问题[参见文献:Y.X.Cheng,W.Wang,S.L.Zhu,L.Xin,F.H.Wang,Arc ion plated-Cr2O3intermediate film as a diffusion barrierbetween NiCrAlY andγ-TiAl,Intermetallics 18(2010)736-739.王东生,一种在TiAl合金和MCrAlY涂层间制备Al2O3扩散障的方法,中国发明专利,ZL201310627241.4]。已报道的磁控溅射TiAlCr涂层因添加大量的Cr而使涂层具备氧化铝膜形成能力,且与钛合金及钛铝金属间化合物界面相容性良好,但需要制备脆性TiAlCr靶材而使涂层制备成本较高[参见文献:C.Zhou,Y.Yang,S.Gong,H.Xu,Effect of Ti–Al–Cr coatings on the hightemperature oxidation behavior of TiAl alloys,Materials Science andEngineering A307(2001)182–187.]。
因此,若能仅利用TiAl靶材通过物理气相沉积制备具备氧化铝形成能力的TiAl涂层,显然可消除涂层与基体相容性问题,而且靶材易于获得,从而大大降低涂层制备成本,并且制备工艺绿色环保。利用本发明方法可实现这一目标。利用单一TiAl靶材,在物理气相沉积过程中,通过实时精确控制含氮或碳气体分压,可获得微量氮或碳掺杂的TiAl涂层。借助于微量氮或碳对钛的高亲和性,高温氧化过程中,该TiAl涂层可生长一层单一连续氧化铝膜。
本发明与现有制备TiAlN涂层[参加文献:法伊特·席尔,乌尔里希·阿尔伯斯,TiAl涂层工具,中国发明专利,201380041300.8]存在本质不同,该发明PVD制备涂层过程中大量通入氮气,以使涂层发生充分氮化,以获得硬质耐磨TiAlN涂层。同时,研究已表明,充分氮化的TiAlN并不具备选择性氧化铝膜生成能力[参见文献:L.Chen,L.He,Y.Xu,L.Zhou,F.Pei,Y.Du,Influence of ZrN on oxidation resistance of Ti-Al-N coating,Surface&Coatings Technology 244(2014)87–91.]。而本发明仅利用微量氮或碳的掺杂作用,无论工艺与技术效果与其存在本质区别。
本发明通过全新的碳或氮掺杂的思路,仅以TiAl为靶材,获得了一种具备选择性氧化铝膜形成能力的TiAl涂层及其制备方法,为钛合金和钛铝金属间化合物抗氧化防护涂层设计提供了新的思路,涂层与基体化学相容性好,脆性低;而且工艺简单可控,绿色环保,成本低,适合工业化应用;与现有相关防护涂层相比,具有明显的技术优势。可满足相关产业对钛合金和钛铝金属间化合物高性能高温防护涂层的迫切需求。
发明内容
本发明的目的是为了解决当前钛铝金属间化合物及钛合金抗高温氧化性能差,而现有高温防护涂层存在严重互扩散、脆性等与基体不匹配问题,难以满足该类合金抗高温氧化性能要求,同时与基体合金匹配良好的TiAl涂层无法形成选择性氧化铝膜导致抗氧化性差的问题,而提供的一种可热生长氧化铝膜的TiAl涂层及其制备方法。
本发明提供了一种可热生长氧化铝膜的TiAl涂层及其制备方法,其特征在于:以TiAl合金为靶材,在真空物理气相沉积TiAl涂层过程中,通以微量含氮或碳气体,并维持低气压,获得微量氮、碳或其共同掺杂的TiAl涂层,碳和氮总原子含量为小于10%但不包括0;该涂层在高温空气中氧化可形成单一保护性氧化铝膜。
所述的TiAl合金靶材,Al原子比含量为38%-58%;此外,为改善涂层性能,所述的TiAl合金靶材,还可含有Fe、Co、Ni、Ti、Pt、Ag、Si、Zr、W、Nb、B或稀土元素包括Y、La、Hf、Ce、Gd、Dy或其组合,以及含有钨、钼、钽、铌等高熔点组元,但其总含量小于20%,原子比。
所述的真空物理气相沉积,包括但不限于磁控溅射、电弧离子镀以及电子束蒸发物理气相沉积方法;由于电弧离子镀离化率高,可制备致密化的TiAl涂层,故为优选工艺。
所述的微量含氮或含碳气体,包括但不限于氮气、氨气、甲烷、乙烷、乙炔等,可作为混合气体导入真空室。
所述的含氮或含碳气体气压,在无其他惰性气体情况下,气压在5×10-3-8×10- 2Pa范围;在有惰性气体如氩气、氦气情况下,含氮或含碳气体分压在1×10-3-5×10-2Pa范围。
本发明优点:
本发明所述的可热生长氧化铝膜的TiAl涂层及其制备方法,仅需单一TiAl靶材,通过物理气相沉积工艺,精确控制含氮或碳气体含量,维持低分压,即可使TiAl涂层获得选择性氧化铝膜形成能力,工艺简单可控,成本低,适于工业规模应用。
附图说明
下面结合附图及实施方式对本发明作进一步详细的说明:
图1为按本发明方法制备的无掺杂TiAl和氮掺杂TiAl涂层及其700℃氧化100h后的截面显微照片;
图2为按本发明方法制备的碳掺杂TiAl涂层及其700℃氧化100h后的截面显微照片;
图3为微量碳参杂TiAl涂层制备态和700度氧化100小时后的截面照片。
具体实施方式
实施例1
本实施例以TiAl为靶材,对采用电弧离子镀工艺制备微量氮掺杂的TiAl涂层及其制备方法进行说明。首先将TiAl靶安装于阴极水冷靶套,将钛合金基体(TC4)试片挂于靶前,关闭真空室门,进行抽气;镀膜室真空度达到5×10-3Pa或更高时,引燃阴极电弧;首先对基体施加脉冲高负偏压进行离子轰击清洗,清洗完毕后,通以氮气,使真空室真空度达到0.6×10-2Pa。电弧电流为50-400A,电流大小可影响涂层沉积速率,沉积速率与电流大小大致呈线性关系,本例采用70A,脉冲偏压-50V。对基体施加的脉冲负偏压频率为40kHz,占空比20%。镀膜时间取决于所要求涂层的厚度大小,本例每层镀膜2小时后关闭弧源。由此得到微量氮掺杂的TiAl涂层扫描电镜截面照片如图1所示。为对比无掺杂TiAl涂层,本例后续进行无掺杂TiAl涂层的沉积,除沉积期间不通氮气外,其他工艺同上,获得的无掺杂TiAl涂层扫描电镜截面照片如图1所示。可见,两种涂层组织均存在孔洞,在有无掺杂的情况下,所沉积的TiAl涂层截面组织类似,表明涂层内仅掺杂少量氮元素,未发生明显氮化。700℃空气中氧化100h后,无掺杂TiAl涂层氧化膜较厚(约2μm),X射线衍射分析表明,氧化膜由TiO2+Al2O3组成;而由于氮的掺杂作用,氮掺杂TiAl氧化后氧化膜明显较薄,厚度仅约0.2μm,该层氧化膜显然为单一Al2O3膜。
实施例2
本实施例以TiAl为靶材,对采用电弧离子镀工艺制备微量氮掺杂的TiAl涂层及其制备方法进行说明。首先将TiAl靶安装于阴极水冷靶套,将钛合金基体(TC4)试片挂于靶前,关闭真空室门,进行抽气;镀膜室真空度达到5×10-3Pa或更高时,引燃阴极电弧;首先对基体施加脉冲高负偏压进行离子轰击清洗,清洗完毕后,通以氮气,使真空室真空度达到6×10-2Pa。电弧电流为70A,脉冲偏压-50V。对基体施加的脉冲负偏压频率为40kHz,占空比20%。镀膜时间取决于所要求涂层的厚度大小,本例每层镀膜2小时后关闭弧源。由此得到微量氮掺杂的TiAl涂层,700℃空气中氧化100h后扫描电镜截面照片如图2所示。氮掺杂稍多导致涂层氧化生成部分连续Al2O3膜。
实施例3
本实施例以TiAl为靶材,对采用电弧离子镀工艺制备微量碳掺杂的TiAl涂层及其制备方法进行说明。采用与实施例1相同制备工艺,以甲烷代替氮气可获得碳掺杂的TiAl涂层。首先将TiAl靶安装于阴极水冷靶套,将钛合金基体(TC4)试片挂于靶前,关闭真空室门,进行抽气;镀膜室真空度达到5×10-3Pa或更高时,引燃阴极电弧;首先对基体施加脉冲高负偏压进行离子轰击清洗,清洗完毕后,通以甲烷,使真空室真空度达到6×10-2Pa。电弧电流为70A,脉冲偏压-50V。对基体施加的脉冲负偏压频率为40kHz,占空比20%。镀膜时间取决于所要求涂层的厚度大小,本例每层镀膜2小时后关闭弧源。由此得到微量碳掺杂的TiAl涂层扫描电镜截面照片如图3所示。涂层经700℃空气中氧化100h后,碳掺杂TiAl涂层氧化膜较薄,厚度仅约0.2μm,该层氧化膜显然为单一Al2O3膜,与氮掺杂TiAl氧化结果类似。
实施例4
本实施例以TiAl为靶材,对采用磁控溅射工艺制备微量氮掺杂的TiAl涂层及其制备方法进行说明。首先将TiAl靶安装于阴极水冷靶套,将基体试片挂于靶前,关闭真空室门,进行抽气;镀膜室真空度达到5×10-3Pa或更高时,通以氮气使真空度达到1×10-3-5×10-2Pa,然后通入氩气(或氦气)至6×10-2-5Pa,开启直流或脉冲溅射电源,电流5-20A。镀膜时间取决于所要求涂层的厚度大小。由此得到微量氮掺杂的TiAl涂层,通过磁控溅射制备的涂层致密性及表面粗糙度要优于电弧离子镀,但涂层沉积速率稍低,碳掺杂的TiAl涂层可通过通入含碳气体如甲烷获得。采用电弧离子镀工艺可类似的通以惰性气体进行涂层沉积。
实施例4
本实施例以TiAl为靶材,对采用电子束蒸发物理气相沉积工艺制备微量氮掺杂的TiAl涂层及其制备方法进行说明。将基体试片挂于靶前,关闭真空室门,进行抽气;镀膜室真空度达到5×10-3Pa或更高时,通以氮气使真空度达到5×10-3-8×10-2Pa,然后开启电子束。镀膜时间取决于所要求涂层的厚度大小。由此得到微量氮掺杂的TiAl涂层,通过电子束蒸发制备的涂层致密性及表面粗糙度要优于电弧离子镀,涂层沉积速率较高,但涂层与基体结合力较弱。
实施例5
为改善涂层其他性能,可在TiAl靶材中加入其他合金元素,获得改性的微量氮或碳掺杂的TiAl基涂层,改善涂层性能的元素包括Fe、Co、Ni、Ti、Pt、Ag、Si、Zr、W、Mo、Ta、Nb、B或稀土元素包括Y、La、Hf、Ce、Gd、Dy或其组合,但其总含量小于20%,原子比。
以上结合附图对本发明的具体实施方式作了说明,但这些说明不能被理解为限制了本发明的范围,本发明的保护范围由随附的权利要求书限定,任何在本发明权利要求基础上的改动都是本发明的保护范围。

Claims (6)

1.一种可热生长氧化铝膜的TiAl涂层,其特征在于:所述的可热生长氧化铝膜的TiAl涂层,碳和氮总原子含量为小于10%但不包括0;TiAl合金靶材,Al原子比含量为38%-58%。
2.按照权利要求1所述的可热生长氧化铝膜的TiAl涂层,其特征在于:所述TiAl合金靶材,还可含有改善涂层性能的Fe、Co、Ni、Ti、Pt、Ag、Si、Zr、W、Mo、Ta、Nb、B或稀土元素包括Y、La、Hf、Ce、Gd、Dy或其组合,其原子比总含量小于20%。
3.一种如权利要求1所述可热生长氧化铝膜的TiAl涂层的制备方法,其特征在于:以TiAl合金为靶材,在真空物理气相沉积TiAl涂层过程中,通以微量含氮或碳气体,并维持低气压,获得微量氮、碳或其共同掺杂的TiAl涂层;该涂层在高温空气中氧化能形成单一保护性氧化铝膜;所述真空物理气相沉积,包括但不限于磁控溅射、电弧离子镀以及电子束蒸发物理气相沉积方法。
4.按照权利要求3所述可热生长氧化铝膜的TiAl涂层的制备方法,其特征在于:所述微量含氮或含碳气体,包括但不限于氮气、氨气、甲烷、乙烷、乙炔。
5.按照权利要求3所述可热生长氧化铝膜的TiAl涂层的制备方法,其特征在于:所述含氮或含碳气体气压,在无其他惰性气体情况下,气压在5×10-3-8×10-2Pa范围内。
6.按照权利要求3所述可热生长氧化铝膜的TiAl涂层的制备方法,其特征在于:所述含氮或含碳气体气压,在有惰性气体包括氩气、氦气或其组合情况下,含氮或含碳气体分压在1×10-3-5×10-2Pa范围。
CN201610422884.9A 2016-06-15 2016-06-15 一种可热生长氧化铝膜的TiAl涂层及其制备方法 Active CN105908131B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610422884.9A CN105908131B (zh) 2016-06-15 2016-06-15 一种可热生长氧化铝膜的TiAl涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610422884.9A CN105908131B (zh) 2016-06-15 2016-06-15 一种可热生长氧化铝膜的TiAl涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN105908131A CN105908131A (zh) 2016-08-31
CN105908131B true CN105908131B (zh) 2018-09-04

Family

ID=56751098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610422884.9A Active CN105908131B (zh) 2016-06-15 2016-06-15 一种可热生长氧化铝膜的TiAl涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN105908131B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106521442B (zh) * 2016-11-24 2019-01-18 清华大学 颜色透明度可调的非晶态硬质耐磨耐蚀涂层及其制备方法
CN108018528A (zh) * 2017-10-31 2018-05-11 广东工业大学 一种高温抗氧化AlTiYN涂层及其制备方法与应用
CN110656302A (zh) * 2019-11-04 2020-01-07 北方工业大学 一种抗扩展燃烧的长寿命钛火防护涂层及其制备方法
CN111155063B (zh) * 2019-12-31 2022-03-08 广州市尤特新材料有限公司 一种钛铝合金靶材及其制备方法
CN112695288B (zh) * 2020-12-15 2021-09-17 南京航空航天大学 一种具有Mo-Si-Ti合金层的γ-TiAl材料及其制备方法
CN115011924B (zh) * 2022-04-24 2023-07-21 昆明理工大学 一种抗高温氧化合金及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1576398A (zh) * 2003-07-11 2005-02-09 中国科学院金属研究所 热生长Al2O3膜型M-A1纳米复合镀层及制备方法和应用
CN103866243A (zh) * 2014-03-31 2014-06-18 沈阳大学 一种氮氧钛铝/氮化钛铝/钛铝复合膜的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011603A (ja) * 1999-07-02 2001-01-16 Sumitomo Metal Mining Co Ltd 積層被膜付き部材および該積層被膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1576398A (zh) * 2003-07-11 2005-02-09 中国科学院金属研究所 热生长Al2O3膜型M-A1纳米复合镀层及制备方法和应用
CN103866243A (zh) * 2014-03-31 2014-06-18 沈阳大学 一种氮氧钛铝/氮化钛铝/钛铝复合膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Thermal Oxidation of Ti1-xAlxN Coatings in Air;F.Vaz etal.;《Journal of the European Ceramic Society》;19971231;第17卷(第15-16期);第1971-1977页 *

Also Published As

Publication number Publication date
CN105908131A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
CN105908131B (zh) 一种可热生长氧化铝膜的TiAl涂层及其制备方法
Movchan Inorganic materials and coatings produced by EBPVD
US11814702B2 (en) PVD bond coat
CN107620033A (zh) 一种高纯强致密max相涂层的制备方法
JP2007191765A (ja) 硬質皮膜
JP2005281865A (ja) 物品を保護する方法及び関連する組成
JP2007131927A (ja) 表面被覆部材及びその製造方法ならびに工具及び工作装置
CN107299313A (zh) 用于制备立方氧化锆层的方法
CN108330452A (zh) Max相涂层的制备方法
US7935387B2 (en) Methods for fabricating YAG barrier coatings
JP2021504567A (ja) 熱安定性が高められたAl−Crベースのセラミックコーティング
Liu et al. Microstructure and mechanical properties of alumina coatings prepared by double glow plasma technique
CN105862003B (zh) 一种钼合金基体上FeCrAl镀层的制备方法
CN106282887B (zh) 微晶氧化物颗粒弥散强化合金涂层的原位制备方法
JP2004068156A (ja) 物品を保護するための方法及び関連組成物
KR20130070433A (ko) Max 상 박막의 제조방법
Khechba et al. Study of structural and mechanical properties of tungsten carbides coatings
Chang et al. Deposition of Ni–Al–Y alloy films using a hybrid arc ion plating and magnetron sputtering system
KR101695590B1 (ko) 티타늄금속기판 위에 다이아몬드 코팅층이 형성된 수처리용 구조재 및 그 제조 방법
CN109898056B (zh) 一种基于pvd技术的块体金属/金属陶瓷纳米梯度材料及其制备方法和应用
Azizi‐Malekabadi et al. Enhancement of the Ti‐6Al‐4V alloy corrosion resistance by applying CrN/CrAlN multilayer coating via Arc‐PVD method
JP2018161691A (ja) 硬質被覆層が優れた耐摩耗性・耐剥離性を発揮する表面被覆切削工具
JP2013221215A (ja) 表面被覆部材及びその製造方法、並びに、表面被覆部材の被覆方法
US20080179193A1 (en) Manufacturing method of coating target
US11821073B2 (en) Vanadium aluminium nitride (VAlN) micro alloyed with Ti and/or Si

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant