CN106521442B - 颜色透明度可调的非晶态硬质耐磨耐蚀涂层及其制备方法 - Google Patents

颜色透明度可调的非晶态硬质耐磨耐蚀涂层及其制备方法 Download PDF

Info

Publication number
CN106521442B
CN106521442B CN201611049983.3A CN201611049983A CN106521442B CN 106521442 B CN106521442 B CN 106521442B CN 201611049983 A CN201611049983 A CN 201611049983A CN 106521442 B CN106521442 B CN 106521442B
Authority
CN
China
Prior art keywords
coating
wear
corrosion
target
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611049983.3A
Other languages
English (en)
Other versions
CN106521442A (zh
Inventor
陈娜
赵得霖
姚可夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201611049983.3A priority Critical patent/CN106521442B/zh
Publication of CN106521442A publication Critical patent/CN106521442A/zh
Application granted granted Critical
Publication of CN106521442B publication Critical patent/CN106521442B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了属于非晶态合金涂层制备技术领域的一种颜色和透明度可调的非晶态金属基硬质耐磨耐蚀涂层材料及其制备方法。其颜色和透明度可调;所述硬质耐磨耐蚀防护涂层材料的组成如下通式为(Co,Fe)aBbTacOd;其中a、b、c和d均为原子百分数,采用磁控溅射方法制备涂层均为非晶态结构,调节工作气体的氧流量,所制备涂层颜色可从完全不透明的黑色到半透明的金黄色,再过渡到完全透明的涂层,最高硬度值可达35GPa,远高于目前的合金材料。该非晶态金属基硬质耐磨耐蚀涂层具有高硬度、高耐磨性、高耐蚀性,具有非常好的装饰美观作用,同时又能有效地防护基体材料免受划伤、磨损和锈蚀,延长基体材料的使用寿命。

Description

颜色透明度可调的非晶态硬质耐磨耐蚀涂层及其制备方法
技术领域
本发明属于非晶态合金制备技术领域,特别涉及一种颜色透明度可调的非晶态硬质耐磨耐蚀涂层及其制备方法。具体说是一种颜色和透明度均可控,从完全不透明的黑色调到半透明金黄色再调到完全透明的非晶态金属基硬质耐磨耐蚀涂层材料的制备方法。
背景技术
与传统晶态材料相比,非晶态金属基材料具有高强度、高硬度、高耐磨性、高断裂韧性、优异耐蚀性和高表面光洁度等优异性能。因此,非晶态金属基材料作为硬质耐磨耐蚀涂层不仅可以大幅度提高基体材料包括强度、硬度和耐磨性等在内的力学性能和耐蚀性能,延长基体工件的使用寿命,还可以改善基体材料的表面质量,增加其外观美观度;与此同时,非晶态材料具有优异的低温热塑性成型加工能力,作为防护涂层又能很好的与现有涂层的制备技术相兼容,制备工艺简单,可应用于高精密零部件的表面改性及外观美化。但是,目前非晶态金属基材料通常为具有金属光泽、不透明的涂层材料,本发明提供一种颜色和透明度均可调,从不透明黑色到半透明金黄色再到完全透明的非晶态金属基硬质耐磨耐蚀涂层,最高硬度值可达35GPa,该涂层在包括手机、电脑等IT领域、微纳电子器件、汽车、医疗器械、油气管道、发电、石油钻探、医药化工及煤炭等行业具有非常重要的应用前景。
发明内容
本发明提供了一种颜色透明度可调的非晶态硬质耐磨耐蚀涂层及其制备方法,其特征在于,所述非晶态金属基硬质耐磨耐蚀涂层的颜色和透明度可调;该硬质耐磨耐蚀防护涂层材料的组成通式为(Co,Fe)aBbTacOd;其中a、b、c和d均为原子百分数,取值范围为:15≤a≤80,10≤b≤35,0≤c≤20,0≤d≤85;
所制备涂层为非晶态结构,其颜色和透明度能够从完全不透明的黑色调节到半透明金黄色,再调节到完全透明,在整个范围内进行调控;具有高硬度、高耐磨性、高耐蚀性的特点,能够有效地防护基体材料免受划伤、磨损和锈蚀,延长基体材料的使用寿命。
一种颜色透明度可调的非晶态金属基硬质耐磨耐腐蚀涂层的制备方法,其特征在于,包括如下步骤:
1)采用传统的物理气相沉积的磁控溅射技术;
2)采用粉末靶材和金属合金靶材两种靶材:
3)硬质耐磨耐蚀涂层的制备:
所述步骤2)靶材制备包括:
i粉末靶材制备:原料为Co,Fe,Ta,B粉末,将按照靶材组成通式(Co,Fe)aBbTac;其中a、b和c均为原子百分数,取值范围为:35≤a≤80,15≤b≤35,0≤c≤25的比例称量原料;粉末尺度为100微米以下;将称量好的粉末材料充分混合后放入靶材容器中,表面压平即可用于磁控溅射镀膜;
ii金属合金靶材制备:原料为块体Co、Fe、Ta和B,将按照靶材组成通式(Co,Fe)aBbTac;其中a、b和c均为原子百分数,取值范围为:35≤a≤80,15≤b≤35,0≤c≤25)的比例配备原料,混合后采用熔融铸造的方法制备靶材;
所述步骤3)具体的操作步骤:将上述靶材分次放在磁控溅射设备中;预抽真空至~10-4Pa,通入惰性气体氩气和氧气,氩气流量基本保持在27sccm,氧气流量按不同组别从0sccm变到3.5sccm;工作气压为0.7-0.8Pa,每次溅射30min后冷却30min,总计溅射时间随所需溅射厚度调整;得到的涂层材料是一系列含氧量不同的非晶态金属基材料;由于不同组别中工作气体的氧流量从0sccm变到3.5sccm,则获得一系列颜色和透明度可调的涂层材料。
所述高纯惰性气体Ar的纯度大于99.999wt%。
本发明的有益效果为:
1.以CoFeTaB材料为原料,采用工业化制备薄膜涂层的传统方法物理气相沉积磁控溅射技术制备出颜色和透明度可调,从完全不透明黑色到半透明金黄色,再到完全透明的硬质耐磨耐蚀非晶态金属基防护涂层材料。
2.制备出的非晶态金属基涂层最高硬度值为35GPa,且具有良好的耐磨性和耐蚀性能。
3.制备出的涂层的颜色和透明度可调,可以根据氧含量的不同调节产品外观色泽。
4.该涂层制备工艺简单、原材料价格便宜,且环境友好,是一种性能优异的硬质耐磨耐腐蚀涂层材料。
附图说明
图1是实施例1中CoFeTaB非晶态合金材料的XRD图谱和透射电镜图片,表明所制备涂层材料为非晶态结构。
图2是实施例1中CoFeTaB非晶态合金材料镀在手机铝外壳上的外观图。
图3是实施例2中CoFeTaB非晶态金属基氧化物材料的透射电镜图片,表明所制备涂层材料为非晶态结构。
图4是实施例2中半透明的金黄色CoFeTaB非晶态金属基氧化物涂层。
图5(a)和(b),分别是实施例1中CoFeTaB非晶态合金和实施例2中CoFeTaB非晶态金属基氧化物的硬度测试。其中完全黑色、不透明的样品的硬度达到了35GPa,半透明金黄色的涂层硬度约为20GPa,基底硅片的硬度为17GPa左右。
图6是实施例3中完全透明CoFeTaBO非晶态氧化物镀在手机铝外壳上的外观图。
图7为实施例4中不同氧含量的CoFeTaB非晶态金属基样品的外观图。
图8为实施例4中不同氧含量的CoFeTaB非晶态金属基样品的透过率测试图(以溅射时氧流量不同进行分组)。
具体实施方式
本发明提供一种硬质耐磨耐蚀非晶态金属基涂层材料及其制备方法。其颜色和透明度可调;下面结合实施例对本发明予以说明。
实施例1
制备黑色不透明的Co50Fe25Ta15B10的非晶态金属涂层,并镀于铝制手机外壳表面。图1为该涂层的结构表征,表明所制备涂层为完全非晶态结构;图2为镀在铝制手机外壳的外观图。
具体操作步骤如下:以Co50Fe25Ta15B10为靶材;将铝制手机外壳置于磁控溅射设备中,预抽真空至~10-4Pa,通入惰性气体氩气,流量为27sccm,工作气压为0.7Pa,每次溅射30min后冷却30min,总计溅射时间为1.5小时,在铝制手机外壳表面得到溅射厚度约为400nm的完全不透明的黑色非晶态合金薄膜Co50Fe25Ta15B10;硬度约为35GPa,通过XRD和透射电镜图片表征其结构特征(见图1),通过纳米压痕仪测试其硬度(图5(a))。
实施例2
制备金黄色半透明的Co18Fe10Ta0.3B8O63.7涂层(图3和图4)。
具体操作步骤如下:以Co50Fe25Ta15B10为靶材,将磁控溅射设备预抽真空至~10- 4Pa,通入惰性气体氩气,流量为27sccm,通入氧气,流量为2.0sccm。工作气压为0.8Pa,每次溅射30min后冷却30min,总计溅射时间为1.5小时,溅射厚度约为400nm。制备得到含氧量较高的Co18Fe10Ta0.3B8O63.7涂层;该涂层为半透明的金黄色非晶态金属基薄膜(见图3和图4),硬度约为21GPa。通过XRD和透射电镜图片表征其非晶态结构特征,通过纳米压痕仪测试其硬度(图5(b))。
实施例3
制备完全透明的Co6Fe3Ta0.1B6O84.9薄膜涂层,并镀于铝制手机外壳表面(图6)。
具体操作步骤如下:以Co50Fe25Ta15B10为靶材,将磁控溅射设备预抽真空至~10- 4Pa,通入惰性气体氩气,流量为27sccm,通入氧气,流量为2.5sccm。工作气压为0.8Pa,每次溅射30min后冷却30min,总计溅射时间为0.5小时,溅射厚度约为100nm的含氧量高的完全透明Co6Fe3Ta0.1B6O84.9薄膜涂层,所制备的涂层材料为完全透明的非晶态氧化物薄膜。
实施例4
采用粉末靶材Co43Fe20Ta5.5B31.5制备一系列颜色和透明度可调的CoFeTaB非晶态金属基涂层样品(如图7所示)。
具体操作步骤如下:将磁控溅射设备预抽真空至~10-4Pa,通入惰性气体氩气,流量为27sccm,通入氧气,流量为0-3.5sccm。工作气压为0.8Pa,每次溅射30min后冷却30min,总计溅射时间为0.5小时,溅射厚度约为100nm。
所制备的涂层材料为颜色和透明度均可调的非晶态金属基涂层材料,通过透过率测试仪测试其透过率特性(如图8所示)。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (3)

1.一种颜色透明度可调的非晶态硬质耐磨耐蚀涂层,其特征在于,所述非晶态硬质耐磨耐蚀涂层为非晶态金属基硬质耐磨耐蚀涂层;所述非晶态金属基硬质耐磨耐蚀涂层的颜色和透明度可调;该硬质耐磨耐蚀防护涂层材料的组成通式为(Co,Fe)aBbTacOd;其中a、b、c和d均为原子百分数,取值范围为:15≤a≤80,10≤b≤35,0≤c≤20,0≤d≤85;所制备涂层为非晶态结构,其颜色和透明度能够从完全不透明的黑色调节到半透明金黄色,再调节到完全透明,在整个范围内进行调控;具有高硬度、高耐磨性、高耐蚀性的特点,能够有效地防护基体材料免受划伤、磨损和锈蚀,延长基体材料的使用寿命。
2.一种颜色透明度可调的非晶态硬质耐磨耐蚀涂层的制备方法,其特征在于,包括如下步骤:
1)采用传统的物理气相沉积的磁控溅射技术;
2)采用粉末靶材和金属合金靶材两种靶材:
3)硬质耐磨耐蚀涂层的制备:
所述步骤2)靶材制备包括:
i粉末靶材制备:原料为Co,Fe,Ta,B粉末,将按照靶材组成通式(Co,Fe)aBbTac;其中a、b和c均为原子百分数,取值范围为:35≤a≤80,15≤b≤35,0≤c≤25的比例称量原料;粉末尺度为100微米以下;将称量好的粉末材料充分混合后放入靶材容器中,表面压平即可用于磁控溅射镀膜;
ii金属合金靶材制备:原料为块体Co、Fe、Ta和B,将按照靶材组成通式(Co,Fe)aBbTac;其中a、b和c均为原子百分数,取值范围为:35≤a≤80,15≤b≤35,0≤c≤25)的比例配备原料,混合后采用熔融铸造的方法制备靶材;
所述步骤3)具体的操作步骤:将上述靶材分次放在磁控溅射设备中;预抽真空至10- 4Pa,通入惰性气体氩气和氧气,氩气流量保持在27sccm,氧气流量按不同组别从0sccm变到3.5sccm;工作气压为0.7-0.8Pa,每次溅射30min后冷却30min,总计溅射时间随所需溅射厚度调整;得到的涂层材料是一系列含氧量不同的非晶态金属基材料;由于不同组别中工作气体的氧流量从0sccm变到3.5sccm,则获得一系列颜色和透明度可调的涂层材料;所述惰性气体Ar的纯度大于99.999wt%。
3.根据权利要求2非晶态硬质耐磨耐蚀涂层的制备方法,其特征在于,所制备涂层最高硬度为35GPa,最低硬度为20GPa。
CN201611049983.3A 2016-11-24 2016-11-24 颜色透明度可调的非晶态硬质耐磨耐蚀涂层及其制备方法 Active CN106521442B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611049983.3A CN106521442B (zh) 2016-11-24 2016-11-24 颜色透明度可调的非晶态硬质耐磨耐蚀涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611049983.3A CN106521442B (zh) 2016-11-24 2016-11-24 颜色透明度可调的非晶态硬质耐磨耐蚀涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN106521442A CN106521442A (zh) 2017-03-22
CN106521442B true CN106521442B (zh) 2019-01-18

Family

ID=58357888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611049983.3A Active CN106521442B (zh) 2016-11-24 2016-11-24 颜色透明度可调的非晶态硬质耐磨耐蚀涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN106521442B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604330B (zh) * 2017-09-01 2019-11-12 华中科技大学 一种颜色可调的非晶合金彩色薄膜及其制备方法
CN111074229B (zh) * 2018-10-19 2021-05-14 清华大学 调控硬质涂层颜色的方法、硬质涂层及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
DE3925050A1 (de) * 1989-07-28 1991-01-31 Basf Ag Schutzschichten aus keramiken des germaniums
MC2461A1 (fr) * 1997-09-26 1998-12-18 Exsymol Sa Dispositifs ophtalmiques et implantables recouverts d'un revêtement et procédés pour la production de ces derniers
JP4351212B2 (ja) * 2003-08-05 2009-10-28 日鉱金属株式会社 スパッタリングターゲット及びその製造方法
CN103489557B (zh) * 2013-09-22 2016-06-15 清华大学 一种室温透明铁磁半导体材料及其制备方法
CN105908131B (zh) * 2016-06-15 2018-09-04 中国科学院金属研究所 一种可热生长氧化铝膜的TiAl涂层及其制备方法

Also Published As

Publication number Publication date
CN106521442A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
Bachani et al. Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics
Martinez et al. Electrical, optical and mechanical properties of sputtered CrNy and Cr1− xSixN1. 02 thin films
Vaz et al. Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films
Lai et al. Mechanical and tribological properties of multi-element (AlCrTaTiZr) N coatings
Constantin et al. Performance of hard coatings, made by balanced and unbalanced magnetron sputtering, for decorative applications
Akbari et al. Structural and mechanical properties of IBAD deposited nanocomposite Ti–Ni–N coatings
Blažek et al. Properties of nanocrystalline Al–Cu–O films reactively sputtered by DC pulse dual magnetron
Zhao et al. Ti–Cu–N hard nanocomposite films prepared by pulse biased arc ion plating
CN106521442B (zh) 颜色透明度可调的非晶态硬质耐磨耐蚀涂层及其制备方法
Yang et al. Microstructure and properties of FeCoCrNiMoSix high-entropy alloys fabricated by spark plasma sintering
Londoño-Menjura et al. Influence of deposition temperature on WTiN coatings tribological performance
Yang et al. Boron doped bcc-W films: achieving excellent mechanical properties and tribological performance by regulating substrate bias voltage
Tsai et al. Wide variation in the structure and physical properties of reactively sputtered (TiZrHf) N coatings under different working pressures
Yanliang et al. Influence of Al2O3 particles on the tribological properties of CoCrAlYTa coating produced by laser-induction hybrid cladding
Li et al. Structures and properties of TiAlCrN coatings deposited on Ti (C, N)-based cermets with various WC contents
Dalbauer et al. On the phase evolution of arc evaporated Al-Cr-based intermetallics and oxides
Zheng et al. Enhanced strength of AlCoCrCu0. 5FeNi high entropy alloy thin films reinforced by multi-phase hardening and nanotwins
Osadnik et al. Plasma-sprayed Mo-Re coatings for glass industry applications
Chen et al. Correlation between arc evaporation of Ti–Al–N coatings and corresponding Ti0. 50Al0. 50 target types
Rambau et al. Tribological and corrosion characterization of Al/(Stellite-6+ Zirconium) laser alloyed composites
Liu et al. Growth and properties of multi-layer nano CrAlN/TiAlN composite coating on the cermets with CrFeCoNiMo, CrFeCoNiMn, CrFeCoNiAl high entropy alloy phase
CN102660732B (zh) 制备(Ti,Al)BN陶瓷基非晶-纳米晶耐磨耐蚀复合涂层的工艺
Tu et al. Structure, composition and mechanical properties of reactively sputtered (TiVCrTaW) Nx high-entropy films
Hasegawa et al. The effects of deposition temperature and post-annealing on the crystal structure and mechanical property of TiCrAlN films with high Al contents
Rao et al. Phase formation and structural evolution of multicomponent (CrFeCo) 1-yNy films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant