CN105819418A - 一种多孔炭负载纳米金属磷化物的方法 - Google Patents

一种多孔炭负载纳米金属磷化物的方法 Download PDF

Info

Publication number
CN105819418A
CN105819418A CN201610128990.6A CN201610128990A CN105819418A CN 105819418 A CN105819418 A CN 105819418A CN 201610128990 A CN201610128990 A CN 201610128990A CN 105819418 A CN105819418 A CN 105819418A
Authority
CN
China
Prior art keywords
metal phosphide
porous charcoal
transition metal
carbon source
mass ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610128990.6A
Other languages
English (en)
Inventor
姜兴茂
任婧
张震威
曹静远
梁帅
秦跻龙
陆伟
王非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Yingzhong Nano Technology Co., Ltd.
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201610128990.6A priority Critical patent/CN105819418A/zh
Publication of CN105819418A publication Critical patent/CN105819418A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • C01B25/088Other phosphides containing plural metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种多孔炭负载纳米金属磷化物的方法,属于纳米材料制备技术领域。利用糖类做为碳源,磷酸盐(磷酸)和金属盐在一定条件下可形成均匀混合体系的特性,经脱水碳化后原位形成多孔炭,随后经过高温还原性气体热处理下使金属形成磷化物从而制备形成多孔炭负载的过渡金属磷化物材料。本发明通过改变原料配比、反应时间和热处理温度等合成条件,可以得到负载量、粒径大小和组成同时可控的负载型纳米材料。整个工艺具有操作简单易行、成本低廉以及原料丰富易得等优点,在工业催化、电化学和油品的加氢脱硫脱氮等诸多方面拥有巨大的应用前景。

Description

一种多孔炭负载纳米金属磷化物的方法
技术领域
本发明提供了一种多孔炭负载纳米金属磷化物的制备方法,属于纳米材料制备技术领域。
背景技术
纳米材料具有明显不同于块体材料和单个分子的独特性质,例如:表面效应、体积效应和宏观隧道效应等,使其在电子学、光学、化工、陶瓷、生物和医药等方面都有广阔的应用前景。
多孔炭材料由于其独特的结构特性,如高比表面积,中孔道均匀分布,更好的水热稳定性、化学惰性,已经广泛的应用于吸附分离、催化、电导材料等领域。在催化领域中,多孔炭已经被证明是优秀的催化剂载体。目前已有大量的关于多孔炭负载的金属催化剂的制备及应用于催化反应的报道。然而,多孔炭负载过渡金属磷化物的报道却很鲜见。过渡金属磷化物因具有与碳化物、氮化物相似的物理化学性质,成为有一种新型催化剂材料。据报道,该类催化剂在氨的合成和分解、肼分解制氢、烷烃异构化及加氢反应中都有广泛的应用,已经成功应用于油品的深度加氢脱硫、加氢脱氮反应,特别是在一些涉氢反应中,他们的催化活性接近甚至超过贵金属催化剂。
在这些催化反应中,人们采用的多为担载型的过渡金属磷化物的催化剂。负载型磷化物主要是采用将浸渍有磷酸盐的载体直接还原所得。但是这样制备出来的磷化物在载体表面分布不是很均匀,高温处理后也易烧结。
近年来,一些研究小组已经报道了采通过不同的方法制备得到了担载型过渡金属磷化物。过渡金属磷化物的制备方法主要通过以下几个途径合成所得:金属和红磷单质的化合、金属卤化物与磷置换反应、有机金属磷化合物的分解、熔融盐的电解和金属磷酸盐的还原。在所有这些制备方法中,金属磷酸盐的程序升温还原的方法是最适用的,该方法操作便捷,工艺路线简单,其它的制备方法有的需要高温,有的需要非常昂贵的原料,有的原料或生成的副产物产生磷化物污染。
Oyama等(Chem. Letter,1998,27(3):207-208)首次采用程序升温还原的方法制备了MoP,此后,一系列过渡金属磷化物如WP、Ni2P、CoP、Fe2P等都被证明能通过这种方法得到。程序升温还原法最大的特点是以过渡金属磷酸盐或亚磷酸盐为前躯体,在原子尺度上将金属和磷结合,因而具有普遍的适用性。此外,该方法不使用或产生有毒物质,因而也较为绿色环保。
近来,沈俭一等以次磷酸镍热分解反应成功制备了Ni2P催化剂。其合成过程为:将含有次磷酸根和镍离子的前驱体,在氢气氛中加热到200-300℃,反应0.5-3h,即得到Ni2P。这种方法工艺简单,不需要程序升温、高温高压等复杂步骤;所用原料廉价,所需设备成本低。然而,它也存在一些问题,PH3的产生是这种方法致命的缺点,如何将产生的PH3高效的用于生成磷化物的反应是该方法需要解决的主要问题。
化学还原法制备过渡金属磷化物是使用次亚磷酸盐取代KBH4作为还原剂,通过还原生成的金属和P结合生成磷化物,该方法能得到的磷化物主要为Ni2P、CoP、FeP,产物也为非结晶态结构。该方法绿色环保,且具有良好的通用性。但该方法也有升温速率缓慢、还原过程耗时耗能的缺点,在大规模生产中较难实现。
因此,开发一种简单普适的多孔炭负载过渡金属磷化物复合材料的制备方法,并能够在合成过程中控制炭载体的孔道结构以及纳米粒子的尺寸、组分、晶相和担载量等参数,对于该类材料的广泛应用必将产生重大的推动作用。
发明内容
本发明的目的在于开发一种简单普适的多孔炭负载纳米过渡金属磷化物的制备方法。
本发明通过以下技术方案来实现。
利用碳源、磷酸盐(磷酸)和金属盐在一定温度下形成均匀熔融液,使得金属盐均匀分布在混合液体中。之后,加热使得糖类碳化得到多孔炭,同时金属活性组分均匀分布在多孔炭中,随着在保护气或还原性气氛下高温热处理后,得到多孔炭负载纳米过渡金属磷化物复合材料。
本发明的具体实施步骤为:一种多孔炭负载纳米金属磷化物材料的方法,按照下述步骤进行:
(1)将碳源和磷源按1:100~100:1的质量比,糖类与金属盐按照1:10~10:1的质量比混合放在容器中,经过机械混合或热处理使得混合固体完全融化,形成均匀的体系;
(2)将步骤(1)中得到的溶液在500-1000℃温度下并在保护性气体或还原性气体中热处理5-20h,使得碳源脱水碳化,并生成金属磷化物,得到黑褐色固体;即所得的多孔炭负载金属磷化物。
其中步骤(1)中所述的金属盐为Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、、Cd、Hf、Ta、W等的硝酸盐(如硝酸铁、硝酸钴、硝酸镍、硝酸铜)、卤化物(如氯化铬)、次氯酸盐(如次氯酸钙)、醋酸盐(如醋酸钙)、草酸盐(如草酸亚锰)、磷酸盐(如磷酸锌)或硫酸盐(如硫酸氧钛、钼酸铵、偏钒酸铵)中等杂多酸铵盐的一种或一种以上不同金属元素的盐。
其中步骤(1)中碳源为葡萄糖、果糖、蔗糖、麦芽糖、乳糖、淀粉和糊精中的一种。
其中步骤(1)中磷源为磷酸、五氧化二磷或磷酸铵盐的一种。
其中步骤(1)中碳源与磷酸盐的质量比为1:100~100:1;步骤(1)中碳源与金属盐的质量比为1:10~10:1 ,碳源与金属盐的质量比为5:1。
其中步骤(2)中所述的保护气为氮气、氩气、氦气的一种;还原性气体为含氢气或一氧化碳体积分数为5%~10%的混合气,平衡气为氮气、氩气或氦气的一种。
本发明利用糖类、磷酸盐(磷酸)和金属盐在一定温度下形成均匀熔融液体,使得金属盐均匀分布在混合液体中。之后,利用原位合成的方法,在高温下使得糖类脱水碳化,同时经过高温热处理得到炭负载金属磷化物。本发明可以用于负载众多金属磷化物材料,其尺寸大小均一且单分散性高,通过调节合成条件,可以控制金属磷化物的组成、晶相以及担载量等。该合成方法属于无水体系,可以避免传统合成方法由于金属盐溶液水解而造成的合成困难。此外,本发明还具有合成路线简单和成本低廉等优势,在工业催化、电化学和油品的加氢脱硫脱氮等诸多方面拥有巨大的应用前景。
附图说明
图1为实施例1制得的多孔炭负载MoP的XRD图。
图2为实施例2制得的多孔炭负载WP的XRD图。
图3为实施例3制得的多孔炭负载Ni2P的XRD图。
图4为实施例1和例5制得的不同还原温度下制得的多孔炭负载MoP的XRD对比图。
图5 为实施例1制得的多孔炭负载MoP的TEM图。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但本发明的保护范围不限于此。
实施例1:多孔炭负载MoP
合成原料:葡萄糖、磷酸二氢铵、钼酸铵
(1)称取1 g葡萄糖、0.01 g磷酸二氢铵和0.1g钼酸铵(H24Mo7N6O24·4H2O)于一个100ml的烧杯中,之后将烧杯药品用研钵研磨10min后均匀,加热形成熔融状态;
(2)将(1)中所述熔融物置于坩埚槽中,并置于管式炉中,将样品在800℃ H2条件下煅烧5小时,得到黑褐色膨松固体,测得XRD为多孔炭负载碳化钼(MoP)。
实施例2:多孔炭负载纳米WP
合成原料:葡萄糖、磷酸二氢铵、钨酸铵
(1)称取2g葡萄糖、0.5g磷酸二氢铵、0.3 g 钨酸铵((NH4)10H2 (W2O7)6)于一个100 mL烧杯中,加热搅拌,形成熔融状态;
(2)之后将烧杯放进120℃烘箱中,反应4小时,得到黑褐色膨松固体。
(3)用研钵将(2)中得到的产物研碎,并放于坩埚中。将反应得到的产物在800℃N2条件下热处理7小时,得到多孔炭负载WP。
实施例3:多孔炭负载纳米Ni2P
合成原料:蔗糖、磷酸二氢铵、硝酸镍
(1)称取3 g蔗糖、0.5g磷酸二氢铵和2.5g硝酸镍(Ni(NO3)2·6H2O)于一个100 mL烧杯中,之后将烧杯放置在可加热的磁力搅拌器中,磁力搅拌器的温度升至120℃,并持续搅拌10 min直至烧杯中药品形成熔融状态。
(2)之后,将熔融液放入180℃烘箱中,反应48小时,得到黑褐色蓬松固体。
(3)用研钵将(2)中得到的产物研碎,并放于坩埚中。将反应得到的产物在700℃5% H2/Ar条件下热处理5小时,得到多孔炭负载Ni2P。
实施例4:多孔炭负载Fe2P
合成原料:蔗糖、磷酸二氢铵、草酸亚铁
(1)称取0.05 g蔗糖、5g磷酸二氢铵和0.5g草酸亚铁(FeC2O4)于一个100 mL烧杯中,之后将烧杯放置在180℃烘箱中使碳源碳化,得到黑色固体,
(2)用研钵将(1)中得到的产物研碎,并放于坩埚中,将反应得到的产物在N2保护下900℃的条件下热处理8小时,得到多孔炭负载Fe2P。
实施例5:多孔炭负载纳米Co2P
合成原料:果糖、磷酸、硝酸钴
(1)称取4g果糖和0.8g磷酸于一个100 mL烧杯中,之后将烧杯放置在磁力搅拌器中,搅拌均匀,
(2)称取1 g Co(NO3)2·6H2O加入(1)中所述液体中,搅拌至熔融状态,并放于坩埚中在H2保护下于1000℃的条件下热处理5小时,得到多孔炭负载Co2P。
实施例6:多孔炭负载MoP
合成原料:葡萄糖、磷酸二氢铵、钼酸铵
(1)称取3 g葡萄糖、1 g磷酸二氢铵和0.8g钼酸铵(H24Mo7N6O24·4H2O)于一个100ml的烧杯中,之后将烧杯药品用研钵研磨15min后均匀,加热形成熔融状态;
(2)将(1)中所述熔融物置于坩埚槽中,并置于管式炉中,将样品在600℃ H2条件下煅烧5小时,得到黑褐色膨松固体,测得XRD为多孔炭负载碳化钼(MoP)。
实施例7:多孔炭负载CoMoP
合成原料:乳糖、五氧化二磷、硝酸钴、钼酸铵
(1)称取2g乳糖、1g磷酸、0.5g硝酸钴(Co(NO3)2·6H2O)和0.5g钼酸铵(H24Mo7N6O24·4H2O)于一个100 mL烧杯中,置于研钵中研磨均匀;
(2)之后,将熔融液放入140℃烘箱中,反应10小时得到黑褐色蓬松固体。
(3)而后并放于坩埚中在H2保护下于1000℃的条件下热处理5小时,得到多孔炭负载CoMoP。
实施例8:多孔炭负载NiMoP
合成原料:果糖、五氧化二磷、硝酸镍、钼酸铵
(1)称取5g果糖、3g磷酸、1.5g硝酸镍(Ni(NO3)2·6H2O)和2g钼酸铵(H24Mo7N6O24·4H2O)于一个100 mL烧杯中,之后将烧杯放置在可加热的磁力搅拌器中。磁力搅拌器的温度升至130℃,并持续搅拌5min直至烧杯中药品形成熔融状态。
(2)将(1)中所述熔融液体中,并放于坩埚中在H2保护下于750℃的条件下热处理5小时,得到多孔炭负载NiMoP。

Claims (6)

1.一种多孔炭负载过渡金属磷化物材料的方法,其特征在于按照下述步骤进行:
(1)将碳源和磷源按1:100~100:1的质量比,糖类与金属盐按照1:10~10:1的质量比混合放在容器中,经过机械混合或热处理使得混合固体完全融化,形成均匀的体系;
(2)将步骤(1)中得到的溶液在500-1000℃温度下并在保护性气体或还原性气体中热处理5-20h,使得碳源脱水碳化,并生成金属磷化物,得到黑褐色固体;即所得的多孔炭负载金属磷化物。
2.根据权利要求1所述的一种多孔炭负载过渡金属磷化物材料的方法,其特征在于其中步骤(1)中所述的金属盐为Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Sc、Mo、Tc、、Cd、Hf、Ta、W等的硝酸盐(如硝酸铁、硝酸钴、硝酸镍、硝酸铜)、卤化物(如氯化铬)、次氯酸盐(如次氯酸钙)、醋酸盐(如醋酸钙)、草酸盐(如草酸亚锰)、磷酸盐(如磷酸锌)或硫酸盐(如硫酸氧钛、钼酸铵、偏钒酸铵)中等杂多酸铵盐的一种或一种以上不同金属元素的盐。
3.根据权利要求1所述的一种多孔炭负载过渡金属磷化物材料的方法,其特征在于其中步骤(1)中碳源为葡萄糖、果糖、蔗糖、麦芽糖、乳糖、淀粉和糊精中的一种。
4.根据权利要求1所述的一种多孔炭负载过渡金属磷化物材料的方法,其特征在于其中步骤(1)中磷源为磷酸、五氧化二磷或磷酸铵盐的一种。
5.根据权利要求1所述的一种多孔炭负载过渡金属磷化物材料的方法,其特征在于其中步骤(1)中碳源与磷酸盐的质量比为1:100~100:1;步骤(1)中碳源与金属盐的质量比为1:10~10:1 ,碳源与金属盐的质量比为5:1。
6.根据权利要求1所述的一种多孔炭负载过渡金属磷化物材料的方法,其特征在于其中步骤(2)中所述的保护气为氮气、氩气、氦气的一种;还原性气体为含氢气或一氧化碳体积分数为5%~10%的混合气,平衡气为氮气、氩气或氦气的一种。
CN201610128990.6A 2016-03-07 2016-03-07 一种多孔炭负载纳米金属磷化物的方法 Pending CN105819418A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610128990.6A CN105819418A (zh) 2016-03-07 2016-03-07 一种多孔炭负载纳米金属磷化物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610128990.6A CN105819418A (zh) 2016-03-07 2016-03-07 一种多孔炭负载纳米金属磷化物的方法

Publications (1)

Publication Number Publication Date
CN105819418A true CN105819418A (zh) 2016-08-03

Family

ID=56987442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610128990.6A Pending CN105819418A (zh) 2016-03-07 2016-03-07 一种多孔炭负载纳米金属磷化物的方法

Country Status (1)

Country Link
CN (1) CN105819418A (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384155A (zh) * 2015-12-25 2016-03-09 陕西科技大学 一种六方相结构磷化钴鉬纳米材料的制备方法
CN107313064A (zh) * 2017-06-12 2017-11-03 太原理工大学 金属硼或磷化物修饰的α‑Fe2O3光阳极材料的制备方法及应用
CN108383093A (zh) * 2018-05-11 2018-08-10 西北师范大学 一种双金属磷化物碳纳米管复合材料的制备和应用
CN109569683A (zh) * 2018-10-19 2019-04-05 郑州大学 一种氮磷共掺杂的多孔碳片/过渡金属磷化物复合材料的制备方法及应用
CN109962245A (zh) * 2017-12-14 2019-07-02 中国科学院大连化学物理研究所 过渡金属磷化物多孔碳纳米片复合材料及其制备和应用
CN110344078A (zh) * 2019-07-03 2019-10-18 湖北大学 一种泡沫镍@钴钼磷化物/镍铁双氢氧化物电极及其制备方法与应用
CN110444745A (zh) * 2019-07-22 2019-11-12 华中科技大学 一种负载金属磷化物的多孔空心碳材料、其制备和应用
CN110813338A (zh) * 2019-09-30 2020-02-21 南方科技大学 纳米磷化钨/碳或氮化钨/碳复合材料及其制备方法
CN111514911A (zh) * 2020-05-08 2020-08-11 桂林理工大学 一种具有介孔结构的碳掺杂wp纳米片电催化剂及其制备方法
CN111924813A (zh) * 2020-08-19 2020-11-13 西北工业大学 一种碳复合金属磷化物及其制备方法
CN112028041A (zh) * 2020-09-03 2020-12-04 中国科学院地球化学研究所 一种MoP的碳热还原制备方法、产品及应用
CN112028042A (zh) * 2020-09-03 2020-12-04 中国科学院地球化学研究所 一种CoP的碳热还原制备方法、产品及应用
CN112028043A (zh) * 2020-09-03 2020-12-04 中国科学院地球化学研究所 一种Ni2P的碳热还原制备方法、产品及应用
CN112125289A (zh) * 2020-09-07 2020-12-25 广州大学 一种金属磷化物及其制备方法和应用
CN113443622A (zh) * 2020-08-19 2021-09-28 李潮云 多孔炭负载纳米金属氧化物或纳米金属材料的方法
CN114203989A (zh) * 2021-11-30 2022-03-18 五邑大学 FeP/Fe2P/NC复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1666817A (zh) * 2004-03-12 2005-09-14 中国科学院大连化学物理研究所 一种过渡金属磷化物的制备方法
CN101327439A (zh) * 2008-08-01 2008-12-24 南开大学 次磷酸盐前体热分解法制备Ni2P催化剂
CN102173400A (zh) * 2011-03-16 2011-09-07 天津工业大学 基于亚磷酸二氢盐和金属盐的机械混合物制备金属磷化物的方法
CN102502543A (zh) * 2011-11-01 2012-06-20 天津天环光伏太阳能有限公司 一种制备过渡金属磷化物MoP的方法
CN104445116A (zh) * 2014-11-19 2015-03-25 中国科学院长春应用化学研究所 一种制备具有良好形貌的过渡金属磷化物的方法
CN104923275A (zh) * 2015-06-01 2015-09-23 常州大学 一种多孔炭负载金属碳化物的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1666817A (zh) * 2004-03-12 2005-09-14 中国科学院大连化学物理研究所 一种过渡金属磷化物的制备方法
CN101327439A (zh) * 2008-08-01 2008-12-24 南开大学 次磷酸盐前体热分解法制备Ni2P催化剂
CN102173400A (zh) * 2011-03-16 2011-09-07 天津工业大学 基于亚磷酸二氢盐和金属盐的机械混合物制备金属磷化物的方法
CN102502543A (zh) * 2011-11-01 2012-06-20 天津天环光伏太阳能有限公司 一种制备过渡金属磷化物MoP的方法
CN104445116A (zh) * 2014-11-19 2015-03-25 中国科学院长春应用化学研究所 一种制备具有良好形貌的过渡金属磷化物的方法
CN104923275A (zh) * 2015-06-01 2015-09-23 常州大学 一种多孔炭负载金属碳化物的方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384155A (zh) * 2015-12-25 2016-03-09 陕西科技大学 一种六方相结构磷化钴鉬纳米材料的制备方法
CN107313064A (zh) * 2017-06-12 2017-11-03 太原理工大学 金属硼或磷化物修饰的α‑Fe2O3光阳极材料的制备方法及应用
CN109962245A (zh) * 2017-12-14 2019-07-02 中国科学院大连化学物理研究所 过渡金属磷化物多孔碳纳米片复合材料及其制备和应用
CN109962245B (zh) * 2017-12-14 2022-05-10 中国科学院大连化学物理研究所 过渡金属磷化物多孔碳纳米片复合材料及其制备和应用
CN108383093A (zh) * 2018-05-11 2018-08-10 西北师范大学 一种双金属磷化物碳纳米管复合材料的制备和应用
CN109569683A (zh) * 2018-10-19 2019-04-05 郑州大学 一种氮磷共掺杂的多孔碳片/过渡金属磷化物复合材料的制备方法及应用
CN109569683B (zh) * 2018-10-19 2021-11-26 郑州大学 一种氮磷共掺杂的多孔碳片/过渡金属磷化物复合材料的制备方法及应用
CN110344078A (zh) * 2019-07-03 2019-10-18 湖北大学 一种泡沫镍@钴钼磷化物/镍铁双氢氧化物电极及其制备方法与应用
CN110344078B (zh) * 2019-07-03 2021-04-13 湖北大学 一种泡沫镍@钴钼磷化物/镍铁双氢氧化物电极及其制备方法与应用
CN110444745A (zh) * 2019-07-22 2019-11-12 华中科技大学 一种负载金属磷化物的多孔空心碳材料、其制备和应用
CN110444745B (zh) * 2019-07-22 2021-10-15 华中科技大学 一种负载金属磷化物的多孔空心碳材料、其制备和应用
CN110813338A (zh) * 2019-09-30 2020-02-21 南方科技大学 纳米磷化钨/碳或氮化钨/碳复合材料及其制备方法
CN111514911B (zh) * 2020-05-08 2023-04-07 桂林理工大学 一种具有介孔结构的碳掺杂wp纳米片电催化剂及其制备方法
CN111514911A (zh) * 2020-05-08 2020-08-11 桂林理工大学 一种具有介孔结构的碳掺杂wp纳米片电催化剂及其制备方法
CN111924813B (zh) * 2020-08-19 2024-01-19 西北工业大学 一种碳复合金属磷化物及其制备方法
CN113443622B (zh) * 2020-08-19 2023-09-22 福建省鑫森炭业股份有限公司 多孔炭负载纳米金属氧化物或纳米金属材料的方法
CN111924813A (zh) * 2020-08-19 2020-11-13 西北工业大学 一种碳复合金属磷化物及其制备方法
CN113443622A (zh) * 2020-08-19 2021-09-28 李潮云 多孔炭负载纳米金属氧化物或纳米金属材料的方法
CN112028043A (zh) * 2020-09-03 2020-12-04 中国科学院地球化学研究所 一种Ni2P的碳热还原制备方法、产品及应用
CN112028043B (zh) * 2020-09-03 2022-03-15 中国科学院地球化学研究所 一种Ni2P的碳热还原制备方法、产品及应用
CN112028042A (zh) * 2020-09-03 2020-12-04 中国科学院地球化学研究所 一种CoP的碳热还原制备方法、产品及应用
CN112028041A (zh) * 2020-09-03 2020-12-04 中国科学院地球化学研究所 一种MoP的碳热还原制备方法、产品及应用
CN112125289A (zh) * 2020-09-07 2020-12-25 广州大学 一种金属磷化物及其制备方法和应用
CN114203989A (zh) * 2021-11-30 2022-03-18 五邑大学 FeP/Fe2P/NC复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN105819418A (zh) 一种多孔炭负载纳米金属磷化物的方法
Liu et al. Ambient N 2 fixation to NH 3 electrocatalyzed by a spinel Fe 3 O 4 nanorod
Ye et al. Fe, Mo–N/C hollow porous nitrogen-doped carbon nanorods as an effective electrocatalyst for N2 reduction reaction
Tang et al. CoP nanoarray: a robust non-noble-metal hydrogen-generating catalyst toward effective hydrolysis of ammonia borane
CN110252308B (zh) 一种活性金属在载体中呈原子级分散的负载型催化剂及其制备方法和用途
Cai et al. Investigation of the role of Nb on Pd− Zr− Zn catalyst in methanol steam reforming for hydrogen production
CN104923275B (zh) 一种多孔炭负载金属碳化物的方法
Han et al. Photoconversion of anthropogenic CO2 into tunable syngas over industrial wastes derived metal-organic frameworks
CN112221528A (zh) 一种单原子催化剂及其制备方法与应用
CN105536835A (zh) 一种杂原子掺杂的碳负载碳化铁/碳化钼或钨催化剂及其制备方法和应用
Xu et al. Honeycomb-like porous Ce–Cr oxide/N-doped carbon nanostructure: achieving high catalytic performance for the selective oxidation of cyclohexane to KA oil
CN109126845B (zh) 负载型过渡金属碳化物催化剂及其一步法合成方法
CN109225222B (zh) 一种复合光催化剂及其应用
CN103998134A (zh) 用于负载金属的载体、负载金属型催化剂、甲烷化反应设备和与其相关的方法
CN114195125A (zh) 用于制取纳米碳材料的催化剂的制备方法及催化剂
Yuan et al. Fe-Doped Co–Mo–S microtube: a highly efficient bifunctional electrocatalyst for overall water splitting in alkaline solution
CN107159287A (zh) Pt/α‑MoC1‑x负载型催化剂在催化加氢反应中的应用
CN105964260A (zh) 一种金属催化剂制备方法及其碳纳米管的制备方法
Liang et al. Two polyoxometalates based on {P2Mo5} catalysts: Synthesis, characterization, and photocatalytic degradation of RhB
Yao et al. Structural stability and mutual transformations of molybdenum carbide, nitride and phosphide
Shi et al. New bulk nickel phosphide catalysts for glycerol hydrogenolysis to 1, 2-propanediol
CN104815657A (zh) 用于苯酚羟基化制邻苯二酚和对苯二酚催化剂的制备方法
To et al. Nitrogen-doped Co catalyst derived from carbothermal reduction of cobalt phyllosilicate and its application in levulinic acid hydrogenation to γ-valerolactone
CN1326613C (zh) 高产率制备碳纳米管的复合金属氧化物催化剂及其制备方法
Fang et al. Defect engineering on electrocatalysts for sustainable nitrate reduction to ammonia: Fundamentals and regulations

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20170215

Address after: 213023 Changzhou Economic Development Zone, Jiangsu bell tower Economic Development Zone, No. 213 ERON Road, Changzhou bell tower high tech service center building, No. 8812

Applicant after: Changzhou Yingzhong Nano Technology Co., Ltd.

Address before: Gehu Lake Road Wujin District 213164 Jiangsu city of Changzhou province No. 1

Applicant before: Changzhou University

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160803