CN105793260B - 作为用于治疗癌症的raf抑制剂的1‑(5‑叔丁基‑2‑芳基‑吡唑‑3‑基)‑3‑[2‑氟‑4‑[(3‑氧代‑4h‑吡啶并[2,3‑b]吡嗪‑8‑基)氧基]苯基]脲衍生物 - Google Patents

作为用于治疗癌症的raf抑制剂的1‑(5‑叔丁基‑2‑芳基‑吡唑‑3‑基)‑3‑[2‑氟‑4‑[(3‑氧代‑4h‑吡啶并[2,3‑b]吡嗪‑8‑基)氧基]苯基]脲衍生物 Download PDF

Info

Publication number
CN105793260B
CN105793260B CN201480062652.6A CN201480062652A CN105793260B CN 105793260 B CN105793260 B CN 105793260B CN 201480062652 A CN201480062652 A CN 201480062652A CN 105793260 B CN105793260 B CN 105793260B
Authority
CN
China
Prior art keywords
illness
treatment
cancer
compound
raf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480062652.6A
Other languages
English (en)
Other versions
CN105793260A (zh
Inventor
卡洛琳·乔伊·斯普林格
理查德·马莱斯
罗米娜·吉罗蒂
丹·尼库列斯库-杜瓦斯
伊昂·尼库列斯库-杜瓦斯
阿方索·赞姆邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Cancer Research
Cancer Research Technology Ltd
Original Assignee
Institute of Cancer Research
Cancer Research Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Cancer Research, Cancer Research Technology Ltd filed Critical Institute of Cancer Research
Publication of CN105793260A publication Critical patent/CN105793260A/zh
Application granted granted Critical
Publication of CN105793260B publication Critical patent/CN105793260B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/04Artificial tears; Irrigation solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Oncology (AREA)
  • Dermatology (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Otolaryngology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明总体上涉及治疗化合物的领域。更确切地说,本发明涉及某些1‑(5‑叔丁基‑2‑芳基‑吡唑‑3‑基)‑3‑[2‑氟‑4‑[(3‑氧代‑4H‑吡啶并[2,3‑B]吡嗪‑8‑基)氧基]苯基]脲化合物(在此称为“TBAP化合物”),所述化合物尤其抑制RAF(例如BRAF、CRAF等)。本发明还涉及包括此类化合物的药物组合物,以及此类化合物和组合物在体外与在体内两者均抑制RAF(例如BRAF、CRAF等)、以及治疗包括以下各项的病症的用途:增殖性病症;癌症(包括例如恶性黑色素瘤、结直肠癌、胰腺癌);炎症;免疫病症;病毒性感染;纤维化病症;与RAF(例如BRAF、CRAF等)的突变形式相关的病症;通过抑制RAF(例如BRAF、CRAF等)而改善的病症;通过抑制突变体BRAF而改善的病症;通过抑制BRAF和CRAF而改善的病症;与RAS突变和/或MAPK途径活化相关的病症;通过抑制SRC、p38、FGFRA、VEGFR‑2(KDR)、和/或LCK而改善的病症;等等。

Description

作为用于治疗癌症的RAF抑制剂的1-(5-叔丁基-2-芳基-吡 唑-3-基)-3-[2-氟-4-[(3-氧代-4H-吡啶并[2,3-B]吡嗪-8- 基)氧基]苯基]脲衍生物
相关申请
本申请涉及:2013年11月25日提交的英国专利申请号1320729.5,其内容通过引用以其全文结合在此。
技术领域
本发明总体上涉及治疗化合物的领域。更确切地说,本发明涉及某些1-(5-叔丁基-2-芳基-吡唑-3-基)-3-[2-氟-4-[(3-氧代-4H-吡啶并[2,3-b]吡嗪-8-基)氧基]苯基]脲化合物(在此称为“TBAP化合物”),所述化合物尤其抑制RAF(例如BRAF、CRAF等)。本发明还涉及包括此类化合物的药物组合物,以及此类化合物和组合物在体外与在体内两者均抑制RAF(例如BRAF、CRAF等)、以及治疗包括以下各项的病症的用途:增殖性病症;癌症(包括例如恶性黑色素瘤、结直肠癌、胰腺癌);炎症;免疫病症;病毒性感染;纤维化病症;与RAF(例如BRAF、CRAF等)的突变形式相关的病症;通过抑制RAF(例如BRAF、CRAF等)而改善的病症;通过抑制突变体BRAF而改善的病症;通过抑制BRAF和CRAF而改善的病症;与RAS突变和/或MAPK途径活化相关的病症;通过抑制SRC、p38、FGFRA、VEGFR-2(KDR)、和/或LCK而改善的病症;等等。
背景
在此引用多个出版物以便更充分地说明和披露本发明以及本发明所属领域的现状。这些参考文献各自通过引用以其全文在此结合入本披露中,其程度如同每个单独的参考文献特定地并且单独地指明为通过引用而结合。
贯穿本说明书,包括其后的权利要求书,除非上下文另外要求,词语“包括(comprise)”、或如“包括(comprises)”与“包括(comprising)”的变化应当被理解成意指包括所陈述的一种整体或步骤、或多个整体或步骤的组,但不排除任何其他的整体或步骤、或多个整体或步骤的组。
必须指出,除非上下文另外清楚地指明,否则如本说明书及所附权利要求书中所用,单数形式“一个/一种(a)”、“一个/一种(an)”和“所述(the)”包括复数指示物。因此,例如提及“一种药物载体”包括两种或更多种此类载体的混合物以及类似物。
范围在此经常被表述为从“大约”一个具体值,和/或至“大约”另一个具体值。当表达这样一种范围时,另一个实施例包括从所述一个具体值和/或到所述另一个具体值。类似地,当值通过使用先行词“大约”而表达为近似时,应理解的是,所述具体值形成另一个实施例。
此披露包括可用于理解本发明的信息。这并非承认在此所提供的任何信息为现有技术或与当前要求保护的发明相关,或任何特定引用或含蓄引用的出版物为现有技术。
RAF、增殖性病症、和癌症
直接或间接控制细胞生长和分化的基因中的突变通常被认为是癌症的主要原因。恶性肿瘤通过一系列逐步的进行性变化发展而来,这些变化导致癌细胞的生长控制特性的消失(即连续的不受控的增殖)、侵袭周围组织的能力、转移至不同器官部位的能力、血管生成的刺激、对细胞凋亡的抗性、逃避免疫系统的能力、异常代谢途径、以及局部炎症。小心控制的体外研究己经帮助限定了表征正常细胞与赘生性细胞生长的因素,并且己经导致对控制细胞生长和分化的特异性蛋白质的鉴定。
RAF是RAS鸟嘌呤-核甘酸结合/GTP酶蛋白的关键下游靶标,并且介导由RAF-MEK-ERK组成的MAP激酶级联的活化。被活化的ERK是这样一种激酶:其随后靶向于许多负责介导(除其他外)所述途径的生长、存活和转录功能的蛋白质。这些蛋白包括转录因子ELK1、C-JUN、Ets家族(包括Ets1、2和7)和FOS家族。RAS-RAF-MEK-ERK信号传导途径响应于很多细胞刺激物而活化,所述细胞刺激物包括生长因子如EGF、PDGF、KGF等。因为所述途径是生长因子作用的主要靶标,所以己经发现RAF-MEK-ERK的活性在很多因子依赖性肿瘤中上-调。在全部肿瘤中约有20%经历了RAS蛋白之一的活化突变,这一观察表明所述途径在肿瘤发生中有更为广泛的重要性。
RAF致癌基因家族包括三种高度保守的基因,称为ARAF、BRAF和CRAF(也称为Raf-1)。RAF基因编码蛋白激酶,所述蛋白激酶被认为在调节细胞增殖的信号传导过程中起重要的调节作用。RAF基因编码高度保守的丝氨酸-苏氨酸-特异性蛋白激酶,其在与RAS直接结合后被募集到质膜,这是RAF活化中的最初事件。RAF蛋白是信号传导途径的一部分,所述信号传导途径被认为由以下项组成:受体赂氨酸激酶、p21RAS、RAF、Mek1(ERK活化剂或MAPKK)激酶和ERK(MAPK)激酶,其最终将若干细胞底物(包括转录因子)磷酸化。通过这种途径进行的信号传导能够在不同细胞背景中介导分化、增殖或致癌性转化。因此,RAF激酶被认为在正常细胞信号传导途径中起着基础性的作用,使得大量生长因子与它们的净效应(即细胞增殖)偶联。由于RAF蛋白是RAS蛋白的直接的下游效应子,所以针对RAF激酶的疗法被认为可用于治疗RAS-依赖性的肿瘤。
RAF激酶被差异性地调节和表达。CRAF在己经检查过的所有器官和所有细胞系中都表达。ARAF和BRAF似乎也是无所不在的,但最多是在泌尿生殖组织和脑组织中分别进行高表达。由于BRAF在神经组织中高表达,因此曾经认为其限于这些组织,但是已经发现其表达是更为广泛的。尽管所有RAF蛋白均能与活化的RAS结合,但是BRAF最强烈地被致癌性RAS激活。
BRAF在癌症中是重要的,因为它在以下各项中是突变的:约一半的恶性黑色素瘤和乳头状甲状腺癌、30%的低级卵巢癌、15%的结直肠癌、和非常高频率于毛发细胞白血病中,以及以较低频率发生于许多其他癌症中,总计7%的人癌症。参见例如http://www.sanger.ac.uk/genetics/CGP/cosmic/。胰腺癌的特定亚型,即胰腺的KRAS2野生型髓样癌,在30%的样品中存在BRAF突变(参见,例如卡尔霍恩(Calhoun)等人,2003)。相比之下,ARAF和CRAF突变在人类癌症中非常稀少。
超过100种不同的突变已经描述于癌症的BRAF中,但是单一突变(在位置600处用谷氨酸(E)取代缬氨酸(V))占癌症的总BRAF突变的约80%。这种突变激活BRAF-500倍,并且允许其刺激组成型ERK和NFkB信号传导,从而刺激存活和增殖。因此,V600EBRAF可以转化细胞,例如成纤维细胞和黑色素细胞。抑制癌细胞中的V600EBRAF抑制细胞增殖并在体外、在体内诱导细胞凋亡,其抑制肿瘤细胞生长,从而证实V600EBRAF为治疗靶标。
在黑色素瘤中鉴定的其他V600BRAF突变是V600K、V600D和V600R(参见,例如戴维斯(Davies)等人,2002;万(Wan)等人,2004;朗(Long)等人,2011;鲁宾斯坦(Rubinstein)等人,2010)。还在除了600的位置中鉴定了具有BRAF突变的次要的黑色素瘤亚组。这些非-V600位置BRAF突变体并不一定直接激活BRAF激酶活性,但需要CRAF的存在以反式激活它们的MAPK信号传导(参见,例如斯莫利(Smalley)等人,2009)。在此类情况下,RAF活性的抑制仍然将是癌症治疗中的有益目标。
重要的是,已经显示抑制突变体BRAF的药物例如威罗菲尼(vemurafenib)(PLX4032,RG7204,Zelboraf)(参见例如弗莱厄蒂(Flaherty)等人.,2010)和达拉菲尼(dabrafenib)(GSK-2118436)(参见例如法尔霍克(Falchook)等人,2012)可以在其肿瘤表达致癌性BRAF的患者中介导令人印象深刻的反应(综述于萨拉马(Salama)等人,2013)。具体而言,威罗菲尼已经在突变体BRAF驱使的黑色素瘤中显示有希望的结果(参见例如查普曼(Chapman)等人,2011;索斯曼(Sosman)等人,2012)。美国食品与药品管理局(FDA)在2011年批准它用于治疗V600E BRAF突变晚期转移性或不可切除的黑色素瘤,并且欧洲药品管理局(EMA)在2012年批准它作为单一疗法用于治疗患有任何BRAF V600突变阳性不可切除的或转移性黑色素瘤的成年患者。FDA和EMA在2013年批准达拉菲尼用于相同的适应症。
这些数据证实突变体BRAF作为黑色素瘤中的治疗靶标以及针对其他其中BRAF被突变的癌症和增生性疾病的潜在靶标。这种证据及其他证据表明抑制RAF(例如BRAF)活性会有益于治疗癌症,并且抑制RAF(例如BRAF)活性可能特别有益于含有组成型活化的BRAF突变的那些癌症。
对BRAF抑制剂的抗性
尽管能够介导显著临床反应,用威罗菲尼和达拉菲尼治疗的大多数患者最终对治疗有进展(参见例如弗莱厄蒂(Flaherty)等人,2010;索斯曼(Sosman)等人,2012),这归因于抗性的获得,其可以通过若干机制介导(参见例如苏利文(Sullivan)等人,2011)。此外,约30%的患者呈现原发抗药性并且没有反应,尽管存在BRAF突变(参见例如查普曼(Chapman)等人,2011)。
在KRAS中的突变(G12S、G12V、G12D、G12A、G12C、G13A、G13D)已经被建议作为用于鉴定对突变体BRAF抑制剂治疗不敏感的肿瘤的预测性标志物(参见例如哈提瓦西里欧(Hatzivassiliou)等人,2011)。NRAS的Q16K突变赋予对BRAF抑制剂威罗菲尼的抗性(参见例如纳扎里安(Nazarian)等人,2010)。类似地,对用BRAF抑制剂达拉菲尼治疗的抗性是通过NRAS蛋白的Q16K和A146T突变来预测(参见例如格雷格(Greger)等人,2012)。RAS通过突变的活化导致RAF二聚作用(CRAF与BRAF蛋白的异源二聚体和/或CRAF/BRAF同源二聚体的形成)随着通过MAPK级联增加的信号传导和增加的细胞增殖而增加(参见例如布利卡科斯(Poulikakos)等人2010)。
CRAF(和CRAF中的突变)的上调是在用BRAF抑制剂治疗的抗性黑色素瘤中所见的另一抗性机制(参见例如海多恩(Heidorn)等人,2010;梦特娇(Montagut)等人,2008;安东尼(Antony)等人2013)。因此,多个RAF亚型(尤其是BRAF和CRAF)的全RAF(panRAF)抑制剂很可能在RAS-突变型黑色素瘤和其他RAS突变型癌症中具有增强的效应,并且解决对选择性BRAF抑制剂的ー个关键抗性机制。
BRAFV600E基因的拷贝数增加与BRAF-突变型黑色素瘤(参见例如史(Shi)等人,2012)和结直肠癌(参见例如科科伦(Corcoran)等人,2010)中的BRAF抑制剂抗性相关联。这两者模型对BRAF和MEK伴随的抑制是敏感的,但仅扩增的BRAF-突变型黑色素瘤单独对MEK抑制剂是敏感的。这种抗性机制很可能对全RAF抑制比对仅BRAF抑制是更敏感的。
在一些黑色素瘤中,经由BRAFV600E的剪接变体亚型的表达获得了对威罗菲尼的抗性。BRAFV600E的61kDa剪接变体(p61BRAFV600E)缺乏编码RAS结合结构域的外显子4-8,并且是对威罗菲尼有抗性的。在不存在活化的RAS下,p61BRAFV600E是组成型二聚的。显示p61BRAFV600E的二聚化对于介导BRAF抑制剂抗性是关键的(参见例如布利卡科斯(Poulikakos)等人,2011)。
BRAF和CRAF基因融合是MAPK途径活化的替代性机制。已经在以下各项中鉴定了这些活化基因融合产物:前列腺癌症、胃癌和黑色素瘤(SLC45A3-BRAF和ESRP1-RAF1)(参见例如拉马沙米(Palanisamy)等人,2010)、甲状腺癌(AKAP9-BRAF)(参见例如希安比(Ciampi)等人,2005)和儿科星形细胞瘤(KIAA1549-BRAF)(参见例如西韦特(Sievert)等人,2013)。表达RAF融合物(例如SLC45A3-BRAF)的模型中的一些是对BRAF和MEK抑制敏感的;相反,KIAA1549-BRAF模型对PLX4720有抗性,但是对第二代BRAF抑制剂敏感。
Ras的激酶抑制(KSR)是RAS-RAF-MEK-ERK途径的保守性正调控因子。KSR1与MEK组成型地相互作用并且已知KSR1在MEK与RAF共定位在质膜中起着重要作用。KSR1通过在RAS-突变或活化的RAS细胞中的BRAF抑制剂来参与MAPK途径活化(参见例如麦克凯(McKay)等人,2011)。已经提出了所述途径的药物活化的两个机制。一个机制涉及CRAF-KSR1二聚体的形成,通过所述KSR1-CRAF二聚体具有MEK和MEK磷酸化的复合物形成(参见例如胡(Hu)等人,2011)。在另一个机制中,KSR1与BRAF二聚化,并且与BRAF-CRAF异源二聚体竞争,所述BRAF-CRAF异源二聚体是MEK磷酸化的驱动物。表明具有KSR1较低表达的RAS活化细胞将会显示更反常的途径活化(参见例如麦克凯(McKay)等人,2011)。在两个机制中,全RAF抑制剂很可能降低途径活化,而与KSR1表达水平无关。
受体酪氨酸激酶(RTK)的过表达是对BRAF抑制剂有抗性的另一个机制。在BRAF-突变型结直肠癌中,EGFR(表皮生长因子受体)的过表达导致EGFR-介导的MAPK途径再活化以及对威罗菲尼的抗性(参见例如科科伦(Corcoran)等人,2012)。在对药物有抗性的BRAF-突变型黑色素瘤细胞系中,EGFR-SFK-STAT3信号传导可以在黑色素瘤中在体外和在体内介导对BRAF抑制剂的抗性(参见例如吉洛提(Girotti)等人,2013)。Src家族激酶SFK在黑色素瘤细胞中介导对BRAF抑制剂的抗性中起着关键作用(参见例如吉洛提(Girotti)等人,2013;韦尔加尼(Vergani)等人,2011)。在威罗菲尼抗性品系中观察到SFKs LYN、YES和FYN的升高的磷酸化。抗性细胞的生长是对SFK抑制敏感的:达沙替尼(Dasatinib)以及SRC和LYN二者的耗尽均抑制抗性细胞在体外的侵入。至关重要的是,SFK信号传导在来自对威罗菲尼具有抗性的患者的肿瘤中得以增加,并且达沙替尼抑制小鼠中的这种肿瘤的生长和转移。
科科伦(Corcoran)等人,2012,“EGFR-介导的MAPK信号传导的再活化促成BRAF-突变型结直肠癌对用威罗菲尼的RAF抑制不敏感”,癌症发现(Cancer Discovery),第2卷,第227-235页。
发现PDGFR-β在对威罗菲尼有抗性的突变体BRAF细胞系中过表达和过度磷酸化,并且在来自患者的威罗菲尼-抗性肿瘤的若干案例中上调,表明这种机制可能是临床相关的(参见例如纳扎里安(Nazarian)等人,2010)。PDGFR-β的上调可以通过激活其他ERK1/2-依赖性下游途径(PI3K、PLCγ)来驱使抗性。
机械学研究显示IGFR1信号传导在细胞中介导增加的PI3K/AKT信号传导,使得所述细胞获得BRAF抑制剂抗性,并且所述抗性可以通过用PI3K和MEK抑制剂或者IGF1R和MEK抑制剂的组合处理细胞而逆转(参见例如维拉努埃瓦(Villanueva)等人,2011)。这一发现的等同关联(translational relevance)由以下观察证实:来自对威罗菲尼失效的患者的5个黑色素瘤标本中的1个表达增加的IGFR1水平(参见例如维拉努埃瓦(Villanueva)等人,2011)。
通过间质上调生长因子是抗性的机制。在患有BRAF-突变型黑色素瘤的患者中的HGF的间质细胞表达与对RAF抑制剂治疗的先天抗性之间已经显示显著相关性(参见例如威尔逊(Wilson)等人,2012)。要求保护cMET和/或它们的配体作为用于鉴定对BRAF抑制剂不易感的肿瘤的预测标志物(参见例如哈提瓦西里欧(Hatzivassiliou)等人,2011;施特劳斯曼(Straussman),2012)。RAF以及HGF或MET的双重抑制导致药物抗性的逆转,表明RAF加上HGF或MET抑制的联合疗法为一种潜在的治疗策略(参见例如哈提瓦西里欧(Hatzivassiliou)等人,2011;施特劳斯曼(Straussman),2012)。
FGFR1参与黑色素瘤进展,并且FGFR1的敲除导致黑色素瘤在体内生长的抑制(参见例如王(Wang)等人,1997)。成纤维细胞生长因子(FGF)从用PLX4032进行治疗中解救了一些BRAF突变细胞(参见例如威尔逊(Wilson)等人,2012),并且FGFR1抑制与多重激酶/BRAF抑制剂索拉非尼(sorafenib)和特异性BRAF抑制剂RG7204是协同增效的(参见例如梅茨纳(Metzner)等人,2012)。这些发现表明RTK(如EGFR、PDGFR-β、HGFR、IGF1R和FGFR)以及SFK的抑制应当把选择性BRAF抑制剂的许多抗性机制作为目标,并且因此在BRAF突变型肿瘤中具有实用性,使得这些肿瘤对BRAF-选择性抑制剂变得有抗性。
癌症和RAS
RAS蛋白是小-鸟嘌呤核苷酸结合蛋白,其是生长因子、细胞因子和激素受体的下游。这些细胞表面受体激活称作鸟嘌呤-核苷酸交换因子(GNEF)的蛋白,所述鸟嘌呤-核苷酸交换因子用GDP代替RAS蛋白上的GTP,从而刺激RAS活化。称作GTP酶-激活蛋白(GAP)的其他蛋白刺激RAS的固有GTP酶活性,从而促进GTP水解并将RAS返回至其失活的GDP-结合状态。活化的RAS结合至若干效应蛋白,包括磷酸肌醇3-激酶(PI3K)、蛋白激酶的RAF家族、以及Ral鸟嘌呤-核苷酸交换因子。这些效应物进而调控控制细胞增殖、衰老、存活和分化的信号传导途径的活性。在哺乳动物中存在三种RAS基因,称作HRAS、KRAS和NRAS,并且它们提供重叠但不保守的功能。
RAS蛋白在癌症中也是重要的。20%-30%的人肿瘤在RAS基因之一中藏匿体细胞功能获得性(gain-of-function)突变。最通常地,它们涉及用于甘氨酸12(G12)、甘氨酸13(G13)和谷氨酰胺61(Q61)的密码子,并且这些突变通过不同的机制损害RAS的GAP-刺激的固有GTP酶活性,从而将其陷入在活性GTP-结合状态中,并使得其促进肿瘤发生。参见例如唐沃德(Downward)等人,2003;杨格(Young)等人,2009;博斯(Bos)等人,1989。
(*)引证的最经常突变的RAS(KRAS或NRAS或HRAS)。
其他癌症具有RAS家族基因的较小频率的突变,但是它们的突变是预后的预测性,例如神经母细胞瘤(8%NRAS突变)、胃腺癌(6%KRAS突变)。
RAS和RAF
活性RAS蛋白激活一些下游效应物,包括RAF家族的蛋白质。存在三种RAF蛋白,即ARAF、BRAF和CRAF。活化的RAF磷酸化并激活称为MEK的第二蛋白激酶,其然后磷酸化并激活称为ERK的第三蛋白激酶。ERK磷酸化众多的胞质和核底物,由此调节细胞过程,例如增殖、存活、分化和衰老。
然而,值得注意的是,在癌细胞中,致癌性RAS不通过BRAF发信号,而是排他性地通过CRAF发信号以激活MEK。
在绝大多数的癌症中,BRAF和RAS突变是相互排斥的。这提供了遗传证据,以表明这些蛋白质是在相同的途径上并且它们在癌细胞中驱动相同的程序。然而,在癌细胞中致癌性BRAF与致癌RAS功能之间存在着明显的差异。首先,RAS激活若干途径,然而BRAF是唯一已知的用以激活MEK/ERK途径。因此,BRAF突变型细胞更依赖于MEK/ERK信号传导并因此对BRAF或MEK抑制剂显著更敏感于其中RAS被突变的细胞。参见例如加内特(Garnett)等人,2004;韦尔布罗克(Wellbrock)等人,2004;格雷-朔普费尔(Gray-Schopfer)等人,2007;萧提(Solit)等人,2006。
除突变之外,MAPK级联中的信号传导蛋白质在许多恶性肿瘤中被过表达。例如,HRAS和NRAS在宫颈癌中被过表达。RAS突变在肾上腺皮质癌中是罕见的,但是具有RAS、BRAF和EGFR的突变的肿瘤的收集群体通过所述途径展示增加的信号传导并且可以是MAPK途径抑制剂的靶标(参见例如古刀拉(Kotoula)等人,2009)。低级卵巢癌症和腹膜癌响应于用MEK抑制剂司美替尼阻断MAPK途径,与RAS/RAF突变状态无关。在葡萄膜黑色素瘤中,MAPK途径通过GNAQ的突变而激活,其占50%的葡萄膜黑色素瘤(参见例如高迪(Gaudi)等人,2011)。cRAF在多种原代人癌症,例如肺癌、肝癌、前列腺癌、原发性神经外胚层瘤、头颈部鳞状细胞癌中过表达(参见例如达莫达尔雷迪(DamodarReddy)等人,2001;黄(Hwang)等人,2004;穆克特吉(Mukterjee)等人,2005;施雷克(Schreck)等人,2006;莉娃(Riva)等人,1995)。MAPK途径在74%的急性髓性白血病患者样品中被激活(参见例如米莱拉(Milella)等人,2001)。在神经纤维瘤1型中,NF1肿瘤抑制基因的丧失导致过度激活的RAS信号传导和失调的Ras/ERK信号传导,后者对于NF1外周神经肿瘤的生长是关键的(参见例如杰森(Jessen)等人,2013)。一种全RAF抑制剂引起针对BRAF突变型肿瘤及针对RAS突变型肿瘤的MAPK途径的有效阻断并且对于具有MAPK信号传导途径失调的癌症具有广泛应用。
因此,具有RAS、RAF和EGFR的活化突变的癌症;或者RAS、RAF和EGFR(包括其任何亚型)的过表达的癌症可以对全RAF(例如CRAFBRAF)抑制是特别敏感的。具有导致上调的RAF-MEK-ERK途径信号的其他异常的癌症还可以对用全RAF(例如CRAFBRAF)活性的抑制剂进行治疗是特别敏感的。此类异常实例包括生长因子受体的组成型活化;一种或多种生长因子受体的过表达;一种或多种生长因子的过表达;KSR-介导的途径活化;以及BRAF或CRAF基因融合。
在其他疾病中的MAPK途径
RAF-MEK-ERK途径在很多受体和刺激物的下游发挥功能,表明在细胞功能的调节中具有广泛作用。出于这种原因,RAF的抑制剂可以发现在与经由此途径上调的信号传导有关的其他疾病病症中有效用。RAF-MEK-ERK途径还是非转化的细胞对生长因子作用的正常响应的重要组分。因此,RAF的抑制剂可用于其中存在不适当的或过度的正常组织增殖的疾病中。这些疾病包括,例如,肾小球肾炎和银屑病。
炎症细胞的功能是由很多因素控制的,这些因素的作用通过不同的信号传导途径介导。虽然一些关键促炎功能由p38Map激酶介导(例如TNF释放),但是其他功能是由其他途径介导的。具体而言,RAF-MEK-ERK途径是许多炎症细胞中的重要的活化和增殖信号。具体而言,B和T淋巴细胞需要RAF-MEK-ERK途径的活化以用于效应群体的克隆扩增和生成(参见例如坎特雷尔(Cantrell),2003;格奥特(Genot)等人,2000)。以T-细胞增殖(T-细胞活化和生长)为特征的炎症病症如组织移植排斥、内毒素性休克和肾小球肾炎已经参与包括RAF的细胞信号传导途径。
已经在疾病模型的很多模型中证明了MAPK/ERK信号传导的活化,并且使用例如MEK抑制剂对所述途径的抑制已经显示在例如以下这些不同的疾病中是潜在有益的:
●疼痛:在疼痛模型中的功效证明:MEK途径在持续疼痛的背角神经元中被上调(参见例如纪(Ji)等人,2002;宋(Song)等人,2005;马(Ma)等人,2005;卡里姆(Karim)等人,2006);神经性疼痛中的Mek抑制剂(参见例如狄克逊(Dixon)等人,2001)。
●中风:在中风模型中的功效证明:通过抑制MEK对局部缺血性脑损伤具有显著的神经保护作用(参见例如王(Wang)等人.,2003;王(Wang)等人.,2004;麦德达西(Maddahi)等人,2010)。
●糖尿病:在糖尿病并发症中的证明(参见例如藤田(Fujita)等人,2004)。
●炎症:在炎症模型中的功效证明(参见例如捷夫(Jaffee)等人,2000;塔尔哈默(Thalhamer)等人,2008;吉勃特(Geppert)等人,1994)。
●关节炎:在实验性骨关节炎中的功效证明(参见例如佩尔蒂埃(Pelletier)等人,2003);类风湿性关节炎的模型(参见例如春(Chun)等人,2002;达德利(Dudley)等人,2000);综述于塔尔哈默(Thalhamer)等人,2008中。
●心脏重塑,例如,在代谢综合征中(参见例如阿斯里(Asrih)等人,2013)。
●器官损伤,例如,在顺铂诱导的肾损伤中(参见例如乔(Jo)等人,2005)。
●血红蛋白病:镰状细胞病,β-地中海贫血,血红蛋白H疾病(参见例如泽娜迪(Zennadi)等人,2012)。
●哮喘(参见例如布里奇斯(Bridges)等人,2000)。
●移植排斥(参见例如吉尔伯特森(Gilbertsen)等人,2000)。
●败血症性休克(参见例如吉勃特(Geppert)等人,1994)。
●病毒感染,例如乙型肝炎(参见例如本(Benn)等人,1994),丙型肝炎(参见例如张(Zhang)等人,2012),人体免疫缺损病毒(HIV)(参见例如杨(Yang)等人,1999),艾伯斯坦-巴尔(Epstein-Barr)病毒(EBV)(参见例如福田(Fukuda)等人,2007),HPV(参见例如佩恩(Payne)等人,2001),与卡波西肉瘤相关的人疱疹病毒-8(HHV)(参见例如安可达(Akula)等人,2004),人巨细胞病毒(参见例如约翰逊(Johnson)等人,2001),柯萨奇病毒B3(参见例如罗(Luo)等人,2002),博尔纳病毒(参见例如普朗兹(Planz)等人,2001),流感病毒(参见例如佩雷西卡(Pleschka)等人,2001)。
●慢性感染和自身免疫性疾病,例如,通过抑制调节T-细胞活性(参见例如克伊缇尔(Kjetil)等人,2013)。
●动脉粥样硬化(参见例如缪拉(Miura)等人,2004)。
●再狭窄(参见例如格拉夫(Graf)等人,1997)。
●心肌症(参见例如洛伦兹(Lorenz)等人,2009)。
●心肌缺血再灌注损伤(参见例如邹基(Zouki)等人,2000)。
●银屑病(参见例如哈泽(Haase)等人,2001)。
●阿尔茨海默病(参见例如梅伊(Mei)等人,2006)和其他诱导性神经病症,例如HTLV-I-相关的脊髓病/热带痉挛性寄生虫或神经退行性疾病(例如帕金森病)或经由CD44剪接-变体调节的淀粉样侧索硬化(参见例如平纳(Pinner)等人,2009)。
●慢性阻塞性肺病(参见例如默瑟(Mercer)等人,2006)。
●炎症肠病(参见例如洛温柏格(Lowenberg)等人,2005)。
●纤维生成疾病,例如囊性纤维化(参见例如李(Li)等人,1998),肝纤维化,例如肝硬化(参见例如戴维斯(Davies)等人,1996)。
●遗传性RAS突变导致一组统称为rasopathy的疾病。已经提出将靶向这些疾病中的MAPK途径作为这些类型疾病例如努南综合征(参见例如顾(Gu)等人,2013)、心脏-面-皮肤综合征(参见例如阿拉斯田崎(Anastasaki)等人,2012)和毛细管畸形(参见例如维克库拉(Vikkula)等人,2004)的治疗方法。
RTK
受体酪氨酸激酶(RTK)在生物化学信号跨越细胞质膜的传递中是重要的。这些跨膜分子在特征上由通过质膜中的节段与胞内酪氨酸激酶结构域连接的胞外配体-结合结构域组成。配体与受体的结合导致与受体有关的酪氨酸激酶活性的刺激,所述刺激导致受体及其他胞内蛋白质二者上的酪氨酸残基的磷酸化,从而引起多种细胞响应。迄今,已经鉴定了至少十九种不同的RTK亚族,通过氨基酸序列同源性来定义。
FGFR
信号传导性多肽的成纤维细胞生长因子(FGF)家族调节不同系列的生理功能,包括有丝分裂、创伤愈合、细胞分化与血管生成以及发育。正常和恶性细胞的生长以及增殖都受到这些细胞外信号传导分子的局部浓度变化的影响,所述分子作为自分泌以及旁分泌因子起作用。自分泌FGF信号传导在类固醇激素-依赖性癌症的进展中和对于非激素依赖状态是特别重要的(参见例如鲍尔斯(Powers)等人,2000)。
FGF和它们的受体在若干组织和细胞系中的表达水平增加,并且认为过度表达促成恶性表型。此外,一些致癌基因是编码生长因子受体的基因的同系物,并且在人胰腺癌中存在FGF-依赖性信号传导异常活化的可能性(参见,例如小泽征尔(Ozawa)等人,2001)。
两种原型(prototypic)成员是酸性成纤维细胞生长因子(aFGF或FGF1)和碱性成纤维细胞生长因子(bFGF或FGF2),并且迄今为止,已经鉴定了至少二十种不同的FGF家族成员。细胞对FGF的响应经由编号为1至4的四种类型的高亲和性跨膜酪氨酸-激酶成纤维细胞生长因子受体(FGFR-1至FGFR-4)而传递。一旦配体结合,受体就二聚化并使特异性胞质酪氨酸残基自磷酸化或转磷酸化,以传递细胞内信号,所述信号最终到达核转录因子效应器。
FGFR-1(FGFRA)途径的破坏应当影响肿瘤细胞增殖,因为这种激酶除了在增殖的内皮细胞中以外还在很多肿瘤类型中被活化。FGFR-1在与肿瘤有关的脉管组织中过表达和活化已经表明了这些分子在肿瘤血管生成中的作用。
FGFR-2对酸性和/或碱性成纤维细胞生长因子以及角化细胞生长因子配体具有高亲和性。FGFR-2还在成骨细胞生长和分化期间传播FGF的有力成骨效应。FGFR-2中引起复杂的功能改变的突变被证明诱导颅缝的异常骨化(颅缝骨接合),这意味着FGFR信号传导在膜内骨形成中起主要作用。例如,在以过早的颅缝骨化为特征的阿佩尔(Apert)(AP)综合征中,大多数情况都与FGFR-2中引起功能获得性的点突变有关(参见例如雷蒙尼(Lemonnier)等人,2001)。
雷蒙尼等人,2001,“在阿佩尔颅缝骨接合中,N-钙粘蛋白和蛋白激酶C在通过S252W成纤维细胞生长因子受体2突变诱导的成骨细胞基因激活中的作用(Role of N-cadherin and protein kinase C in osteoblast gene activation induced by theS252W fibroblast growth factor receptor 2mutation in Apertcraniosynostosis)”,骨骼和矿物质研究杂志(J.Bone Miner.Res.),第16卷,第832-845页。
人骨骼发育中的若干严重异常,包括阿佩尔、克鲁宗(Crouzon)、杰克逊-威斯(Jackson-Weiss)、比尔-史蒂文森皮肤旋纹(Beare-Stevenson cutis gyrata)和斐弗(Pfeiffer)的综合征,都与FGFR-2中突变的发生有关。大多数(如果不是全部的话)斐弗综合征(PS)病例也是由FGFR-2基因的新生(de novo)突变所导致的(参见例如迈耶斯(Meyers)等人,1996;普洛波(Plomp)等人,1998),并且最近显示,FGFR-2中的突变打破了支配配体特异性的主要规则之一。即,成纤维细胞生长因子受体的两种突变体剪接形式FGFR2c和FGFR2b已经获得了与非典型FGF配体结合和被其活化的能力。这种配体特异性的丧失导致异常的信号传导,并且表明这些疾病综合征的严格表型起因于FGFR-2的异位配体依赖性活化(参见例如余(Yu)等人,2000)。
FGFR-3受体酪氨酸激酶的活化突变(例如染色体易位或点突变)产生失控的、组成型活性的FGFR-3受体,这些受体已经参与多发性骨髓瘤和膀胱癌与宫颈癌(参见例如鲍尔斯(Powers)等人,2000)。因此,FGFR-3抑制将可用于治疗多发性骨髓瘤、膀胱癌与宫颈癌。
血管生成
慢性增殖疾病经常伴有深刻的血管生成,所述血管生成可以促进或维持炎症和/或增殖性状态,或者其通过血管的侵袭性增殖引起组织破坏。参见例如福尔克曼(Folkman),1995;福尔克曼,1997;福尔克曼等人,1992。
血管生成通常用于描述新的或替代性的血管形成,或者新生血管形成。它是一种必要的和正常的生理过程,通过其在胚胎中建立脉管系统。在大多数正常的成年组织中,除了排卵、月经和伤口愈合的部位外,通常不发生血管生成。然而,很多疾病的特征在于持续和失控的血管生成。例如,在关节炎中,新的毛细血管侵袭关节并破坏软骨(参见例如科尔维尔-纳什(Colville-Nash)和斯科特(Scott),1992)。在糖尿病(以及很多不同的眼科疾病)中,新的血管侵袭黄斑或视网膜或者其他眼部结构,并且可以导致失明(参见例如阿龙(Alon)等人,1995)。己经将动脉粥样硬化的过程与血管生成相联系(参见例如卡隆(Kahlon)等人,1992)。已经发现肿瘤生长和转移是血管生成-依赖性的(参见例如福尔克曼(Folkman),1992;登尼顿(Denekamp),1993;菲德勒(Fidler)和埃利斯(Ellis),1994)。
对主要疾病中牵涉血管生成的认识己经伴随着鉴定和开发血管生成抑制剂的研究。这些抑制剂通常按照对血管生成级联中的离散靶标的响应进行分类,例如内皮细胞通过血管生成信号的活化;降解酶类的合成和释放;内皮细胞迁移;内皮细胞的增殖;以及毛细血管的形成。因此,血管生成在很多阶段发生,并且己经努力去发现和开发阻断这些不同阶段的血管生成的化合物。
很多出版物传授了通过不同机理发挥作用的血管生成抑制剂在以下疾病中是有益的,例如癌症和转移的(参见例如奥赖利(O’Reilly)等人,1994;英格博(Ingber)等人,1990)、眼科疾病(参见例如弗里德兰德(Friedlander)等人,1995)、关节炎(参见例如皮科克(Peacock)等人,1992;皮科克等人,1995)、以及血管瘤(参见例如塔拉博莱蒂(Taraboletti)等人,1995)。
VEGFR
血管内皮生长因子受体(VEGF)(一种多肽)在体外对于内皮细胞是促有丝分裂的并且在体内刺激血管生成反应。也己经将VEGF与不适当的血管生成相联系(参见例如皮内多(Pinedo)等人,2000)。一种或多种VEGFR是受体酪氨酸激酶(RTK)。RTK催化参与调节细胞生长和分化的蛋白质中的特异性酪氨酰残基的磷酸化(参见例如威尔克斯(Wilks)等人,1990;考特尼奇(Courtneidge)等人,1993;库珀(Cooper)等人,1994;保尔森(Paulson)等人,1995;钱(Chan)等人,1996)。
己鉴别出VEGF的三种RTK受体:VEGFR-1(Flt-1);VEGFR-2(Flk-1或KDR)和VEGFR-3(Flt-4)。这些受体与血管生成有关且参与信号传导(参见穆斯托宁(Mustonen)例如等人,1995)。
特别感兴趣的是VEGFR-2(KDR),其是主要表达于内皮细胞中的跨膜受体RTK。VEGFR-2通过VEGF的活化是使肿瘤血管生成起始的信号传导途径中的关键步骤。VEGF表达对于肿瘤细胞可以是组成型的并且也可以响应于某些刺激因素而上调。一种此类刺激因素是缺氧,其中VEGF表达在肿瘤和相关宿主组织两者中均被上调。VEGF配体通过与VEGFR2的细胞外VEGF结合位点结合而活化VEGFR-2。这导致VEGFR的受体二聚化和VEGFR-2的细胞内激酶结构域处的酪氨酸残基自-磷酸化。激酶结构域运作以将磷酸酯自ATP转移至酪氨酸残基,因此对VEGFR-2下游的信号传导蛋白提供结合位点,最终导致血管生成的起始(参见例如麦克马洪(McMahon)等人,2000)。
在VEGFR-2的激酶结构域结合位点的抑制会阻断酪氨酸残基的磷酸化作用并起破坏血管生成的起始的作用。
VEGFR-2(和VEGFR-3)主要定位于支持大部分实体瘤的肿瘤脉管系统(血液和/或淋巴),并且被显著上调。VEGF信号传导抑制剂的作用的主要临床机构可能是通过靶向肿瘤血管而不是肿瘤细胞(参见例如史密斯(Smith)等人,2010),尽管其他机制已经被描述。已经显示作为单一试剂或与化学疗法组合给予的血管内皮生长因子(VEGF)靶向剂有益于患有晚期恶性肿瘤的患者(参见例如埃利斯(Ellis)等人,2008)。
KDR在其他疾病中起关键作用,并且KDR的抑制剂可以发现在这些病症中有效用。
动脉粥样硬化:KDR强烈表达于血管生成过程中的内皮细胞上和人粥样硬化血管的腔内皮两者上,但不是在正常动脉或静脉中(参见例如贝戈雷(Belgore)等人,2004)。VEGF与VEGF受体2(KDR,人;Flk-1,小鼠)之间的相互作用对于病理性血管生成是关键的并且已经牵涉于动脉粥样硬化损伤的发展(参见例如井上(Inoue)等人,1998)。针对KDR的疫苗接种导致T-细胞活化、新生-血管生成的抑制、以及独立于雄性和雌性小鼠两者的高胆固醇血症的动脉粥样硬化的显著减少(参见例如彼得万(Petrovan)等人,2007)。
肥胖症:在饮食诱导的肥胖症过程中脂肪组织中的新血管的形成主要归因于血管生成而不是从头血管发生。通过阻断VEGFR2而不是VEGFR1的抗-血管生成治疗可以限制脂肪组织扩大(参见例如塔姆(Tam)等人,2009)。
视网膜病和黄斑病变:VEGF-VEGFR系统的异常激活密切参与年龄相关性黄斑变性(AMD)的进展。因此,对抗VEGF-A165的适体、VEGF-中和抗体(Fab型)和VEGF-Trap现在被批准用于AMD治疗(参见例如玛莎布米(Masabumi)等人,2013)。贝瓦珠单抗(Bevazucimab),一种抗-VEGF抗体,在标示外(off-label)用于病状例如AMD、糖尿病性视网膜病和糖尿病性黄斑水肿(DME)(参见例如罗特索(Rotsos)等人,2008)。
神经性疼痛综合征:VEGF和VEGFR2参与经性疼痛的发病机理。CCI大鼠中的抗-rVEGF治疗可以通过降低VEGFR2和P2X2/3受体在DRG神经元上的表达来抑制透射神经性疼痛信号传导的传递而减轻慢性神经性疼痛(参见例如林(Lin)等人,2010)。
类风湿性关节炎:PTK787/ZK222584,一种具有针对VEGFR的特异性活性的受体酪氨酸激酶抑制剂,并且展现出对VEGF-R2(KDR)的强抑制以及对VEGFR1(Flt-1)、Flk-1(KDR的小鼠同系物)和Flt-4(发现于淋巴系统中的受体)的轻微更弱抑制,在具有胶原诱导的关节炎的小鼠中抑制膝肿胀达40%、严重性得分(达51%)和全球组织学得分(参见例如格赛欧思(Grosios)等人,2004)。
TIE
血管生成素1(Ang1),内皮特异性受体酪氨酸激酶TIE-2的配体,是一种血管原因子(参见例如戴维斯(Davis)等人,1996;帕尔塔内恩(Partanen)等人,1992;戴维斯等人,1994;戴维斯等人,1996;阿里塔洛(Alitalo)等人,1996;戈多希(Godowski)等人,1997)。首字母缩略词TIE代表“含有Ig和EGF同源结构域的酪氨酸激酶”。TIE用于鉴定一类受体酪氨酸激酶,这些激酶仅仅在血管内皮细胞和早期造血细胞中表达。通常,TIE受体激酶的特征在于存在EGF-样结构域和免疫球蛋白(IG)样结构域,其由细胞外折叠单位组成,通过链内二硫键稳定(参见例如帕尔塔内恩(Partanen)等人,1999)。与在血管发育早期阶段期间发挥功能的VEGF不同,Ang1及其受体TIE-2在血管发育的晚期阶段、即血管重塑(重塑是指血管内腔的形成)和成熟期间发挥功能(参见例如扬科普洛斯(Yancopoulos)等人,1998;彼得斯(Peters)等人,1998;苏蕊(Suri)等人,1996)。
因此,预期TIE-2的抑制将用于破坏由血管生成引发的新脉管系统的重塑和成熟,从而中断血管生成过程。
p38
p38是38kDa的MAPK家族成员,其响应于胁迫而活化并且在免疫应答和细胞存活及分化中起着重要的作用。已经描述了四种p38MAPK激酶;这些蛋白质共有高度的同源性(p38α、β、γ、和δ)。p38MAPK可以通过不同的刺激物如生长因子、炎症细胞因子、或多种环境胁迫而激活。p38MAPK进而可以激活多个下游靶标,包括蛋白激酶、胞质底物、转录因子和染色质重塑因子。p38MAPK通过细胞因子和细胞应激的强激活大体上促进细胞生长的抑制并诱导细胞凋亡(参见例如综述于夸德拉多(Cuadrado)等人,2010中)。最近,已经发现p38α在维持体内平衡和相关病理中起着重要的作用。p38α在疾病中众所周知的和最广泛报道的作用是与其在细胞因子信号传导和促进病理炎症中的功能有关。几项研究已经显示p38α如何可以介导一系列疾病模型,包括类风湿性关节炎、银屑病、阿尔茨海默病、炎症肠病、克罗恩氏病、肿瘤发生、心血管疾病和中风。此外,存在着p38MAPK在发展和维持多种肺疾病例如哮喘、囊性纤维化、特发性肺纤维化、和慢性阻塞性肺疾病中的作用的证据。因此,p38α是令人感兴趣的药物靶标,尤其是因为其在炎症疾病中的重要作用(参见例如综述于厄兹蒂尔克-温德尔(Oeztuerk-Winder)等人,2012中)。吡啶基-咪唑药物例如SB203580是第一个被鉴定的p38MAPK抑制剂,其竞争性地结合在ATP-结合口袋上,并且已经广泛地用来研究p38MAPK功能(参见例如库尔撒德(Coulthard)等人,2009)。
SRC
c-SRC属于非-受体SRC家族激酶(SFK)。这些蛋白质参与很多细胞事件,例如增殖、存活和细胞运动性。因此,SRC信号传导的超活化有助于肿瘤发展的不同方面。c-SRC的最突出功能是其在细胞膜经由其SH2和SH3结构域与跨膜受体酪氨酸激酶(RTK)的广泛相互作用。c-SRC与很多RTK相互作用,所述RTK包括表皮生长因子受体(EGFR)、人表皮生长因子受体2(HER2)、血小板-衍生的生长因子受体(PDGFR)、胰岛素-样生长因子-1受体(IGF-1R)和c-Met/肝细胞生长因子受体(HGFR)。通过这些相互作用,c-SRC整合和调节RTK信号传导并直接转导存活信号至下游效应物,例如磷酸肌醇3-激酶(PI3K)、Akt、和信号传导子及转录激活子3(STAT3)(参见例如张(Zhang)等人,2012)。其他膜受体例如整联蛋白也可以激活c-SRC,因此触发信号级联,所述信号级联调节细胞迁移粘附和侵入。通过与p120连环蛋白相互作用的c-Src活化促进细胞-细胞粘着连接的解离,从而增强细胞运动性。c-SRC直接使稳定粘着斑复合物的粘着斑激酶(FAK)磷酸化,所述粘着斑复合物由FAK、桩蛋白、RhoA和其他组分组成,并且增强细胞粘附于细胞外基质。此外,c-SRC在调节肿瘤微环境中起着重要的作用。c-SRC于缺氧中的活化通过血管内皮生长因子(VEGF)、基质金属蛋白酶(MMP)和白细胞介素-8(IL-8)的表达的刺激而促进血管生成(参见例如耶特曼(Yeatman)等人,2004)。
对于很多类型的癌症来说,靶向SFK是良好建立的治疗方法。达沙替尼(Dasatinib)是可口服的小分子多激酶抑制剂,其有力地抑制SRC-家族激酶(SRC、LCK、YES、FYN),而且还有BCR-ABL、c-KIT、PDGFR-α和β、以及肝配蛋白受体激酶(参见例如林道尔(Lindauer)等人,2010)。最近的研究已经报道了Src也参与炎症相关信号传导途径。很多研究已经显示c-SRC在巨噬细胞-介导的炎症反应中起着关键作用。重要的是,多种炎症疾病是与巨噬细胞活化密切相关的;因此,对于巨噬细胞-介导的疾病来说,c-SRC抑制可以表示有用的治疗策略(参见例如边(Byeon)等人,2012)。
Lck
Lck(淋巴细胞特异性激酶)是SFK的激酶,这些SFK是T-细胞活化的关键,并且Lck的活性通过T-细胞受体(TCR)来诱导。由Lck启动的TCR信号导致基因调节事件,从而导致抗原特异性T-细胞的细胞因子释放、增殖和存活,由此扩增特异性免疫应答。预期Lck的抑制提供新的治疗方法用于治疗T-细胞-介导的自身免疫病和炎症疾病和/或器官移植排斥(参见例如马丁(Martin)等人,2010)。
已知的化合物
尼古列斯库-杜瓦斯(Niculescu-Duvaz)等人,2006,描述了某些咪唑并[4,5-b]吡啶-2-酮和噁唑并[4,5-b]吡啶-2-酮化合物,其尤其抑制RAF(例如BRAF)活性,并且其可用于治疗增殖性病症如癌症。其中所示的许多化合物具有5-(叔丁基)-2-(苯基)-吡唑-3-基基团或5-(叔丁基)-2-(吡啶基)-吡唑-3-基基团。然而,在每一情况下,所述苯基和吡啶基基团是未取代的、对位取代的、或邻,对位二取代的;没有一个化合物是间位取代的。示出以下化合物:
尼古列斯库-杜瓦斯(Niculescu-Duvaz)等人,2007,描述了某些咪唑并[4,5-b]吡啶-2-酮和噁唑并[4,5-b]吡啶-2-酮化合物,其尤其抑制RAF(例如BRAF)活性,并且其可用于治疗增殖性病症如癌症。其中所示的许多化合物具有5-(叔丁基)-2-(苯基)-吡唑-3-基基团。然而,在每一情况下,所述苯基基团是未取代的或对位取代的;没有一个化合物是间位取代的。示出以下化合物:
施普林格(Springer)等人,2009,描述了某些吡啶并[2,3-b]吡嗪-8-取代的化合物,其尤其抑制RAF(例如BRAF)活性,并且其可用于治疗增殖性病症如癌症。其中所示的许多化合物具有5-(叔丁基)-2-(苯基)-吡唑-3-基基团或5-(叔丁基)-2-(吡啶基)-吡唑-3-基基团。然而,在每一情况下,所述苯基和吡啶基基团是未取代的或对位取代的;没有一个化合物是间位取代的。示出以下化合物:
尼古列斯库-杜瓦斯(Niculescu-Duvaz)等人,2009,描述了某些芳基-喹啉基化合物,其尤其抑制RAF(例如BRAF)活性,并且其可用于治疗增殖性病症如癌症。其中所示的许多化合物具有5-(叔丁基)-2-(苯基)-吡唑-3-基基团。然而,在每一情况下,所述苯基基团是未取代的或对位取代的;没有一个化合物是间位取代的。示出以下化合物:
施普林格(Springer)等人,2011,描述了某些1-(5-叔丁基-2-苯基-2H-吡唑-3-基)-3-[2-氟-4-(1-甲基-2-氧代-2,3-二氢-1H-咪唑并[4,5-b]吡啶-7-基氧基)苯基]脲化合物,其尤其抑制RAF(例如BRAF)活性,并且其可用于治疗增殖性病症如癌症。示出以下化合物:
默里(Murray)等人,2011,描述了某些用于在治疗炎症疾病或呼吸病症中使用的化合物。其中所示的一些化合物具有5-(叔丁基)-2-(苯基)-吡唑-3-基基团或5-(叔丁基)-2-(吡啶基)-吡唑-3-基基团。然而,在每一情况下,所述苯基和吡啶基基团是未取代的、对位取代的、或间、对位二取代的;没有一个化合物是间位取代的、对位-未取代的。示出以下化合物:
许多具有5-(叔丁基)-2-(3-氟-苯基)-吡唑-3-基基团的化合物是已知的,包括以下:
发明概述
本发明的一个方面涉及某些1-(5-叔丁基-2-芳基-吡唑-3-基)-3-[2-氟-4-[(3-氧代-4H-吡啶并[2,3-b]吡嗪-8-基)氧基]苯基]脲化合物(在此被称为“TBAP化合物”),如在此所描述。
本发明的另一个方面涉及组合物(例如,药物组合物),所述药物组合物包括如在此所描述的TBAP化合物和药学上可接受的载体或稀释剂。
本发明的另一个方面涉及制备组合物(例如,药物组合物)的方法,所述方法包括将如在此所描述的TBAP化合物与药学上可接受的载体或稀释剂混合的步骤。
本发明的另一个方面涉及在体外或在体内抑制RAF(例如,BRAF、CRAF等)功能(例如,在细胞中)的方法,所述方法包括使所述细胞与有效量的如在此所描述的TBAP化合物接触。
本发明的另一个方面涉及如在此描述的TBAP化合物,用于在通过疗法治疗人体或动物体的方法中使用,例如,用于在治疗如在此描述的病症(例如疾病)的方法中使用。
本发明的另一个方面涉及如在此描述的TBAP化合物在制造例如用于在治疗的方法中使用(例如,用于在治疗如在此描述的病症(例如,疾病)的方法中使用)的药物中的用途。
本发明的另一个方面涉及治疗方法,例如,治疗如在此所描述的病症(例如疾病)的方法,所述方法包括向需要治疗的受试者优选地以药物组合物的形式给予治疗有效量的如在此所描述的TBAP化合物。
本发明的另一个方面涉及试剂盒,所述试剂盒包括(a)如在此所描述的TBAP化合物,优选地被提供为药物组合物并且在合适的容器中和/或具有合适的包装;和(b)使用说明书,例如,关于如何给予所述化合物的书面说明。
本发明的另一个方面涉及TBAP化合物,所述TBAP化合物可通过如在此所描述的合成方法、或包括如在此描述的合成方法的方法获得的。
本发明的另一个方面涉及TBAP化合物,所述TBAP化合物是通过如在此所描述的合成方法、或包括如在此描述的合成方法的方法而获得的。
本发明的另一个方面涉及如在此所描述的新颖中间体,其适合用于在此描述的合成方法中使用。
本发明的另一个方面涉及如在此所描述的此类新颖中间体于在此描述的合成方法中的用途。
正如本领域技术人员应当理解的一样,本发明的一个方面的特征和优选实施例也将涉及本发明的其他方面。
发明详述
化合物
本发明的一个方面涉及某些1-(5-叔丁基-2-芳基-吡唑-3-基)-3-[2-氟-4-[(3-氧代-4H-吡啶并[2,3-b]吡嗪-8-基)氧基]苯基]脲化合物,其是结构上相关的以下化合物:
更具体地,本发明涉及某些相关的化合物,其额外地具有单一间位取代基(在此表示为-Y)。
因此,本发明的一个方面涉及如下化合物,所述化合物选自具有以下化学式的化合物、以及其药学上可接受的盐、N-氧化物、水合物、和溶剂化物,其中=X-和-Y是如在此定义的(为了方便,在此统称为“TBAP化合物”):
本发明的一些实施例包含以下:
(1)化合物,所述化合物选自具有下式的化合物、以及其药学上可接受的盐、N-氧化物、水合物和溶剂化物:
其中:
=X-独立地是=CH-或=N-;
-Y独立地是-Y1、-Y2、-Y3、-Y4、-Y5、或-Y6
-Y1独立地是-F、-Cl、-Br、或-I;
-Y2是直链或支链的饱和C1-4烷基;
-Y3是直链或支链的饱和C1-4卤代烷基;
-Y4是-OH;
-Y5是直链或支链的饱和C1-4烷氧基;并且
-Y6是直链或支链的饱和C1-4卤代烷氧基。
注意,互变异构化可能是在3-氧代-3,4-二氢吡啶并[3,2-b]吡嗪-8-基基团上,如下所示。除非另外指明,提及一种互变异构体旨在提及两种互变异构体。
的互变异构体
注意当-X=是-N=并且-Y是-Y4(即-OH)时,互变异构化可能是在所得的2-羟基-吡啶-4-基基团上,如下所示。除非另外指明,提及一种互变异构体旨在提及两种互变异构体。
的互变异构体
注意当=X-是=N-时,所得基团是吡啶基-4-基基团,并且可以形成一种N-氧化物,如下所示。
为了避免疑义,术语“直链或支链饱和C1-4卤代烷基”涉及具有1个或多个(例如1个、2个、3个等)卤素(例如-F、-Cl、-Br、-I)取代基的直链或支链饱和C1-4烷基基团。这种基团的实例是-CF3
为了避免疑义,术语“直链或支链饱和C1-4烷氧基”涉及基团-OR基,其中R是直链或支链饱和C1-4烷基基团。这种基团的实例是-OMe。
类似地,术语“直链或支链饱和C1-4卤代烷氧基”涉及基团-OR基,其中R是直链或支链饱和C1-4卤代烷基基团。这种基团的实例是-OCF3
为了避免疑义:甲基缩写为-Me;乙基缩写为-Et;正-丙基缩写为-nPr;异-丙基缩写为-iPr;正-丁基缩写作为-nBu;异-丁基缩写为-iBu;仲-丁基缩写为-sBu;叔-丁基缩写为-tBu;并且苯基缩写为-Ph。
基团=X-
(2)根据(1)所述的化合物,其中=X-是=CH-。
(3)根据(1)所述的化合物,其中=X-是=N-。
基团-Y
(4)根据(1)至(3)中任一项所述的化合物,其中-Y是-Y1
(5)根据(1)至(3)中任一项所述的化合物,其中-Y是-Y2
(6)根据(1)至(3)中任一项所述的化合物,其中-Y是-Y3
(7)根据(1)至(3)中任一项所述的化合物,其中-Y是-Y4
(8)根据(1)至(3)中任一项所述的化合物,其中-Y是-Y5
(9)根据(1)至(3)中任一项所述的化合物,其中-Y是-Y6
基团-Y1
(10)根据(1)至(9)中任一项所述的化合物,其中-Y1如果存在的话独立地是-F、-Cl、-Br。
(11)根据(1)至(9)中任一项所述的化合物,其中-Y1如果存在的话独立地是-F或-Cl。
(12)根据(1)至(9)中任一项所述的化合物,其中-Y1如果存在的话是-F。
(13)根据(1)至(9)中任一项所述的化合物,其中-Y1如果存在的话是-Cl。
(14)根据(1)至(9)中任一项所述的化合物,其中-Y1如果存在的话是-Br。
(15)根据(1)至(9)中任一项所述的化合物,其中-Y1如果存在的话是-I。
基团-Y2
(16)根据(1)至(15)中任一项所述的化合物,其中-Y2如果存在的话独立地是-Me、-Et、-nPr、-iPr、-nBu、-iBu、-sBu、或-tBu。
(17)根据(1)至(15)中任一项所述的化合物,其中-Y2如果存在的话独立地是-Me、-Et、-nPr、或-iPr。
(18)根据(1)至(15)中任一项所述的化合物,其中-Y2如果存在的话独立地是-Me或-Et。
(19)根据(1)至(15)中任一项所述的化合物,其中-Y2如果存在的话是-Me。
基团-Y3
(20)根据(1)至(19)中任一项所述的化合物,其中-Y3如果存在的话是
直链或支链的饱和C1-4氟烷基。
(21)根据(1)至(19)中任一项所述的化合物,其中-Y3如果存在的话独立地是-CH2F、-CHF2、-CF3、-CH2CH2F、-CH2CHF2、或-CH2CF3
(22)根据(1)至(19)中任一项所述的化合物,其中-Y3如果存在的话独立地是-CH2F、-CHF2、或-CF3
(23)根据(1)至(19)中任一项所述的化合物,其中-Y3如果存在的话是-CF3
基团-Y5
(24)根据(1)至(23)中任一项所述的化合物,其中-Y5如果存在的话独立地是-O-Me、-O-Et、-O-nPr、-O-iPr、-O-nBu、-O-iBu、-O-sBu、或-O-tBu。
(25)根据(1)至(23)中任一项所述的化合物,其中-Y5如果存在的话独立地是-O-Me、-O-Et、-O-nPr、或-O-iPr。
(26)根据(1)至(23)中任一项所述的化合物,其中-Y5如果存在的话独立地是-O-Me或-O-Et。
(27)根据(1)至(23)中任一项所述的化合物,其中-Y5如果存在的话是-O-Me。
基团-Y6
(28)根据(1)至(27)中任一项所述的化合物,其中-Y6如果存在的话是
直链或支链的饱和C1-4氟烷氧基。
(29)根据(1)至(27)中任一项所述的化合物,其中-Y6如果存在的话独立地是-O-CH2F、-O-CHF2、-O-CF3、-O-CH2CH2F、-O-CH2CHF2、或-O-CH2CF3
(30)根据(1)至(27)中任一项所述的化合物,其中-Y6如果存在的话独立地是-O-CH2F、-O-CHF2、或-O-CF3
(31)根据(1)至(27)中任一项所述的化合物,其中-Y6如果存在的话是-O-CF3
一些优选的化合物
(32)根据(1)所述的化合物,所述化合物选自具有以下化学式的化合物以及其药学上可接受的盐、N-氧化物、水合物和溶剂化物:
组合
应理解,出于清楚的目的描述于分开实施例的背景下的本发明的某些特征还可以按组合形式提供于单个实施例中。相反地,出于简洁的目的描述于单个实施例的背景下的本发明不同特征还可以分开地或以任何合适的亚组合形式提供。与由这些变量(例如,=X-、-Y、-Y1、-Y2、-Y3、-Y4、-Y5、-Y6等)代表的化学基团有关的这些实施例的所有组合由本发明具体地包含,并且在此披露为恰如各自以及每个组合被单独并且明确披露一样,其程度使此类组合包括那些稳定的多种化合物(即那些可以被分离、表征、并且用于生物活性测试的多种化合物)。此外,列举于描述此类变量的实施例中的化学基团的所有亚组合也被具体地包括在本发明中并且在此进行了披露,就好像化学基团的每一与每个这样的亚组合被单独地并且明确地在此披露一样。
基本上纯化的形式
本发明的一个方面涉及如在此描述的处于基本上纯化的形式和/或处于基本上不含污染物的形式的TBAP化合物。
在一个实施例中,所述化合物处于基本上纯化的形式和/或处于基本上不含污染物的形式。
在一个实施例中,所述化合物是以基本上纯化的形式,所述形式具有纯度为按重量计至少50%,例如按重量计至少60%,例如按重量计至少70%,例如按重量计至少80%,例如按重量计至少90%,例如按重量计至少95%,例如按重量计至少97%,例如按重量计至少约98%,例如,按重量计至少99%。
在一个实施例中,所述化合物是以基本上不含污染物的形式,其中这些污染物表示按重量计不超过50%,例如按重量计不超过40%,例如按重量计不超过30%,例如按重量计不超过20%,例如按重量计不超过10%,例如按重量计不超过5%,例如按重量计不超过3%,例如按重量计不超过2%,例如按重量计不超过1%。除非指定,否则这些污染物是指其他化合物。
异构体
某些化合物可以按一种或多种具体的几何异构、旋光异构、对映异构、非对映异构、差向异构、阻转异构、立体异构、互变异构、构象异构、或端基异构形式存在,这些形式包括但不限于,顺式(cis)-和反式(trans)-形式;E-和Z-形式;c-、t-和r-形式;内(endo)-和外(exo)-形式;R-、S-和内消旋-形式;D-和L-形式;d-和1-形式;(+)和(-)形式;酮-、烯醇-和烯醇化物-形式;同边(syn)-和对边(anti)-异构形式;向斜(synclinal)-和背斜(anticlinal)-形式;α-和β-形式;直立和平伏形式;船式、椅式、扭曲式、信封式-、以及半椅式形式;及其组合,在下文统称为“异构体”(或“异构体形式”)。
注意,除了如以下对互变异构形式的讨论外,在此所使用的术语“异构体”具体排除结构(或构象)异构体(即原子间的连接不同而不是仅空间原子位置不同的异构体)。例如,提及甲氧基基团(-OCH3)不应理解为提及其结构异构体,即羟甲基基团(-CH2OH)。类似地,提及邻-氯苯基不应理解为提及其结构异构体间-氯苯基。但是,提及一类结构可以充分地包括落入此类别内的结构异构形式(例如,C1-7烷基包括正-丙基和异-丙基;丁基包括正-、异-、仲-和叔-丁基;甲氧基苯基包括邻-、间-和对-甲氧基苯基)。
以上排除不涉及互变异构形式,例如酮-、烯醇-和烯醇化物-形式,如在例如以下互变异构对中:酮/烯醇(说明如下)、亚胺/烯胺、酰胺/亚氨基醇、脒/脒、亚硝基/肟、硫酮/烯硫醇、N-亚硝基/羟基偶氮、以及硝基/酸式硝基。
注意,特别地包括在术语“异构体”中的是具有一个或多个同位素取代的化合物。例如,H可以处于任何同位素形式,包括1H、2H(D)、以及3H(T);C可以处于任何同位素形式,包括12C、13C、以及14C;O可以处于任何同位素形式,包括16O以及18O;以及类似物。
除非另外说明,提及一种具体化合物包括所有此类异构体形式,包括其混合物。此类异构形式的制备方法和分离方法是本领域己知的或可通过改编在此所教导的方法或己知方法以己知方式容易地获得。
盐类
可以方便的或令人希望的制备、纯化、和/或处理所述化合物的对应的盐,例如药学上可接受的盐。药学上可接受的盐的实例讨论于贝尔热(Berge)等人,1977,“药学上可接受的盐(Pharmaceutically Acceptable Salts)”,药学科学杂志(J.Pharm.Sci.),第66卷,第1-19页中。
例如,如果化合物是阴离子的,或具有可以是阴离子的官能团(例如,-COOH可以是-COO-),那么可以与一种适合的阳离子形成盐。适合的无机阳离子的实例包括,但不限于碱金属离子,例如Na+和K+;碱土金属阳离子,例如Ca2+和Mg2+;以及其他阳离子,例如Al3+。适合的有机阳离子的实例包括,但不限于铵离子(即NH4 +)和饱和的铵离子(NH3R+、NH2R2 +、NHR3 +、NR4 +)。一些适合的经取代的铵离子的实例是衍生自以下的那些:乙胺,二乙胺,二环己胺,三乙胺,丁胺,乙二胺,乙醇胺,二乙醇胺,哌嗪,苄胺,苯基苄胺,胆碱,葡甲胺,以及氨丁三醇,连同氨基酸(例如赖氨酸和精氨酸)。常见季铵离子的一个实例是N(CH3)4 +
如果化合物是阳离子的,或具有可以是阳离子的官能团(例如,-NH2可以是-NH3 +),那么可以与适合的阴离子形成盐。适合的无机阴离子的实例包括,但不限于衍生自以下无机酸的那些:盐酸,氢溴酸,氢碘酸,硫酸,亚硫酸,硝酸,亚硝酸,磷酸,以及亚磷酸。
适合的有机阴离子的实例包括,但不限于衍生自以下有机酸的那些:2-乙酰氧基苯甲酸,乙酸,抗坏血酸,天冬氨酸,苯甲酸,樟脑磺酸,肉桂酸,柠檬酸,依地酸,乙烷二磺酸,乙烷磺酸,甲酸,富马酸,葡庚糖酸,葡糖酸,谷氨酸,乙醇酸,羟基马来酸,羟基萘羧酸,羟乙基磺酸,乳酸,乳糖酸,月桂酸,马来酸,苹果酸,甲烷磺酸,粘酸,油酸,草酸,棕榈的酸,扑酸,泛酸,苯乙酸,苯磺酸,丙酸,丙酮酸,水杨酸,硬脂酸,琥珀酸,磺胺酸,酒石酸,甲基苯磺酸,以及缬草酸。适合的聚合有机阴离子的实例包括,但不限于衍生自以下聚合酸的那些:鞣酸,羧甲基纤维素。
除非另外说明,提及具体化合物也包括其盐形式。
N-氧化物
可以方便的或令人希望的制备、纯化、和/或处理所述化合物的相应的N-氧化物。例如,可以将具有吡啶基的化合物制备、纯化和/或处理为相应的N-氧化物。
除非另外说明,提及具体化合物也包括其N-氧化物形式。
水合物和溶剂化物
可以方便的或令人希望的制备、纯化、和/或处理所述化合物的相应的溶剂化物。在此以常规意义使用术语“溶剂化物”是指溶质(例如化合物、化合物的盐)和溶剂的复合物。如果溶剂是水,溶剂化物可以方便地称为水合物,例如,一水合物、二-水合物、三水合物等。
除非另外说明,提及具体化合物也包括其溶剂化物和水合物。
化学保护的形式
可以方便的或令人希望的制备、纯化、和/或处理处于经化学保护的形式的化合物。术语“化学保护的形式”在此以常规化学意义被使用并且涉及一种化合物,其中一个或更多个反应性官能团被保护免于在特定条件下(例如,pH、温度、辐射、溶剂以及类似物)不希望的化学反应。在实践中,采用熟知的化学方法来可逆地使得官能团在特定条件下不反应,否则所述官能团将是反应性的。以化学保护的形式,一个或更多个反应性官能团是处于受保护的或进行保护的基团的形式(也称作受掩蔽的或进行掩蔽的基团或者被封端的或进行封端的基团)。通过保护反应性官能团,可以进行涉及其他未受保护的反应性官能团的反应,而不影响所述受保护的基团;通常在随后的步骤中可以除去保护基团,而基本上不影响所述分子的其余部分。参见,例如,有机合成中的保护基团(Protective Groups in Organic Synthesis)(T.格林(T.Greene)和P.伍兹(P.Wuts);第4版;约翰威利父子出版公司(John Wiley and Sons),2006)。
多种多样的此类“保护(protecting)”、“封端(blocking)”或“掩蔽(masking)”方法被广泛使用并且在有机合成中是熟知的。例如,可以将具有两个非等效的反应性官能团(两者在特定条件下均将是反应性的)的化合物衍生化以使得官能团其中之一“受保护”,并因此在特定条件下不反应;因此受保护,所述化合物可以被用作有效地具有仅一个反应性官能团的反应物。在所希望的反应(涉及其他官能团)完成之后,可以将所述受保护的基团“脱保护”以使它返回到其原先的官能度。
例如,羟基基团可以保护为醚(-OR)或酯(-OC(=O)R),例如为:叔-丁基基醚;苄基、二苯甲基(benzhydryl)(二苯甲基(diphenylmethyl))、或三苯甲基(trityl)(三苯基甲基(triphenylmethyl))醚;三甲基甲硅烷基或叔-丁基二甲基甲硅烷基醚;或乙酰酯(-OC(=O)CH3,-OAc)。
例如,醛或酮基团可以通过与例如一种伯醇反应而分别被保护为乙缩醛(R-CH(OR)2)或缩酮(R2C(OR)2),其中羰基(>C=O)被转变为二醚(>C(OR)2)。在酸存在下使用大量过量的水来通过水解容易地再生醛或酮基团。
前药
可以方便的或令人希望的制备、纯化、和/或处理处于前药形式的化合物。如在此所使用的术语“前药”涉及这样一种化合物,当其被代谢(例如在体内)时产生所希望的活性化合物。典型地,所述前药是无活性的、或小于所希望的活性化合物的活性,但可以提供有利的处理、给药、或代谢特性。
例如,一些前药是活性化合物的酯类(例如,一种生理学上可接受的代谢不稳定的酯)。在代谢期间,所述酯基(-C(=O)OR)被裂解以产生活性药物。此类酯可以通过例如母体化合物中的任何羧酸基团(-C(=O)OH)的酯化来形成,其中在适当情况下预先保护存在于母体化合物中的任何其他反应性基团,随后脱保护(如果需要的话)。
而且,一些前药被酶促激活以产生活性化合物或一种这样的化合物,所述化合物在进一步化学反应时产生了活性化合物(例如,如在ADEPT、GDEPT、LIDEPT中等)。例如,所述前药可以是糖衍生物或其他糖苷缀合物,或可以是氨基酸酯衍生物。
化学合成
在此描述了用于本发明的化合物的化学合成的方法。这些和/或其他熟知的方法可以按已知方式被修饰和/或改编,以便有助于本发明范围内的另外的化合物的合成。
可用于制备在此描述的化合物的通用实验室方法和程序的描述被提供于沃格尔的实用有机化学教科书(Vogel’s Textbook of Practical Organic Chemistry),第5版,1989,(编者:弗尼斯(Furniss),汉纳福德(Hannaford),史密斯(Smith),和塔歇尔(Tatchell))(由朗文出版社,英国出版)中。
用于合成吡啶化合物的方法具体被描述于杂环化学(Heterocyclic Chemistry),第3版,1998,(编者:焦耳(Joule),米尔斯(Mills),和史密斯(Smith))(由查普曼和霍尔出版社(Chapman&Hall),英国出版)中。
在此描述的TBAP化合物可以经由关键中间体(2)来制备。这个中间体可以从可商购的起始材料、2-氨基-3-硝基-4-氯吡啶(1)、以及3-氟-4-氨基苯酚来制备。中间体(2)可以选择性地在氨基基团处被保护为例如BOC氨基甲酸酯,以提供中间体(3)。
这种方法的实例在以下方案中展示。
方案1
中间体(3)也可以直接从2-氨基-3-硝基-4-氯吡啶(1)和N-BOC-保护的3-氟-4-氨基苯酚来获得。
这种方法的实例在以下方案中展示。
方案2
经保护的中间体(3)的硝基按可以例如使用Pd/C和甲酸铵或氢、或者使用NiCl2和NaBH4被还原以给出氨基基团,以给出二氨基中间体(4)。
这种方法的实例在以下方案中展示。
方案3
吡啶并吡嗪酮可以从中间体(4)通过与乙醛酸乙酯或乙醛酸反应而获得。异构体(5)和(6)两者均可以从(4)与乙醛酸乙酯或乙醛酸的反应而获得。两种异构体的比率可以受试剂和溶剂的选择影响,使得一种异构体被优先获得。所希望的异构体(5)可以通过柱色谱法或从混合物中的选择性结晶而从所述混合物分离。
这种方法的实例在以下方案中展示。
方案4
保护基团(PG)的脱保护,例如使用针对Boc保护基团的四丁基氟化铵(TBAF),产生常见的中间体(7)。
这种方法的实例在以下方案中展示。
方案5
使关键中间体(7)与3-叔-丁基-5-异氰酸基-1-芳基-1H-吡唑(10)反应,以提供相应的脲(11)。
这种方法的实例在以下方案中展示。
方案6
对应的异氰酸酯(10)可以,例如,通过使胺(9)与光气、三光气或它们的衍生物反应,或通过相应的羧酸(8)至酰基叠氮化物(例如二苯基磷酰基叠氮化物)的转化、随后进行克尔蒂斯重排(Curtius rearrangement)而获得。这些试剂仅出于说明的目的被鉴定,并且应当注意,其他适合的试剂是本领域中已知的,其也可以被用来将胺或羧酸转化为异氰酸酯。
此类方法的实例在以下方案中展示。
方案7
所希望的羧酸(8)可以例如通过相应的间位取代的苯基或吡啶基硼酸(R是H)或硼酸酯(R是烷基)(12)与3-叔丁基-1H-吡唑-5-甲酸酯的反应、随后将酯水解成羧酸而获得。硼酸酯B(OR)2包括环状酯,例如4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基。
这种方法的实例在以下方案中展示。
方案8
所希望的胺(9)可以例如通过相应的间位取代的苯基或吡啶基肼(14)与4,4-二甲基-3-氧代戊腈的反应而获得。
这种方法的实例在以下方案中展示。
方案9
在一种替代性方法中,使中间体(7)与活化的3-叔-丁基-5-氨基-1-芳基-1H-吡唑的氨基甲酸酯反应,以提供相应的脲。
这种方法的实例在以下方案中展示。
方案10
相应的活化氨基甲酸酯可以例如通过胺(9)与氯甲酸酯的反应而获得,例如与氯甲酸苯酯反应以形成(3-(叔丁基)-1-芳基-1H-吡唑-5-基)氨基甲酸苯酯(15)或与1-甲基乙烯基氯甲酸酯反应以形成1-甲基乙烯基(3-(叔丁基)-1-芳基-1H-吡唑-5-基)氨基甲酸酯。
可替代地,常见中间体(7)的氨基位置可以通过例如与氯甲酸苯酯或1-甲基乙烯基氯甲酸酯反应而活化。
这种方法的实例在以下方案中展示。
方案11
如此形成的活化氨基甲酸酯然后可以与芳香胺反应以提供相应的脲。
这种方法的实例在以下方案中展示。
方案12
示于以上方案10-12中的活化氨基甲酸酯仅仅是实例。也可以使用本领域中已知的其他活化氨基甲酸酯,包括例如4-硝基苯基氨基甲酸酯和N-羟基琥珀酰亚胺氨基甲酸酯。
在一种替代性方法中,在环化之前,首先形成脲。
这种方法的实例在以下方案中展示。
方案13
在一个替代性方法中,可以将氨基苯酚转化成脲以形成中间体(20)。
这种方法的实例在以下方案中展示。
方案14
然后可以将中间体(20)与(1)偶联以提供(17)。例如,如以上在方案13中所描述的进一步转化导致产物(11)。
这种方法的实例在以下方案中展示。
方案15
组合物
本发明的一个方面涉及组合物(例如,药物组合物),所述组合物包括如在此所描述的TBAP化合物和药学上可接受的载体、稀释剂或赋形剂。
本发明的另一个方面涉及制备组合物(例如,药物组合物)的方法,所述方法包括将如在此所描述的TBAP化合物与药学上可接受的载体、稀释剂或赋形剂混合。
用途
在此描述的TBAP化合物适用于以下各项的治疗:例如,增殖性病症(如“抗-增生剂”)、癌症(如“抗癌剂”)、炎症疾病(如“抗炎剂”)、病毒感染(如“抗病毒剂”)、神经退行性疾病(如“抗-神经退行剂”)、纤维化疾病(如“抗-纤维化剂”)等。
在抑制RAF(例如BRAF、CRAF等)的方法中的用途
本发明的一个方面涉及在体外或在体内抑制RAF(例如,BRAF、CRAF等)功能(例如,在细胞中)的方法,所述方法包括使所述细胞与有效量的如在此所描述的TBAP化合物接触。
本领域普通技术人员容易能够确定候选化合物是否抑制RAF(例如BRAF、CRAF等)。例如,适合的测定在此被描述或者是本领域中已知的。
在一个实施例中,所述方法在体外进行。
在一个实施例中,所述方法在体内进行。
在一个实施例中,所述TBAP化合物以药学上可接受的组合物形式提供。
可以处理任何类型的细胞,包括动物脂肪、肺、胃肠(包括例如肠、结肠)、乳腺(乳房)、卵巢、前列腺、肝脏(肝)、肾脏(肾)、膀胱、胰腺、脑和皮肤细胞。
例如,可以使细胞样品在体外生长,并使化合物与所述细胞接触,并观察化合物对这些细胞的效应。作为“效应”的实例,可以确定细胞(例如活的或死的等)的形态学状态。若发现化合物对细胞施加影响,则这可以用作化合物在治疗具有相同细胞类型的细胞的患者的方法中的功效的预测标志物或诊断标志物。
在抑制细胞增殖等的方法中的用途
在此描述的TBAP化合物,例如(a)调节(例如抑制)细胞增殖;(b)抑制细胞周期进程;(c)促进细胞凋亡;或(d)这些中的一种或多种的组合。
本发明的一个方面涉及一种在体外或在体内调节(例如抑制)细胞增殖(例如,细胞的增殖)、抑制细胞周期进程、促进细胞凋亡、或这些中的一种或多种的组合的方法,所述方法包括使细胞与有效量的如在此所描述的TBAP化合物接触。
在一个方面,所述方法是在体外或在体内调节(例如抑制)细胞增殖(例如,细胞的增殖)的方法,所述方法包括使细胞与有效量的如在此所描述的TBAP化合物接触。
在一个实施例中,所述方法在体外进行。
在一个实施例中,所述方法在体内进行。
在一个实施例中,所述TBAP化合物以药学上可接受的组合物形式提供。
可以处理任何类型的细胞,包括但不限于肺、胃肠(包括例如肠、结肠)、乳腺(乳房)、卵巢、前列腺、肝脏(肝)、肾脏(肾)、膀胱、胰腺、脑和皮肤细胞。
本领域普通技术人员容易能够确定候选化合物是否调节(例如抑制)细胞增殖、等。例如,在此描述了测定法,其可以方便地用来评估由具体化合物提供的活性。
例如,可以使细胞样品(例如来自肿瘤)在体外生长,并使化合物与所述细胞接触,并观察化合物对这些细胞的效应。作为“效应”的实例,可以确定细胞(例如活的或死的等)的形态学状态。若发现化合物对细胞施加影响,则这可以用作化合物在治疗具有相同细胞类型的细胞的患者的方法中的功效的预测标志物或诊断标志物。
在治疗方法中的用途
本发明的另一个方面涉及如在此描述的TBAP化合物,用于在通过疗法治疗人体或动物体的方法中使用,例如,用于在治疗如在此描述的病症(例如疾病)的方法中使用。
在制造药物中的用途
本发明的另一个方面涉及如在此描述的TBAP化合物在制造例如用于在治疗的方法中使用(例如,用于在治疗如在此描述的病症(例如,疾病)的方法中使用)的药物中的用途。
在一个实施例中,所述药物包括TBAP化合物。
治疗方法
本发明的另一个方面涉及治疗方法,例如,治疗如在此所描述的病症(例如疾病)的方法,所述方法包括向需要治疗的受试者优选地以药物组合物的形式给予治疗有效量的如在此所描述的TBAP化合物。
治疗的病症-增殖性病症
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是增殖性病症的治疗。
如在此所使用,术语“增殖性病症”涉及所不希望的过量或异常细胞的不想要或失控的细胞增殖,例如赘生性或增生性生长。
在一个实施例中,所述治疗是以下项的治疗:增殖性病症,其特征在于良性、恶化前或恶性细胞增殖。
在一个实施例中,所述治疗是以下各项的治疗:增生;赘生物;肿瘤(例如组织细胞瘤、神经胶质瘤、星形细胞瘤、骨瘤);癌症;银屑病;骨疾病,纤维增殖性病症((例如结缔组织的纤维增殖性病症);肺纤维化;动脉粥样硬化;或血管的平滑肌细胞增殖(例如血管成形术后的狭窄或再狭窄)。
治疗的病症-癌症
在一个实施例(例如,在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是癌症的治疗。
在一个实施例中,所述治疗是癌症转移的治疗。
在癌症中包括的是:
(1)癌,包括衍生自复层鳞状上皮的肿瘤(鳞状细胞癌)和出现在器官或腺体中的肿瘤(腺癌)。实例包括乳腺癌、结直肠癌、肺癌、胰腺癌、前列腺癌、卵巢癌。
(2)肉瘤,包括:骨肉瘤和骨原性肉瘤(骨);软骨肉瘤(软骨);平滑肌肉瘤(平滑肌);横纹肌肉瘤(骨骼肌);间皮肉瘤和间皮瘤(体腔的膜内层);纤维肉瘤(纤维组织);血管肉瘤和血管内皮瘤(血管);脂肪肉瘤(脂肪组织);神经胶质瘤和星形细胞瘤(发现于脑中的神经原性结缔组织);粘液肉瘤(原始胚性结缔组织);间充质和混合型中胚层肿瘤(混合型结缔组织型)。
(3)骨髓瘤。
(4)黑色素瘤,包括例如浅层扩散型黑色素瘤、结节性黑色素瘤、恶性小痣黑色素瘤、肢端黑色素瘤、以及葡萄膜黑色素瘤。
(5)造血肿瘤,包括:骨髓性和粒细胞性白血病(骨髓的和粒细胞性的白血球系列的恶性肿瘤);淋巴白血病、淋巴细胞白血病或成淋巴细胞性白血病(淋巴样和淋巴细胞型血细胞系列的恶性肿瘤);真性红细胞增多症(也称为红细胞增多症)(各种血细胞制品但以红细胞为主的恶性肿瘤)。
(6)淋巴瘤,包括:霍奇金淋巴瘤和非霍奇金淋巴瘤。
(7)混合型,包括例如腺鳞癌;混合型中胚层肿瘤;癌肉瘤;畸胎癌。
在一个实施例中,所述癌症的特征在于、或特征进一步在于癌症干细胞。
在一个实施例中,所述治疗是癌症的治疗,所述癌症对用抗体(例如已知的抗体,例如立法批准的抗体)进行的治疗有抗性。在一个实施例中,所述治疗是黑色素瘤的治疗,所述黑色素瘤对用抗体(例如已知的抗体,例如立法批准的抗体)进行的治疗有抗性。已知用于治疗黑色素瘤的此类抗体的实例包括:结合至CTLA-4(细胞毒性T淋巴细胞相关抗原4)的抗体,例如易普利姆玛(批准的);结合至PD-1(程序性细胞死亡1受体)的抗体,例如派姆单抗(批准的)和纳武单抗(批准的);结合至PD-L1(程序性死亡配体1)的抗体,例如MEDI4736(在临床试验中)和MPDL3280A(在临床试验中);结合至黑色素瘤抗原糖蛋白NMB的抗体和抗体缀合物,例如格莱木单抗-维多汀(glembatumumab vedotin)(在临床试验中);结合抗肿瘤内皮标志物1的抗体,例如欧土希珠单抗(在临床试验中);结合至VEGF的抗体,例如贝伐珠单抗(bevacizumab),单独或与标准化疗或低-剂量IFN-α2b组合(在临床试验中);结合至神经节苷脂GD3的抗体,例如KW-2871(在临床试验中);结合整联蛋白亚型如αvβ1、αvβ3、αvβ5和αvβ6的抗体,例如英妥木单抗(在临床试验中)。
抗癌效应可以通过一种或多种机制产生,包括但不局限于,细胞增殖的调控、细胞周期进程的抑制、血管生成(新血管的形成)的抑制、转移的抑制(肿瘤从其来源的扩散)、细胞迁移的抑制(癌细胞至身体其他部分的扩散)、侵入的抑制(肿瘤细胞至邻近正常结构的扩散)、凋亡的促进(程序性细胞死亡)、通过坏死的死亡、或通过自噬诱导死亡。在此描述的化合物可以用于治疗在此描述的癌症,独立于在此所论述的机制。
治疗的病症-炎症
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是炎症(例如炎症病症或反应)的治疗。
在一个实施例中,所述治疗是急性炎症(例如,由急性感染介导)的治疗。
在一个实施例中,所述治疗是慢性炎症(例如,由慢性感染介导)的治疗。
在一个实施例中,所述炎症疾病选自以下各项的炎症疾病:肺(例如,哮喘;慢性阻塞性肺病(COPD));眼(例如葡萄膜炎);和胃肠道(例如克罗恩氏病;溃疡性结肠炎)。
在一个实施例中,所述炎症疾病选自:
(i)具有炎症组分的肺疾病或病症,例如囊性纤维化、肺动脉高压、肺结节病、特发性肺纤维化、并且特别是COPD(包括慢性支气管炎和肺气肿)、哮喘、以及儿科哮喘;
(ii)具有炎症组分的皮肤疾病或病症,例如特应性皮炎、过敏性皮炎、接触性皮炎、以及银屑病;
(iii)具有炎症组分的鼻疾病或病症,例如过敏性鼻炎、鼻炎、以及鼻窦炎;
(iv)具有炎症组分的眼疾病或病症,例如结膜炎、过敏性结膜炎、干燥性角膜结膜炎(干眼症)、青光眼、糖尿病性视网膜病、黄斑水肿(包括糖尿病性黄斑水肿)、视网膜中央静脉阻塞(CRVO)、干性和/或湿性年龄相关性黄斑变性(AMO)、白内障术后炎症,并且特别是葡萄膜炎(包括后葡萄膜炎、前葡萄膜炎、和全葡萄膜炎)、角膜移植物和角膜缘细胞移植排斥;以及
(v)具有炎症组分的胃肠道疾病或病症,例如谷蛋白敏感性肠病(乳糜泻);嗜酸性食道炎;肠移植物抗宿主疾病,并且特别是克罗恩氏病和溃疡性结肠炎。
在一个实施例中,所述炎症疾病选自:囊性纤维化;肺高血压;肺结节病;特发性肺纤维化;慢性阻塞性肺病(COPD)(包括慢性支气管炎和肺气肿);哮喘;儿科哮喘;特应性皮炎;过敏性皮炎;接触性皮炎;银屑病;过敏性鼻炎;鼻炎;鼻窦炎;结膜炎;过敏性结膜炎;干燥性角膜结膜炎(干眼症);青光眼;糖尿病性视网膜病;黄斑水肿(包括糖尿病性黄斑水肿);视网膜中央静脉阻塞(CRVO);干性和/或湿性年龄相关性黄斑变性(AMD);白内障手术炎症;葡萄膜炎(包括后葡萄膜炎、前葡萄膜炎、和全葡萄膜炎);角膜移植物和角膜缘细胞移植排斥;谷蛋白敏感性肠病(乳糜泻);嗜酸性食道炎;肠移植物抗宿主疾病;克罗恩氏病;以及溃疡性结肠炎。
在一个实施例中,所述炎症疾病是哮喘或COPD。
在一个实施例中,所述炎症疾病是葡萄膜炎、克罗恩氏病、或溃疡性结肠炎。
治疗的病症-免疫学病症
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是免疫学病症的治疗。
在一个实施例中,所述治疗是过敏症的治疗。
在一个实施例中,所述治疗是炎症气道疾病例如哮喘的治疗。
在一个实施例中,所述治疗是过敏性接触性皮炎的治疗。
在一个实施例中,所述治疗是免疫系统疾病的治疗。
在一个实施例中,所述治疗是自身免疫性疾病的治疗,例如类风湿性关节炎;系统性红斑狼疮(狼疮);炎症肠病(IBD);多发性硬化症(MS);1型糖尿病;格林-巴利综合征;银屑病;格雷夫斯氏病;桥本氏甲状腺炎;重症肌无力;脉管炎;免疫缺陷病;重度联合免疫缺陷症(SCID);常见变异型免疫缺陷病(CVID);人免疫缺陷病毒(HIV);获得性免疫缺陷综合征(AIDS);药物诱导的免疫缺陷;或移植物抗宿主综合征。
治疗的病症-病毒性感染
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是病毒性感染的治疗。
在一个实施例中,所述治疗是对以下各项造成的病毒性感染的治疗:
(组I:)dsDNA病毒,例如腺病毒、疱疹病毒、痘病毒;
(组II:)ssDNA病毒,例如细小病毒;
(组III:)dsRNA病毒,例如呼肠孤病毒;
(组IV:)(+)ssRNA病毒,例如微小核糖核酸病毒、披膜病毒;
(组V:)(-)ssRNA病毒,例如正粘病毒、弹状病毒;
(组VI:)ssRNA-RT病毒,例如逆转录病毒;或
(组VII:)dsDNA-RT病毒,例如嗜肝DNA病毒。
如以上所使用:ds:双链;ss:+链;(+)ssRNA:+链RNA;(-)ssRNA:-链RNA;ssRNA-RT:在生命周期中的(+链)RNA与DNA中间体。
在一个实施例中,所述治疗是以下各项的治疗:人免疫缺陷病毒(HIV);乙型肝炎病毒(HBV);丙型肝炎病毒(HCV);人乳头瘤病毒(HPV);巨细胞病毒(CMV);或艾伯斯坦-巴尔病毒(EBV);与卡波西肉瘤相关的人疱疹病毒8(HHV);柯萨奇病毒B3;博尔纳(Borna)病毒;流感病毒。
治疗的病症-纤维化病症
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是纤维化病症(例如,病症,其特征在于过量纤维化,例如,组织或器官中的过量纤维结缔组织,例如通过修复性或反应性过程(例如响应于损伤(例如瘢痕、愈合)或由单一细胞系引起的过量纤维化组织(例如纤维瘤))而触发的)的治疗。
在一个实施例中,所述治疗是以下各项的治疗:
(对于肺:)肺纤维化;继发于肺纤维化的囊性纤维化;特发性肺纤维化;煤炭工人的进行性大块纤维化;
(对于肝:)肝硬化;
(对于心:)心内膜心肌纤维化;陈旧性心肌梗死;心房纤维化;
(对于纵隔:)纵隔纤维化;
(对于骨:)骨髓纤维化;
(对于腹膜后腔:)腹膜后纤维化;
(对于皮肤:)肾源性系统性纤维化;瘢痕瘤性瘢痕;系统性硬化症;硬皮病;
(对于肠:)克罗恩氏病;
(对于结缔组织:)关节纤维化;或囊炎。
治疗的病症-通过抑制突变体BRAF而改善的病症
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是病症(例如疾病)(例如增殖性病症)的治疗,所述病症与RAF(例如BRAF)的突变形式,例如像描述于戴维斯(Davies)等人,2002;万(Wan)等人,2004;以及斯特拉顿(Stratton)等人,2003中的突变相关。
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是病症(例如疾病)(例如增殖性病症,例如癌症)的治疗,所述病症通过抑制RAF(例如BRAF)而改善。
在一个实施例中,所述治疗是以下项的治疗:病症(例如,疾病),其特征在于过表达突变体RAF(例如BRAF)的细胞(例如,如与相应的正常细胞相比;例如,其中过表达是按1.5、2、3、5、10、20或50的倍数)。
增殖性病症:
在一个实施例中,该治疗是以下各项的治疗:恶性黑色素瘤;结直肠癌;转移性结直肠癌;滤泡状甲状腺癌;岛状甲状腺癌;乳头状甲状腺癌;卵巢癌;低级卵巢癌;非小细胞肺癌;毛发细胞白血病;胆管癌;儿科低级神经胶质瘤(例如毛细胞型星形细胞瘤;神经节胶质瘤;多形性黄色星形细胞瘤);多发性骨髓瘤;或胰腺髓样癌。在一个实施例中,所述治疗是以下项的治疗:胰腺导管腺癌。
在一个实施例中,所述治疗是病症(例如,疾病)的治疗,所述病症与RAF(例如BRAF、CRAF等)的突变形式相关,但是对用已知的(例如批准的)RAF(例如BRAF、CRAF等)抑制剂进行的治疗有抗性。已知的(例如批准的)BRAF抑制剂的实例包括威罗菲尼(vemurafenib)(PLX4032、RG7204、Zelboraf)(批准的)和达拉菲尼(dabrafenib)(GSK-2118436)(批准的)。
在一个实施例中,所述治疗是病症(例如,疾病)的治疗,所述病症与RAF(例如BRAF、CRAF等)的突变形式相关,但是对用已知的(例如批准的)RAF(例如BRAF、CRAF等)抑制剂与已知的(例如批准的)MEK抑制剂的组合进行的治疗有抗性。MEK抑制剂的实例包括:曲美替尼(trametinib)(GSK 1120212)(批准的);司美替尼(selumetinib)(AZD6244)(在临床试验中);PD 325901(在临床试验中);卡比替尼(cobimetinib)(GDC 90973,XL 518)(在临床试验中);以及CI 1040(PD184352)(在临床试验中)。
在一个实施例中,所述治疗是以下各项的治疗:内在抗威罗菲尼的BRAF-突变型黑色素瘤;获得对威罗菲尼治疗具有耐药性的BRAF-突变型黑色素瘤;内在抗达拉菲尼的BRAF-突变型黑色素瘤;获得对达拉菲尼治疗具有耐药性的BRAF-突变型黑色素瘤;或获得对BRAF抑制剂和MEK抑制剂(例如达拉菲尼和曲美替尼)的组合具有耐药性的BRAF-突变型黑色素瘤。
其他病症:
在一个实施例中,所述治疗是以下各项的治疗:朗格汉斯细胞组织细胞增生症(LCH)或脂质肉芽肿病(Erdheim-Chester disease)。
治疗的病症-通过抑制BRAF和CRAF两者改善的病症
具有例如RAS、RAF和EGFR的活化突变的癌症;或者RAS、RAF和EGFR(包括其任何亚型)的过表达的癌症可以对全RAF(例如CRAFBRAF)抑制是特别敏感的。具有导致上调的RAF-MEK-ERK途径信号的其他异常的癌症还可以对用全RAF(例如CRAFBRAF)活性的抑制剂进行治疗是特别敏感的。此类异常的实例包括生长因子受体的组成型活化;一种或多种生长因子受体的过表达;一种或多种生长因子的过表达;KSR-介导的途径活化;以及BRAF或CRAF基因融合。
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是病症(例如疾病)(例如增殖性病症,例如癌症)的治疗,所述病症通过抑制BRAF和CRAF两者而改善。
在一个实施例中,所述治疗是以下项的治疗:病症(例如,疾病)(例如增殖性病症,例如癌症),其特征在于生长因子受体的组成型活化;一种或多种生长因子受体的过表达(例如,如与相应的正常细胞相比;例如,其中过表达是按1.5、2、3、5、10、20或50的倍数);一种或多种生长因子的过表达(例如,如与相应的正常细胞相比;例如,其中过表达是按1.5、2、3、5、10、20或50的倍数);和/或BRAF和/或CRAF活化基因融合。
在一个实施例中,所述治疗是以下项的治疗:病症(例如疾病)(例如增殖性病症,例如癌症),其特征在于所有以下各项中的一种或多种:
(a)激活RAS和/或RAF的突变体;
(b)RAS和/或RAF的上调;
(c)RAF-MEK-ERK途径信号的上调;以及
(d)生长因子受体(例如ERBB2和EGFR)的上调。
在一个实施例中,所述治疗是以下各项的治疗:炎症疾病;感染;自身免疫病症;中风;局部贫血;心脏病症;神经病症;纤维生成病症、增殖性病症;过度增殖性病症;非癌症过度增殖性病症;肿瘤;白血病;赘生物;癌症;癌;代谢疾病;恶性疾病;血管再狭窄;银屑病;动脉粥样硬化;类风湿性关节炎;骨关节炎;心力衰竭;慢性疼痛;神经性疼痛;干眼症;闭角青光眼;或宽角性青光眼眼。
治疗的病症-与RAS突变和/或MAPK途径活化相关联的病症
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是病症(例如疾病)的治疗,所述病症是与RAS(例如KRAS、NRAS、HRAS)突变和/或MAPK途径活化(例如MAPK途径的活动过度)相关联的。
增殖性病症:
在一个实施例中,所述治疗是增殖性病症(例如癌症)的治疗,所述增殖性病症是与RAS(例如KRAS、NRAS、HRAS)突变和/或MAPK途径活化(例如MAPK途径的活动过度)相关联的。
在一个实施例中,所述治疗是以下各项的治疗:非小细胞肺癌;结直肠癌;转移性结直肠癌;肝细胞癌;胰腺腺癌;恶性黑色素瘤;血液恶性病(例如幼年型粒单核细胞白血病(JMML);慢性粒单核细胞白血病(CMML);骨髓增生异常综合征(MDS);急性成淋巴细胞性白血病(ALL);多发性骨髓瘤(MM);伯基特淋巴瘤;霍奇金氏淋巴瘤);I型上皮性卵巢癌;原发性腹膜癌;胆道腺癌;滤泡状甲状腺癌;未分化的乳头状甲状腺癌;软组织肉瘤(例如血管肉瘤;平滑肌肉瘤;横纹肌肉瘤;粘液瘤;恶性纤维性组织细胞瘤);神经纤维瘤1型(NF1);不可操作丛状型神经纤维瘤(PN);葡萄膜黑色素瘤;睫状体黑色素瘤;脉络膜黑色素瘤;虹膜黑色素瘤;转移性眼内黑色素瘤;肾上腺皮质癌;肾癌;精原细胞瘤;膀胱癌;子宫内膜癌;宫颈癌;成神经细胞瘤;胃腺癌;头颈部鳞状细胞癌;或前列腺癌。
其他病症:
在一个实施例中,所述治疗是以下各项的治疗:移植(例如异种移植物;皮肤;肢体;器官;骨髓)排斥;骨关节炎;类风湿性关节炎;囊性纤维化;糖尿病并发症(例如糖尿病性视网膜病;糖尿病性肾病变);肝肿大;心脏肥大;努南综合征;心脏-面-皮肤综合征;肥厚型心肌病;中风(例如急性病灶缺血性中风;全脑缺血);心力衰竭;败血症性休克;哮喘;慢性阻塞性肺病;阿尔茨海默病;慢性疼痛(例如特发性疼痛;与慢性酒精中毒、维生素缺乏、尿毒症、或甲状腺功能减退症相关的疼痛;与炎症相关的慢性疼痛;慢性手术后疼痛);或神经性疼痛(例如与炎症相关的;手术后疼痛;幻肢痛;灼烧痛;痛风;三叉神经痛;急性疱疹性疼痛疼痛;疱疹后疼痛(post-herpetic pain);灼痛;糖尿病性神经病;丛撕裂;神经瘤;脉管炎;病毒感染;挤压伤;压迫性损伤;组织损伤;截肢;外周神经系统与中枢神经系统之间的神经损伤)。
治疗的病症-通过抑制SRC改善的病症
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是病症(例如疾病)的治疗,所述病症通过抑制SRC而改善。
在一个实施例中,所述治疗是以下项的治疗:病症(例如,疾病)(例如增殖性病症),所述病症与SRC突变;SRC过表达(例如,如与相应的正常细胞相比;例如,其中过表达是按1.5、2、3、5、10、20或50的倍数);或SRC的上游途径活化(例如,通过升高的RTK信号传导)相关联。
在一个实施例中,所述治疗是以下各项的治疗:子宫内膜癌;非小细胞肺癌;恶性胸膜间皮瘤;恶性黑色素瘤;慢性髓性白血病(例如伊马替尼抗性);骨转移;激素-抗性前列腺癌;复发性前列腺癌;复发性骨肉瘤;急性成淋巴细胞性白血病;结直肠癌;转移性结直肠癌;乳腺癌;卵巢癌;复发性或转移性头颈癌(例如具有隐匿原发性鳞状细胞癌的转移性鳞状颈癌;具有隐匿原发性的复发性转移性鳞状颈癌;喉咽复发性鳞状细胞癌;喉复发性鳞状细胞癌;唇和口腔复发性鳞状细胞癌;鼻咽复发性鳞状细胞癌;口咽复发性鳞状细胞癌;副鼻窦和鼻腔复发性鳞状细胞癌;喉复发性疣状癌;口腔复发性疣状癌;喉咽鳞状细胞癌;喉鳞状细胞癌;唇和口腔鳞状细胞癌;鼻咽的鳞状细胞癌;口咽鳞状细胞癌;副鼻窦和鼻腔鳞状细胞癌;喉疣状癌;口腔疣状癌;舌癌);复发性皮肤癌;皮肤的鳞状细胞癌;急性骨髓性白血病;成胶质细胞瘤;或弥漫性内在脑桥胶质瘤。
治疗的病症-通过抑制p38改善的病症
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是病症(例如疾病)的治疗,所述病症通过抑制p38(例如p38α、p38γ)而改善。
在一个实施例中,所述治疗是以下项的治疗:病症(例如,疾病)(例如增殖性病症),所述病症与p38(例如p38α、p38γ)突变;p38(例如p38α、p38γ)过表达(例如,如与相应的正常细胞相比;例如,其中过表达是按1.5、2、3、5、10、20或50的倍数);或p38(例如p38α、p38γ)的上游途径活化相关联。
增殖性病症:
在一个实施例中,所述治疗是以下各项的治疗:卵巢癌;口腔鳞状细胞癌;多发性骨髓瘤;骨髓肿瘤;或骨髓增生异常综合征。
其他病症:
在一个实施例中,所述治疗是以下项的治疗:炎症病症,其特征在于T-细胞增殖(例如T-细胞活化和生长)。
在一个实施例中,所述治疗是以下各项的治疗:类风湿性关节炎;骨关节炎;银屑病关节炎;莱特尔氏综合征;创伤性关节炎;风疹关节炎;急性滑膜炎;痛风性关节炎;或脊柱炎。
在一个实施例中,所述治疗是以下各项的治疗:银屑病;湿疹;过敏性鼻炎;过敏性结膜炎;哮喘;成人呼吸窘迫综合征;急性肺损伤(ALI);急性呼吸窘迫综合征(ARDS);慢性肺部炎症;慢性阻塞性肺病;全身性恶病质;血管球性肾炎;慢性心力衰竭;动脉粥样硬化;急性冠脉综合征;心脏局部缺血;或心肌梗塞。
在一个实施例中,所述治疗是以下各项的治疗:内毒素血症;中毒性休克综合征;炎症肠病;动脉粥样硬化;肠道易激综合征;克罗恩氏病;溃疡性结肠炎;骨再吸收疾病;骨质疏松症;糖尿病;再灌注损伤;移植物抗宿主反应;同种异体移植物排斥;脓毒病;败血症性休克;内毒素休克;革兰氏-阴性脓毒症;血管球性肾炎;再狭窄;或血栓形成。
在一个实施例中,所述治疗是疼痛的治疗。
在一个实施例中,所述治疗是以下各项的治疗:慢性疼痛;神经肌肉疼痛;头痛;癌症疼痛;与骨关节炎或类风湿性关节炎相关的急性或慢性炎症疼痛;手术后炎症疼痛;神经性疼痛;糖尿病性神经病;三叉神经痛;肝后神经痛;炎症神经病;偏头痛;腰骶神经根病;牙痛;神经创伤;或神经局部贫血。
治疗的病症-通过抑制FGFR1改善的病症
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是病症(例如疾病)的治疗,所述病症通过抑制FGFR1而改善。
在一个实施例中,所述治疗是以下项的治疗:病症(例如,疾病)(例如增殖性病症),所述病症与FGFR1突变;FGFR1过表达(例如,如与相应的正常细胞相比;例如,其中过表达是按1.5、2、3、5、10、20或50的倍数);或FGFR1的上游途径活化相关联。
在一个实施例中,所述治疗是以下各项的治疗:乳腺癌;鳞状肺癌;胃癌;尿路上皮癌;多发性骨髓瘤;8p11骨髓增生性综合征;或肝细胞癌。
治疗的病症-通过抑制VEGFR-2(KDR)改善的病症
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是病症(例如疾病)的治疗,所述病症通过抑制VEGFR-2(KDR)而改善。
在一个实施例中,所述治疗是以下项的治疗:病症(例如,疾病)(例如增殖性病症),所述病症与VEGFR-2突变;VEGFR-2过表达(例如,如与相应的正常细胞相比;例如,其中过表达是按1.5、2、3、5、10、20或50的倍数);或VEGFR-2的上游途径活化相关联。
在一个实施例中,所述治疗是以下项的治疗:病症(例如,一种疾病),其特征在于提高的VEGF生产(例如,通过癌细胞或间质细胞)。
增殖性病症:
在一个实施例中,所述治疗是治疗:胰腺癌;非小细胞肺癌(NSCLC);卵巢肿瘤;腹膜肿瘤;输卵管肿瘤;肺癌和相关胸腔积液;复发性或转移性鳞状细胞头颈癌;局部晚期鼻咽癌;成胶质细胞瘤(例如多形性成胶质细胞瘤;巨细胞性成胶质细胞瘤);神经胶质肉瘤;弥漫性内在脑桥胶质瘤;HIV-相关的卡波西肉瘤;多发性骨髓瘤;肾细胞癌;转移性胃腺癌;急性骨髓性白血病(AML);肝细胞癌;皮肤纤维肉瘤;髓样甲状腺癌(MCT);乳头状甲状腺癌;滤泡状甲状腺癌;骨髓增生异常综合征;神经纤维瘤1型;丛状神经纤维瘤;脊髓神经纤维瘤;乳腺癌;胆管肿瘤;宫颈癌;前列腺癌;黑色素瘤;膀胱癌;尿道癌;输尿管癌;肾癌;骨盆癌;肉瘤;脂肪肉瘤;结直肠癌;骨肉瘤;滑膜癌;成神经细胞瘤;或横纹肌肉瘤。
其他病症:
在一个实施例中,所述治疗是以下各项的治疗:动脉粥样硬化;肥胖症;神经性疼痛综合征;年龄-相关性黄斑变性;糖尿病性视网膜病;糖尿病性黄斑水肿;或类风湿性关节炎。
治疗的病症-通过抑制LCK改善的病症
在一个实施例(例如,用于在疗法的方法中的用途的实施例、在制造药物中的用途的实施例、治疗方法的实施例)中,所述治疗是病症(例如疾病)的治疗,所述病症通过抑制LCK而改善。
在一个实施例中,所述治疗是以下项的治疗:病症(例如,疾病),所述病症与LCK突变;LCK过表达(例如,如与相应的正常细胞相比;例如,其中过表达是按1.5、2、3、5、10、20或50的倍数);或LCK的上游途径活化相关联。
在一个实施例中,所述治疗是以下项的治疗:涉及免疫组件的免疫疾病或病理病状。
在一个实施例中,所述治疗是以下各项的治疗:类风湿性关节炎;炎症肠病(例如溃疡性结肠炎;克罗恩氏病);银屑病;银屑病关节炎;组织或器官移植排斥(包括,例如,预防);急性或慢性移植物抗宿主病;同种异体移植排斥;异种移植排斥;过敏性哮喘;多发性硬化症;1型糖尿病;肺纤维化;或皮肤超敏反应。
治疗
如在此在治疗一种病症的上下文中所使用的术语“治疗(treatment)”总体上涉及人或动物(例如在兽医应用)的治疗,其中获得一些希望的治疗效果,例如,抑制病症的进展,并且包括降低进展的速率、停止进展的速率、缓解病症的症状、改善病症、以及治疗病症。也包括作为预防措施的治疗(即,预防)。例如,用于尚未发展出所述病症、但处于发展所述病症风险的患者,被术语“治疗”涵盖。
例如,治疗包括癌症的预防、降低癌症发病率、缓解癌症症状等。
如在此所使用,术语“治疗有效量”涉及化合物,或者包括化合物的材料、组合物或剂型,当根据所希望的治疗方案给药时,其对于产生一些所希望的治疗效果是有效的,与合理的益处/风险比相称。
组合疗法
术语“治疗”包括组合治疗和疗法,其中两种或更多种治疗或疗法被例如顺序地或同时地组合。例如,此处描述的化合物也可以在组合疗法中使用,例如与其他试剂结合使用。治疗和疗法的实例包括化学疗法(给予活性剂,包括,例如,药物、抗体(例如,如在免疫疗法中)、前药(例如,如在光动力学疗法、GDEPT、ADEPT等中);手术;放射疗法;光动力学疗法;基因疗法;以及受控饮食。
本发明的一个方面涉及如在此所描述的化合物,所述化合物与一种或多种(例如,1、2、3、4种等)如下所述的另外的治疗剂组合。
具体的组合将在于医师的判断,所述医师将使用他的普通公知常识和熟练执业医生已知的给药方案选择剂量。
这些药剂(即,在此描述的化合物加上一种或多种其他药剂)可以同时或顺序地给予,并且可以按各个不同剂量方案和经由不同途径给予。例如,当顺序地给予时,这些药剂可以在相近的时间间隔(例如,经5-10分钟的时间)或在更长间隔(例如,1、2、3、4或更多小时间隔,或如果需要,甚至更长时间间隔)被给予,精确的给药方案与一种或多种治疗剂的特性相称。
这些药剂(即,此处描述的化合物加上一种或多种其他药剂)可以被一起配制在单一剂型中,或可替代地,单独的试剂可以被分别配制并以试剂盒形式一起呈递,任选地含有它们的使用说明书。
可以共同给予/与用在此描述的TBAP化合物的治疗组合的另外的药剂/疗法的实例包括以下:抗代谢物;烷基化剂;纺锤体毒剂;拓扑异构酶抑制剂;DNA结合剂;激酶抑制剂;治疗性抗体;PARP抑制剂;NAD代谢抑制剂;代谢抑制剂;靶向制剂;内分泌剂;等。
其他用途
在此描述的TBAP化合物也可以用作细胞培养添加剂以抑制RAF(例如,BRAF、CRAF等)。
在此描述的TBAP化合物也可以用作体外测定的部分,例如,以确定候选宿主是否可能受益于用所讨论的化合物的治疗。
在此描述的TBAP化合物也可以例如在测定中被用作标准品,以便鉴定其他活性化合物、其他RAF(例如,BRAF、CRAF等)抑制剂等。
试剂盒
本发明的一个方面涉及试剂盒,所述试剂盒包括:(a)如在此所描述的TBAP化合物,或组合物,所述组合物包括如在此所描述的TBAP化合物,例如,优选地提供于合适的容器中和/或具有合适的包装;以及(b)使用说明书,例如关于怎样给予化合物或组合物的书面说明。
书面说明还可以包括活性成分对其是合适治疗的适应症列表。
给药途径
TBAP化合物或包括TBAP化合物的药物组合物可以通过任何便利的给药途径给予至受试者,无论是全身性/外围性的还是局部(即,在所希望的作用部位)的给予。
给药途径的实例包括口服(例如通过摄取);口腔;舌下;经皮(包括例如通过贴剂、硬膏剂等);经粘膜(包括例如通过贴剂、硬膏剂等);鼻内(例如通过鼻腔喷雾剂);眼睛(例如通过滴眼剂);肺(例如通过吸入或吹入疗法,例如使用经由气溶胶,例如通过口或鼻);直肠(例如通过栓剂或灌肠剂);阴道(例如通过阴道栓剂);肠胃外,例如通过注射,包括皮下、真皮内、肌内、静脉内、动脉内、心脏内、鞘内、脊柱内、囊内、囊下、眼眶内、腹膜内、气管内、表皮下、关节内、蛛网膜下、以及胸骨内注射;通过植入药库(depot)或储库(reservoir),例如,皮下或肌内植入。
受试者/患者
受试者/患者可以脊索动物、脊椎动物、哺乳动物、有胎盘的哺乳动物、有袋动物(例如袋鼠、袋熊)、啮齿类动物(例如豚鼠、仓鼠、大鼠、小鼠)、鼠科动物(例如小鼠)、兔形目动物(例如兔子)、禽类(例如鸟)、犬科动物(例如狗)、猫科动物(例如猫)、马科动物(例如马)、猪科动物(例如猪)、羊科动物(例如绵羊)、牛族动物(例如奶牛)、灵长类动物、猿类动物(例如猴或猿)、猴(例如绒猴、狒狒)、猿(例如大猩猩、黑猩猩、猩猩、长臂猿)或人。
此外,受试者/患者可以是其任何发育形式,例如胎儿。
在一个优选实施例中,受试者/患者是人。
配制品
虽然单独给予TBAP化合物是可能的,但是优选将其作为药物配制品(例如组合物、制剂、药物)来呈递,所述药物配制品包括至少一种如在此所描述的TBAP化合物连同一种或多种本领域技术人员熟知的其他药学上可接受的成分,所述成分包括药学上可接受的载体、稀释剂、赋形剂、佐剂、填充剂、缓冲剂、防腐剂、抗氧化剂、润滑剂、稳定剂、增溶剂、表面活性剂(例如润湿剂)、掩蔽剂、着色剂、矫味剂和甜味剂。所述配制品可以进一步包括其他活性剂,例如,其他治疗性或预防性药剂。
因此,本发明进一步提供了如以上所定义的药物组合物和制备药物组合物的方法,这些方法包括将至少一种如在此所描述的TBAP化合物连同一种或多种本领域技术人员熟知的其他药学上可接受的成分如载体、稀释剂、赋形剂等混合。如果被配制成离散的单位(例如片剂等),则每个单位含有预定量(剂量)的化合物。
如在此所使用的,术语“药学上可接受的”涉及化合物、成分、材料、组合物、剂型等,其在合理的医学判断范围之内适合用于与所讨论的受试者(例如人)的组织接触而没有过度的毒性、刺激性、过敏反应或其他问题或并发症,与合理的效益/风险比相称。每种载体、稀释剂、赋形剂等在与所述配制品的其他成分相容的意义上必须是“可接受的”。
适合的载体、稀释剂、赋形剂等可以发现于标准的制药学文本,例如雷明顿氏药物 科学(Remington's Pharmaceutical Sciences),第18版,马克出版公司(Mack PublishingCompany),伊斯顿(Easton),宾夕法尼亚州(Pa.),1990;以及药物赋形剂手册(Handbook of Pharmaceutical Excipients),第5版,2005中。
配制品可以通过药学领域熟知的任何方法来制备。此类方法包括使化合物与构成一种或多种辅助成分的载体结合的步骤。通常,配制品如下制备:通过使化合物与载体(如液体载体、细分固体载体等)均匀和紧密地结合,并且然后如果需要的话,使产物成型。
所述配制品可以被制成提供快速或慢速释放;即时、延迟、定时或持续释放;或者其组合。
配制品可以适合地是处于液体、溶液(例如水性、非水性)、混悬剂(例如水性、非水性)、乳剂(例如水包油型、油包水型)、酏剂、糖浆剂、糖饵剂、漱口剂、滴剂、片剂(包括例如包衣片剂)、颗粒剂、粉剂、锭剂(losenge)、软锭剂、胶囊剂(包括例如硬和软胶囊剂)、扁襄剂、丸剂、安瓿剂、大丸剂、栓剂、阴道栓剂、酊剂、凝胶剂、糊剂、软膏剂、霜剂、洗剂、油剂、泡沫剂、喷雾剂、烟雾剂或气雾剂的形式。
配制品可以适合地被提供为贴剂、橡皮膏、绷带、敷料等,其浸溃了一种或多种化合物和任选的一种或多种其他药学上可接受的成分,包括例如穿透、渗透和吸收增强剂。配制品还可以适合地以药库或储库的形式提供。
所述化合物可以溶解于、混悬于一种或多种其他药学上可接受的成分中或者与之混合。所述化合物可以呈递于脂质体或其他微粒中,其被设计为使所述化合物靶向于例如血液组分或者一种或多种器官。
适合于口服给药(例如通过摄取)的配制品包括液体、溶液(例如水性、非-水性)、混悬剂(例如水性、非水性)、乳剂(例如水包油型、油包水型)、酏剂、糖浆剂、糖饵剂、片剂、颗粒剂、粉剂、胶囊剂、扁囊剂、丸剂、安瓿剂、大丸剂。
适合于口腔给药的配制品包括漱口剂、锭剂、软锭剂,以及贴剂、橡皮膏、药库和储库。锭剂通常在经过矫味的基质中包括所述化合物,所述基质通常为蔗糖和阿拉伯胶或黄芪胶。软锭剂通常在惰性基质中包括所述化合物,所述基质例如明胶和甘油,或者蔗糖和阿拉伯胶。漱口剂通常在适合的液体载体中包括所述化合物。
适合于舌下给药的配制品包括片剂、锭剂、软锭剂、胶囊剂和丸剂。
适合于口腔经粘膜给药的配制品包括液体、溶液(例如水性、非水性)、混悬剂(例如水性、非水性)、乳剂(例如水包油型、油包水型)、漱口剂、锭剂、软锭剂,以及贴剂、橡皮膏、药库和储库。
适合于非口腔经粘膜给药的配制品包括液体、溶液(例如水性、非水性)、混悬剂(例如水性、非水性)、乳剂(例如水包油型、油包水型)、栓剂、阴道栓剂、凝胶剂、糊剂、软膏剂、霜剂、洗剂、油剂,以及贴剂、橡皮膏、药库和储库。
适合于经皮给药的配制品包括凝胶、糊剂、软膏剂、霜剂、洗剂和油剂,以及贴剂、橡皮膏、绷带、敷料、药库和储库。
片剂可以任选地与一种或多种附加成分一起通过常规方法例如压制或模压来制备。压制的片剂可以通过在适合的机器中将化合物任选地与一种或多种以下各项混合的自由流动形式如粉末或颗粒进行压制来制备:粘合剂(例如聚维酮、明胶、阿拉伯胶、山梨醇、黄芪胶、羟丙基甲基纤维素);填充剂或稀释剂(例如乳糖、微晶纤维素、磷酸氢钙);润滑剂(例如硬脂酸镁、滑石粉、二氧化硅);崩解剂(例如淀粉乙醇酸钠、交联聚维酮、交联羧甲基纤维素钠);表面活性剂或分散剂或润湿剂(例如月桂基硫酸钠);防腐剂(例如对-羟基苯甲酸甲酯、对-羟基苯甲酸丙醋、山梨酸);矫味剂、增味剂和甜味剂。模制片剂可以通过在适合的机器中将用惰性液体稀释剂润湿的粉状化合物的混合物进行模制来制备。片剂可以任选地被包衣或刻痕并且可以被配制为提供缓慢或控制释放的所述化合物,其中例如使用处于不同比例的羟丙基甲基纤维素以提供所希望的释放特性。片剂可以任选地提供有包衣例如以影响释放,例如肠溶包衣,以提供在肠部而不是在胃部释放。
软膏剂通常由所述化合物和石蜡或水可混溶的软膏基质制备。
霜剂通常由所述化合物和水包油型霜剂基质制备。如果希望的话,膏基的水相可以包括,例如,至少大约30%w/w的一种多元醇,即具有两个或更多个羟基的醇,如丙二醇、1,3-丁二醇、甘露醇、山梨醇、甘油和聚乙二醇及其混合物。这些局部配制品可以希望地包括增强化合物穿过皮肤或其他受影响区域的吸收或渗透的化合物。此类经皮渗透增强剂的实例包括二甲亚砜和相关类似物。
乳剂通常由所述化合物和油相制备,油相可以任选地仅包括乳化剂(或者称为利泄剂(emulgent)),或者它可以包括至少一种乳化剂与脂肪或油或者脂肪或油二者的混合物。优选地,亲水乳化剂与亲脂的乳化剂一起被包括,后者充当稳定剂。它还优选地包括油和脂肪二者。具有或不具有一种或多种稳定剂的一种或多种乳化剂一起组成了所谓的乳化蜡,并且所述蜡与所述油和/或脂肪一起组成了所谓的乳化软膏基质,所述乳化软膏基质形成了乳膏配制品的油性分散相。
适合的利泄剂和乳化稳定剂包括吐温60、司盘80、十八十六醇、肉豆蔻醇、单硬脂酸甘油酯以及月桂基硫酸钠。用于所述配制品的适合的油或脂肪的选择是基于实现希望的化妆品特性,因为所述化合物在大多数可能用于药物乳剂配制品的油中的溶解度可能非常低。因此,所述乳膏应当优选地是非油腻、非-染色且可洗涤的产品,所述产品具有适合的稠度以避免从管子或其他容器中泄漏。可以使用直链或支链、单-或二元烷基酯,如二-异己二酸酯、异鲸蜡醇硬脂酸酯、椰子脂肪酸的丙二醇二酯、肉豆蔻酸异丙酯、油酸癸酯、棕榈酸异丙酯、硬脂酸丁酯、棕榈酸2-乙基己酯或被称作Crodamol CAP的支链酯的共混物,后三者是优选的酯。这些酯可以单独或组合使用,这取决于所需要的特性。可替代地,可以使用高熔点脂类,例如白软石蜡和/或液体石蜡或其他矿物油。
其中载体是液体的、适合于鼻内给药的配制品包括例如鼻喷雾剂、滴鼻剂,或者通过雾化器由气雾剂给予,包括所述化合物的水性或油性溶液。
其中载体是固体的、适合于鼻内给药的配制品包括例如以具有粒度为例如约20至约500微米的粗粉末呈递的那些配制品,所述粗粉以采取鼻吸方式给予,即,通过将粉剂的容器靠近鼻而通过鼻腔迅速吸入。
适合于肺给药(例如通过吸入或吹入疗法)的配制品包括使用适合的推进剂从加压包装中以喷雾剂呈递的那些配制品,所述推进剂例如二氯二氟甲烷、三氯氟甲烷、二氯四氟乙烷、二氧化碳或其他适合的气体。
适合于眼部给药的配制品包括滴眼液,其中所述化合物被溶解或悬浮于适合的载体中,尤其是用于所述化合物的水性溶剂。
适合于直肠给药的配制品可以作为具有适合基质的栓剂来呈递,所述基质包括例如天然或硬化的油、蜡类、脂肪、半液体或液体多元醇,例如可可脂或水杨酸;或者作为用于灌肠治疗的溶液或混悬剂。
适合于阴道给药的配制品可以作为阴道栓剂、卫生棉条、乳膏、凝胶、糊剂、泡沫或喷雾配制品呈递,其除了所述化合物之外还含有例如本领域已知的适当的载体。
适合于肠胃外给药(例如通过注射)的配制品包括水性或非水性的、等渗的、无热原的无菌液体(例如溶液、混悬剂),其中所述化合物被溶解、混悬或以其他方式提供(例如在脂质体或其他微粒中)。此类液体可以另外含有其他药学上可接受的成分,例如抗氧化剂、缓冲剂、防腐剂、稳定剂、抑菌剂、助悬剂、增稠剂和使配制品与预期受体的血液(或其他相关体液)等渗的溶质。赋形剂的实例包括例如水、醇、多元醇、甘油、植物油以及类似物。适合用于此类配制品中的等渗载体的实例包括氯化钠注射液、林格氏溶液(Ringer'sSolution)、或乳酸林格氏注射液(Lactated Ringer's Injection)。通常,所述化合物在液体中的浓度为从约1ng/mL至约10μg/mL,例如从约10ng/mL至约1μg/mL。可以使配制品呈递于单位剂量或多剂量密封容器例如安瓿和小瓶中,并且可以在冷冻干燥(冻干)条件下储存,仅需要在使用之前即刻添加无菌液体载体例如注射用水。可以由无菌粉剂、颗粒剂以及片剂制备即用型注射溶液和混悬液。
剂量
本领域技术人员应当理解,TBAP化合物和包括TBAP化合物的组合物的适当剂量可以因患者而异。确定最佳剂量通常将涉及治疗益处水平与任何危险或有害的副作用之间的平衡。所选择的剂量水平将取决于多种因素,包括具体TBAP化合物的活性、给药途径、给药时间、TBAP化合物的排泄率、治疗的持续时间;组合使用的其他药物、化合物和/或材料;病症的严重程度以及患者的种属、性别、年龄、体重、病状、一股健康状况和既往医疗史。TBAP化合物的量和给药途径最终将在于医师、兽医或临床医师的判断,但通常所述剂量被选择为达到在作用部位获得所希望的效果而不引起实质性有害或有毒的副作用的局部浓度。
在整个治疗过程中,可以以一种剂量连续地或间断地(例如以适当间隔的分次剂量)实现给药。确定最有效的给药方式和给药剂量的方法为本领域技术人员所熟知的并且将随着治疗所用的配制品、治疗目的、所治疗的一种或多种靶细胞以及所治疗的受试者而改变。单次或多次给药可以按治疗医师、兽医或临床医师所选择的剂量水平和模式来进行。
通常,TBAP化合物的适合的剂量范围为每日约10μg至约250mg(更通常约100μg至约25mg)/公斤患者体重。当所述化合物为盐、酯、酰胺、前药等时,所给予的量是根据母体化合物进行计算,并且因此按比例地增加所用的实际重量。
化学合成
所有的起始材料、试剂和反应溶剂都是试剂等级并且如所购买而使用。色谱溶剂是HPLC等级并且在未经进一步纯化而使用。使用默克(Merck)硅胶60F-254薄层板通过薄层色谱(TLC)分析来监测反应。在默克硅胶60(0.015-0.040mm)上或在一次性Isolute FlashSi和Si II硅胶柱中进行快速柱色谱法。在来自Supelco具有Discovery 5μm、C18、50mm x4.6mm直径柱的Micromass LCT/Water’s Alliance 2795HPLC系统上在22℃温度下使用以下溶剂系统进行LCMS分析:溶剂A:甲醇;溶剂B:在水中的0.1%甲酸,以1mL/min的流速。梯度:从0-0.5分钟用10%A/90%B(按体积计)起始,然后从0.5分钟至6.5分钟为10%A/90%B至90%A/10%B,并且继续在90%A/10%B直至10分钟。从10-10.5分钟,梯度恢复至10%A/90%,其中保持浓度直至12分钟。UV检测是在254nm处并且离子化是阳或阴离子电喷雾。分子量扫描范围是50-1000。样品被供应为1mg/mL于DMSO或甲醇中,以部分回路装填方式注射3μL。在DMSO-d6中在布鲁克(Bruker)Advance 500MHz光谱仪上记录NMR谱。
部分(I):吡唑甲酸酯的N-芳基化
方法A:在搅拌下添加3-叔丁基-1H-吡唑-5-甲酸乙酯(1当量)、所希望的硼酸(2当量)、乙酸铜(II)(1.5当量)和干DMF,以给出蓝色溶液。添加干吡啶(2当量),一经添加,所述颜色变为绿色,随后添加一匙经烘箱干燥的、粉末状(0.4nm)分子筛。将混合物在室温下在氩气气氛下搅拌直至反应完成,如通过LC-MS验证。在反应完成之后,将混合物用AcOEt和NH4Cl溶液稀释。将有机相分离,用NH4Cl溶液、饱和水性NaHCO3洗涤,干燥(含Cu捕获(Cu-catch)树脂的MgSO4),过滤,并蒸发,以给出油状物质,在一些情况下将其通过柱色谱法进一步纯化。
合成1
3-叔丁基-1-(3-甲氧基苯基)-1H-吡唑-5-甲酸乙酯
使用方法A,用3-叔丁基-1H-吡唑-5-甲酸乙酯(320mg,1.631mmol)和3-甲氧基苯基硼酸(307mg,2.020mmol)。在室温下搅拌22小时后,完成所述反应。在处理后,将生成的黄色油溶解于DCM/己烷中并且装载到50g SNAP柱上,将其用于己烷中的2%→20%EtOAc(按体积计)进行洗脱。获得呈无色油的标题化合物。
产量:462mg(94%,92%纯度)。1H-NMR(DMSO-d6),δ(ppm),J(Hz):1.17(t,3H,3JHH=7.1,CH3),1.30(s,9H,tert-Bu),3.79(s,3H,OCH3),4.17(q,2H,3JHH=7.1,OCH2CH3),6.98(m,4H,ArH),7.36(t,1H,3JHH=8.1,ArH)。LC-MS(2.79min):C17H22N2O3[M+H]+的m/z计算值:303.1;发现值:303.2。
合成2
3-叔丁基-1-(3-三氟甲基苯基)-1H-吡唑-5-甲酸乙酯
使用方法A,用3-叔丁基吡唑-5-甲酸乙酯(320mg,1.60mmol)、和3-三氟甲基苯基硼酸(307mg,1.60mmol)。在20小时之后,将所述反应混合物用AcOEt(20mL)稀释,用2x 20mL水、NaHCO3(20mL,浓)洗涤并最终用20mL盐水洗涤。将有机层干燥(MgSO4)并蒸发至干燥,以给出油(417mg)。将所述化合物不经进一步纯化而用于随后的水解步骤。
合成3
3-叔丁基-1-(3-甲基苯基)-1H-吡唑-5-甲酸乙酯
使用方法A,用3-叔丁基吡唑-5-甲酸乙酯(320mg,1.60mmol)、和3-甲基苯基硼酸(218mg,1.60mmol)。在20小时之后,将所述反应混合物用AcOEt(20mL)稀释,用2x 20mL水、NaHCO3(20mL;浓)洗涤并最终用20mL盐水洗涤。将有机层干燥(MgSO4)并蒸发至干燥,以给出油(466mg)。将所述化合物不经进一步纯化而用于随后的水解步骤。
合成4
3-叔丁基-1-(3-氟苯基)-1H-吡唑-5-甲酸乙酯
使用方法A,用3-叔丁基吡唑-5-甲酸乙酯(320mg,1.60mmol)、和3-氟苯基硼酸(224mg,1.60mmol)。在20小时之后,将所述反应混合物用AcOEt(20mL)稀释,用2x 20mL水、NaHCO3(20mL;浓)洗涤并最终用20mL盐水洗涤。将有机层干燥(MgSO4)并蒸发至干燥,以给出油(463mg)。将所述化合物不经进一步纯化而用于随后的水解步骤。
合成5
3-叔丁基-1-(2-甲氧基吡啶-4-基)-1H-吡唑-5-甲酸乙酯
使用方法A,用3-叔丁基吡唑-5-甲酸乙酯(202mg,1.03mmol)、和2-甲氧基吡啶-4-基硼酸(208mg,1.360mmol)。用于己烷中的2%→50%(按体积计)EtOAc进行纯化,给出呈无色油的标题化合物。
产量:243mg(59%)。1H-NMR(DMSO-d6),δ(ppm),J(Hz):1.22(t,3H,3JHH=7.1,CH3),1.29(s,9H,tert-Bu),3.90(s,3H,OCH3),4.23(q,2H,3JHH=7.1,OCH2CH3),6.94(d,1H,3JHH=1.7,PyrH),7.07(s,1H,ArH),7.13(dd,1H,3JHH=5.6,1.7,PyrH),8.23(d,1H,3JHH=5.6,PyrH)。LC-MS(2.83min):C16H21N3O3[M+H]+的m/z计算值:304.1;发现值:303.1。
部分(II):乙酯水解
方法B.将适当的1-取代的3-叔丁基-1H-吡唑-5-甲酸乙酯(1当量)溶解于THF/MeOH/H2O的4:1:1混合物中,添加氢氧化锂一水合物(1.1当量)并且将所述无色混合物在室温下搅拌16小时。将挥发物随后蒸发,并且将生成的固体再溶解于H2O中并且将溶液的pH用10%水性HCl调节至1。将生成的乳状混合物用EtOAc萃取两次,并且将合并的有机部分用盐水洗涤,干燥并浓缩至干燥,以给出白色结晶固体。
方法C.将适当的1-取代的3-叔丁基吡唑-5-甲酸乙酯(1当量)在10mL EtOH和3mLNaOH溶液(2M)中回流持续30分钟。在冷却至室温之后,将所述反应混合物中和至pH 4.0(AcOH),用20mL水稀释,并用AcOEt萃取。将有机层用2x 20mL水洗涤,干燥(MgSO4),并且蒸发至干燥,并且将因此获得的残余物使用Biotage Isolera系统进行纯化。
合成6
3-叔丁基-1-(3-甲氧基苯基)-1H-吡唑-5-甲酸
使用方法B,用3-叔丁基-1-(4-甲氧基苯基)-1H-吡唑-5-甲酸乙酯(442mg,1.345mmol),产生呈白色晶体的标题化合物。
产量:300mg(81%)。1H-NMR(DMSO-d6),δ(ppm),J(Hz):1.29(s,9H,tert-Bu),3.78(s,3H,OCH3),6.90(s,1H,ArH),6.97(m,4H,ArH),7.35(t,1H,3JHH=8.1,ArH),13.14(s,1H,COOH)。LC-MS(2.51min):C15H18N2O3[M+H]+的m/z计算值:275.1;发现值:275.0。
合成7
3-叔丁基-1-(3-三氟甲基苯基)-1H-吡唑-5-甲酸
使用方法C,用粗3-叔丁基-1-(3-三氟甲基苯基)-1H-吡唑-5-甲酸乙酯(471mg),获得固体产物,将其使用Biotage Isolera1系统和环己烷:EtOAc1:1混合物作为洗脱液(等度模式)经受进一步纯化并给出所述标题化合物。
产量:133mg(经2步骤为26.6%)。1H NMR(DMSO), H(ppm),J(Hz):1.31(s,9H,(CH 3)3C),6.99(s,1H,Pyr-H),7.70(t,1H,Arom-H5,J=7.7Hz),7.76-7.82(m,3H,Arom-H2+4+6),13.32(s,1H,Pyr-CO2H)。Ac.质量:(C15H16F3N2O2)计算值313.1157,发现值313.1155。
合成8
3-叔丁基-1-(3-甲基苯基)-1H-吡唑-5-甲酸
使用方法C,用粗3-叔丁基-1-(3-甲基苯基)-1H-吡唑-5-甲酸乙酯(460mg),在使用Biotage Isolera1系统和环己烷:EtOAc 1:1混合物作为洗脱液(等度模式)进行纯化之后获得所述标题产物。
产量:101mg(经2步骤为24.%)。1H NMR(DMSO), H(ppm),J(Hz):1.29(s,9H,(CH 3)3C),2.35(s,3H,3-CH3),6.89(s,1H,Pyr-H),7.18(d,1H,Arom-H2,J=7.2Hz),7.20-7.24(m,2H,Arom-H4+6),7.32(t,1H,Arom-H5,J=7.3Hz),13.09(s,1H,Pyr-CO2 H)。Ac.质量:(C15H18N2O2)计算值258.1368,发现值258.1373。
合成9
3-叔丁基-1-(3-氟苯基)-1H-吡唑-5-甲酸
使用方法C,用粗3-叔丁基-1-(3-氟苯基)-1H-吡唑-5-甲酸乙酯(463mg),获得所述标题化合物。参见例如施普林格(Springer)等人,2011。
产量166mg(经2步骤为39.6%)。1H NMR(DMSO), H(ppm),J(Hz):1.29(s,9H,(CH 3)3C),6.95(s,1H,Pyr-H),7.23-7.30(m,2H,Arom-H4+5),7.35(d,1H,Arom-H2,J=9.8Hz),7.44-7.53(m,1H,Arom-H6),13.24(s,1H,Pyr-CO2 H)。Ac.质量:(C14H15FN2O2)计算值262.1118,发现值262.1117。
合成10
3-叔丁基-1-(2-氧代-1,2-二氢吡啶-4-基)-1H-吡唑-5-甲酸盐酸盐
方法D:将3-叔丁基-1-(2-甲氧基吡啶-4-基)-1H-吡唑-5-甲酸乙酯(110mg,0.363mmol)溶解于在H2O中的6M HCl(4.5mL,27.00mmol)中,并且将无色溶液加热至90℃持续48h。将所有挥发物随后蒸发,并且将生成的无色油与DCM(10mL)共蒸发,然后与Et2O(10mL)共蒸发,这给出呈白色固体的标题化合物。
产量:93mg(98%)。1H-NMR(DMSO-d6),δ(ppm),J(Hz):1.28(s,9H,tert-Bu),6.32(d,1H,J=1.9,ArH),6.37(dd,1H,J=7.1,1.9,ArH),6.99(s,1H,ArH),7.46(d,1H,J=7.1,ArH)。LC-MS(2.14min):C13H16N3O3[M-Cl]+的m/z计算值:262.1;发现值:262.0;
部分(III):5-氨基吡唑的形成
合成11
3-(叔丁基)-1-(3-氟苯基)-1H-吡唑-5-胺
方法E:将4,4-二甲基-3-氧代戊腈(77g,0.62mol)和3-氟苯基肼盐酸盐(100g,0.62mol)的混合物添加至甲苯(1L)中并且加热至100℃持续24小时,在此点之后,允许将所述反应冷却至20℃。将所述混合物过滤,用甲苯(2x 250mL)洗涤并吸干。将粗HCl盐与先前批次(使用180g的3-氟苯基肼盐酸盐和234g的3-氟苯基肼盐酸盐进行的)合并,并且在DCM(4L)与饱和水性NaHCO3(4L)之间分配。搅拌所述混合物直至没有固体剩余。将DCM层分离出,干燥(MgSO4),过滤并在真空中浓缩,以按52%产率提供呈橙色固体的标题化合物(210g)。通过NMR纯度>95%(在摩尔基础上),并且通过LCMS纯度94.4%(在摩尔基础上)。
部分(IV):5-氨基吡唑氨基甲酸酯的形成
合成12
N-[3-叔丁基-1-(3-氟苯基)-1H-吡唑-5-基]氨基甲酸苯酯
方法F:在0℃下,将3-(叔丁基)-1-(3-氟苯基)-1H-吡唑-5-胺(210g,0.90mol)溶解于THF(5L),之后添加吡啶(146mL,1.80mol)。在0-5℃下经30分钟逐滴添加于THF(300mL)中的氯甲酸苯酯(113mL,0.90mol)。将所述反应混合物在0℃下搅拌30分钟,并且然后允许加温至室温。4小时后,HPLC显示阶段1的8%剩余。添加更多的氯甲酸苯酯(11mL,0.088mol)并且在30分钟之后,HPLC分析指示所述反应完成。添加EtOAc(5L)并且将有机层用1M HCl(2x 1.2L)、水(1.2L)、饱和水性NaHCO3(1.2L)和饱和盐水(1.2L)洗涤。将有机相层干燥(MgSO4),过滤,并在真空中浓缩。将粗油吸收在EtOAc/庚烷的1:3混合物中并在真空中浓缩,以给出一种固体。所述固体在庚烷(2.5L)中浆化1小时,过滤,并且用庚烷(200mL)洗涤。将材料在40℃下过夜干燥,以按90%产率给出所述标题化合物(286g)。纯度通过NMR为>95%。
部分(V):芳基吡唑和4-氨基苯氧基-吡啶并吡嗪酮片段的偶联,形成脲接头
合成13
1-[3-叔丁基-1-[(3-氟-苯基)-1H-吡唑-5-基]3-[2-氟-4(3-氧代-3,4-二氢吡啶并[2,3-b]吡嗪-8-基氧基)苯基]脲(TBAP-001)
方法G:在Carousel管中,将81mg(0.31mmol)3-叔丁基-1-(3-氟苯基)-吡唑-5-甲酸在搅拌和惰性气氛下溶解于2mL DMF中。然后添加0.044mL(0.32mmol)三乙胺和0.067mL(0.032mmol)DPPA,并且在0℃下继续搅拌30分钟并在室温下持续另外的1小时。向此反应混合物中,立刻添加4-(3-氟-4-氨基苯基)-吡啶-[2,3-b]-吡嗪-2-酮(40mg,0.15mmol)(参见例如赞邦(Zambon)等人,2010),并且将具有反应混合物的管在100℃下在搅拌和氩气气氛下加热30分钟。在室温下冷却后,将所述溶液用10mL AcOEt稀释。将有机层用2x 10mL盐水洗涤,干燥(MgSO4),并且蒸发至干燥。将因此获得的残余物与Et2O研磨并且过滤,以给出呈淡棕色无定形固体的标题化合物。
产量:66mg(83.0%)。1H NMR(500MHz,DMSO-d6)δ:1.29(s,9H,t-Bu),6.41(s,1H,H吡唑),6.64(d,1H,HPyr,J=5.6Hz),7.02-7.07(m,1H,HArom中心),7.22-7.30(m,2H,HArom吡唑),7.40-7.44(m,2H,HArom中心+HArom吡唑),7.53-7.60(m,1H,HArom吡唑),8.14(t,1H,HArom中心,J=9.1Hz),8.17(s,1H,H吡嗪酮),8.36(d,1H,Hpyr,J=5.6Hz),8.87(s,1H,NH),8.98(s,1H,NH),12.90(s,1H,NH)。LC-MS,tR=2.61min,m/z:531.2(M)+,C27H23F2N7O3的计算值。HRMS:C27H23F2N7O3的(M)+计算值为531.1830,发现值:531.1832。
方法H:向4-(3-氟-4-氨基苯基)-吡啶-[2,3-b]-吡嗪-2-酮(169.5g,0.623mol)中加入N-[3-叔丁基-1-(3-氟苯基)-1H-吡唑-5-基]氨基甲酸苯酯(220g,0.623mol)和DMSO(1.7L)。将所述反应混合物在20℃-22℃下搅拌过夜。1H NMR指示所述反应完成。将所述反应淬灭入水(8.6L)中并且搅拌1小时,之后过滤并用水(2x 2L)洗涤。将材料在60℃下干燥过周末。将固体在EtOAc(3.39L)中浆化1小时,过滤,并且用EtOAc(750mL)洗涤,以给出320g的所述标题化合物。NMR指示苯酚仍然存在。将材料在EtOAc(3.2L)中再浆化1小时,过滤,并且用EtOAc(500mL)洗涤并干燥,以给出293g的所述标题化合物(通过NMR按重量计9%EtOAc,按重量计一种单一杂质0.8%)。将固体从THF(5.7L)和庚烷(2.85L)中再结晶,允许所述批次冷却至室温,之后过滤掉固体。将滤饼用庚烷(2.85L)洗涤并且在45℃下干燥过夜,以给出221g的所述标题化合物。HPLC分析显示先前在0.8%的杂质(按重量计)被降低至0.23%(按重量计);然而,脲杂质被浓缩至0.58%(按重量计)。1H NMR显示5%庚烷(按重量计)。将材料在110℃下干燥12小时,以使庚烷水平通过NMR达到<0.5%(按重量计),以64%产率给出总计211g的呈白色晶体固体的标题化合物。HPLC纯度98.8%(按重量计),一种单一杂质0.58%(按重量计)。
合成14
1-[3-叔丁基-1-[(3-甲基-苯基)-1H-吡唑-5-基]3-[2-氟-4(3-氧代-3,4-二氢吡啶并[2,3-b]吡嗪-8-基氧基)苯基]脲(TBAP-002)
使用方法G,用3-叔丁基-1-(3-甲基苯基)-1H-吡唑-5-甲酸(80mg,0.31mmol)和4-(3-氟-4-氨基苯基)-吡啶-[2,3-b]-吡嗪-2-酮(40mg,0.15mmol),获得呈灰白色固体的所述标题化合物。
产量:69mg(87.4%)。1H NMR(500MHz,DMSO-d6)δ:1.28(s,9H,t-Bu),2.40(s,3H,3-CH3),6.39(s,1H,H吡唑),6.64(d,1H,HPyr,J=5.6Hz),7.02-7.06(m,1H,HArom中心),7.22-7.36(m,4H,3HArom吡唑+1HArom中心),7.43(t,1H,HArom吡唑,J=7.7Hz),8.16(t,1H,HArom中心,J=9.1Hz),8.17(s,1H,H吡嗪酮),8.36(d,1H,Hpyr,J=5.6Hz),8.81(s,1H,NH),8.98(s,1H,NH),12.90(s,1H,NH)。LC-MS,tR=2.65min,m/z:527.2(M)+,C28H26FN7O3的计算值。HRMS:C28H26FN7O3的(M+H)+计算值为527.2081,发现值:527.2088。
合成15
1-[3-叔丁基-1-[(3-三氟甲基-苯基)-1H-吡唑-5-基]3-[2-氟-4(3-氧代-3,4-二氢吡啶并[2,3-b]吡嗪-8-基氧基)苯基]脲(TBAP-003)
使用方法G,用3-叔丁基-1-(3-三氟甲基苯基)-1H-吡唑-5-甲酸(97mg,0.31mmol)和4-(3-氟-4-氨基苯基)-吡啶-[2,3-b]-吡嗪-2-酮(40mg,0.15mmol),获得呈灰白色固体的所述标题化合物。
产量:70mg(80.4%)。1H NMR(500MHz,DMSO-d6)δ:1.30(s,9H,t-Bu),6.42(s,1H,H吡唑),6.64(d,1H,HPyr,J=5.6Hz),7.02-7.06(m,1H,HArom中心),7.27-7.36(m,1H,HArom中心),7.74-7.80(m,2H,HArom吡唑),7.86-7.90(m,2H,HArom吡唑),8.05(t,1H,HArom中心,J=9.1Hz),8.17(s,1H,H吡嗪酮),8.36(d,1H,Hpyr,J=5.6Hz),8.87(s,1H,NH),8.93(s,1H,NH),12.90(s,1H,NH)。LC-MS,tR=2.71min,m/z:581.2(M)+,C28H23F4N7O3的计算值。HRMS:C28H23F4N7O3的(M+H)+计算值为581.1798,发现值:581.1796。
合成16
1-(3-叔丁基-1-(3-甲氧基苯基)-1H-吡唑-5-基)-3-(2-氟-4-(3-氧代-3,4-二氢吡啶并[3,2-b]吡嗪-8-基氧基)苯基)脲(TBAP-004)
使用方法G,用3-叔丁基-1-(3-甲氧基苯基)-1H-吡唑-5-甲酸(60mg,0.22mmol)和8-(4-氨基-3-氟苯氧基)-吡啶并[2,3-b]吡嗪-3(4H)-酮(31.6mg,0.12mmol),获得呈淡黄色固体的所述标题化合物。
产量:50mg(84%)。1H-NMR(DMSO-d6),δ(ppm),J(Hz):1.29(s,9H,tert-Bu),3.83(s,3H,OCH3),6.41(s,1H,PyzH),6.66(d,3JHH=5.7,1H,PyrH),7.01-7.12(m,4H,ArH),7.31(m,1H,ArH),7.46(t,3JHH=8.1,1H,ArH),8.18(m,2H,ArH),8.38(d,3JHH=5.7,1H,PyrH),8.85(br s,1H,NH),9.03(br s,1H,NH),12.92(br s,1H,NH);- 19F-NMR(DMSO-d6),δ(ppm):-124.8。LC-MS(2.59min):C28H27FN7O4[M+H]+的m/z计算值:544.1;发现值:544.1。HRMS(3.19min):C28H27FN7O4[M+H]+的m/z计算值:544.21031;发现值:544.21029。
合成17
1-(3-叔丁基-1-(2-氧代-1,2-二氢吡啶-4-基)-1H-吡唑-5-基)-3-(2-氟-4-(3-氧代-3,4-二氢吡啶并[3,2-b]吡嗪-8-基氧基)苯基)脲(TBAP-005)
使用方法G,用3-叔丁基-1-(2-氧代-1,2-二氢吡啶-4-基)-1H-吡唑-5-甲酸盐酸盐(70.8mg,0.238mmol)和8-(4-氨基-3-氟苯氧基)-吡啶并[2,3-b]吡嗪-3(4H)-酮(32.4mg,0.119mmol),获得固体,将其通过硅胶柱色谱、用5%→30%(按体积计)于DCM中的MeOH洗脱来纯化,以给出呈白色固体的所述标题化合物。
产量:15mg(24%)。1H-NMR(DMSO-d6),δ(ppm),J(Hz):1.28(s,9H,tert-Bu),6.43(s,1H,PyzH),6.50(d,3JHH=2.2,1H,ArH),6.58(dd,3JHH=7.2,2.2,1H,ArH),6.66(d,3JHH=5.6,1H,PyrH),7.06(m,1H,ArH),7.32(m,1H,ArH),7.50(d,3JHH=7.2,1H,ArH),8.13(m,1H,ArH),8.18(m,1H,ArH),8.37(d,3JHH=5.6,1H,PyrH),9.05(br s,1H,NH),9.13(s,1H,NH),11.66(br s,1H,NH),12.90(br s,1H,NH)。LC-MS(2.36min):C26H24FN8O4的m/z计算值[M+H]+:531.1;发现值:531.2。HRMS(2.97min):C26H24FN8O4[M+H]+的m/z计算值:531.18991;发现值:531.18952。
生物学方法和数据
DELFIA激酶测定
在根据以下方案进行的激酶测定中评估化合物。
V600EBRAF制备:
通过用杆状病毒(含有具有N-末端组氨酸标签的全长人BRAF)感染在SF-900II培养基(英杰公司(Invitrogen),佩斯里(Paisley),苏格兰)中培养的SF9昆虫细胞来产生V600EBRAF,并且通过镍-琼脂糖亲和色谱进行纯化。
GST-MEK制备:
用在N-末端的GST标签和C-末端组氨酸标签在大肠杆菌JM109细菌中表达全长兔MEK1蛋白,并且通过镍-琼脂糖亲和色谱纯化。
V600EBRAF和GST-MEK的纯化:
程序:
1.在再悬浮缓冲液(1mL/10mL的SF9培养物或JM109培养物,分别用于BRAF或MEK)中裂解细胞,声处理1-2分钟并且以14,000rpm(在2mL管中)旋降10分钟。
2.取1.5mL的镍-琼脂糖‘珠粒’/10mL的裂解物并且添加至柱(伯乐公司(Bio-rad))。
3.用再悬浮缓冲液洗涤柱3次。
4.添加裂解物至柱。
5.用10mL洗涤缓冲液洗涤3次。
6.添加10mL的洗脱缓冲液至这些珠粒并且收集于2mL管中。
7.检查洗脱的蛋白质浓度并且在4℃下在透析缓冲液中透析过夜。
缓冲液:
透析缓冲液(混合并且储存在冷藏室中):
DELFIA激酶缓冲液(DKB):
MOPS=3-[N-吗啉代]丙磺酸(西格玛(Sigma)M3183)。
EGTA=乙二醇-双(2-氨基乙醚)-N,N,N',N'-四乙酸(西格玛(Sigma)E3889)。
DKB1(具有BRAF和MEK蛋白的DKB):
合并4950μL的DKB和50μL的2.5mg/mL GST-MEK储备液,如上所描述获得的(以给出1mg的MEK/40μL)。然后添加22.5μL的如上所描述获得的BRAF储备液,以给出约0.2μL的BRAF/40μL。
DKB2(具有MEK蛋白的DKB):
合并4950μL的DKB和50μL的2.5mg/mL GST-MEK储备液(以给出1mg的MEK/40μL)。使用500μL的这种溶液用作吹出(BO)和空载体(EV)对照。
ATP:
将于蒸馏水中的100mM ATP储备液稀释至500μM,以给出测定中的100μM终浓度。
抑制剂(测试化合物):
将100mM储备液在药物板中用DMSO稀释至10、3、1、0.3、0.1、0.03、0.01、0.003、0.001、0.0003和0.0001mM,得到测定中的浓度为100、30、10、3、1、0.3、0.1、0.03、0.01、0.003和0.001μM。
第一抗体:
将磷酸-MEK1/2CST#9121S用DELFIA测定缓冲液(AB)1:1000稀释。在使用前,在室温下在AB中预孵育抗体30分钟。
第二抗体:
将抗-兔-Eur标记的第二珀金埃尔默(Perkin Elmer)#AD0105用DELFIA测定缓冲液(AB)1:1000稀释。在使用前,在室温下在AB中预孵育抗体30分钟。(将第一抗体和第二抗体一起孵育。)
吐温:
于水中的0.1%吐温20。
测定缓冲液:
DELFIA测定缓冲液珀金埃尔默(Perkin Elmer)#4002-0010。
增强溶液:
DELFIA增强溶液珀金埃尔默(Perkin Elmer)#4001-0010。
测定板:
96孔谷胱甘肽-包被的黑色板普达(Perbio)#15340。
程序:
1.用于TBS中的5%牛奶预封闭各孔持续1小时。
2.用200μL TBS洗涤各孔3次。
3.对于所有抑制剂(测试化合物),涂板出40μL的DKB1,DMSO对照,并且任选地其他对照化合物。
4.对于BO和EV孔,涂板出40μL的DKB2。
5.根据希望的板安排,以0.5μL/孔添加抑制剂(测试化合物)。
6.添加0.5μL DMSO至运载体对照孔。
7.添加2μL的BRAF至BO和EV孔。
8.在室温下与测试化合物预孵育10分钟,伴随着振摇。
9.添加10μL的500μM ATP在DKB中的储备液,以给出100μM测定浓度。
10.用TopSeal密封各板,并在室温下伴随着振摇孵育45分钟。
11.用200μL 0.1%吐温20/水洗涤板3次,以终止反应。
12.添加50μL/孔的抗体混合物并且在室温下伴随着振摇孵育1小时。
13.用200μL 0.1%吐温20/水洗涤板3次。
14.添加100μL DELFIA增强溶液/孔,用箔覆盖,并在室温下伴随着振摇孵育30分钟。
15.使用铕方案在维克多(Victor)酶标仪(珀金埃尔默,图尔库,芬兰)上读数。
从所有值中减去空白(空载体)的值。DMSO对照设定为100%活性并且测定点(响应)计算为DMSO对照的百分比。将数据使用Graphpad Prism软件进行标绘并且使用可变斜率S型剂量-响应方程计算非线性回归线:
Y=底部+[顶部-底部]/[1+10^((LogEC50-X)*希尔斜率)]
其中X为浓度的对数并且Y是响应。通过这一程序产生的IC50是产生在饱和与零-效应平台之间的百分比对照荧光中间值的药物浓度。通常进行三次独立测定,并且报道IC50的均值。
数据总结于下表中。
基于细胞的磷酸化ERK测定(突变体BRAF WM266.4细胞)
使用根据以下方案进行的基于细胞的测定来评估化合物。
第0天:
在96-孔板中涂板出16,000个突变体BRAF WM266.4细胞/孔于99μL培养基中。
第1天:
1.添加1μL测试化合物至细胞中(总1μL溶液)。
2.将细胞与测试化合物在37℃下孵育6小时。
3.从所有孔中吸去溶液。
4.用100μL 4%甲醛/0.25%曲通X-100PBS/孔固定细胞。
5.在4℃下孵育所述板1小时。
6.吸去固定溶液并且添加300μL TBS/孔。
7.放置所述板在4℃下过夜。
第2天:
1.用200μL PBS/孔洗涤所述板2次。
2.用100μL于TBS中的5%奶粉进行封闭。
3.在37℃下孵育所述板20分钟。
4.用0.1%吐温/H2O洗涤所述板2次。
5.向每孔添加50μL的稀释于5%奶粉/TBS中的3μg/mL第一抗体pERK(西格玛M8159)。
6.在37℃下孵育所述板2小时。
7.用0.1%吐温/H2O洗涤所述板2次。
8.向每孔添加50μL的0.45μg/mL第二铕-标记的抗小鼠抗体(珀金埃尔默公司)。
9.在37℃下孵育所述板1小时。
10.用0.1%吐温/H2O洗涤所述板2次。
11.向每孔添加100μL增强溶液(珀金埃尔默公司)。
12.在室温下放置板约10分钟,然后轻微振摇所述板。
13.在维克多2(Victor2)酶标仪(珀金埃尔默,图尔库,芬兰)中读取铕时间分辨荧光值。
14.用0.1%吐温/H2O洗涤所述板2次。
15.通过添加200μL的溶液/孔,用二喹啉甲酸测定(BCA,西格玛公司)测量蛋白质浓度。
16.在37℃下孵育所述板30分钟。
17.在酶标仪中读取在570nm处的吸光度水平。
注意,用计数值除以吸光度从而使铕计数值针对蛋白质水平归一化。
从所有值中减去空白(无细胞)的数值。DMSO对照设定为100%活性并且测定点(响应)计算为DMSO对照的百分比。将数据使用Graphpad Prism软件进行标绘并且使用可变斜率S型剂量-响应方程计算非线性回归线:
Y=底部+[顶部-底部]/[1+10^((LogEC50-X)*希尔斜率)]
其中X为浓度的对数并且Y是应答。通过这一程序产生的IC50是产生在饱和与零-效应平台之间的百分比对照荧光中间值的药物浓度。通常进行三次独立测定,并且报道IC50的均值。
数据总结于下表中。
SRB细胞增殖测定(SRB GI50)
在37℃下,在10%CO2水-饱和大气中,将细胞系常规培养于补充有10%胎牛血清的DMEM或RPMI 1640中。通过在汇合之前进行传代-培养(3-5天间隔),将培养物维持在指数生长期。收获具有5mL市售胰蛋白酶EDTA的80cm2组织培养瓶来制备单细胞悬浮液。5分钟后,将脱离的细胞与5mL完全补充的培养基混合并离心沉淀(1000rpm持续7分钟)。吸去上清液后,将细胞沉淀物再悬浮于10mL新鲜培养基中,并且通过19-号针头抽吸全部体积上/下5次使细胞完全解聚。使用血细胞计数器测定细胞的浓度(1/10稀释)。通过将细胞悬浮液稀释至10,000-40,000/mL来制备对于所进行测试的次数而言至少2-倍过量的适合体积,通常为100-200mL,并且使用可编程8-通道蠕动泵将100μL/孔分配至96孔板,得到1000-4000个细胞/孔,第12列留为空白。将这些板放回孵育器24小时,以使细胞重新附着。
以10mM于DMSO中制备受试化合物。将等分试样(24μL)稀释在1.2mL培养基中,得到200μM,并且通过转移80μL至160μL中进行10次3倍系列稀释。使用8-通道移液枪向孔中添加各次稀释的等分试样(100μL),从而达到最终的进一步2倍稀释,并得到100μM至0.005μM范围的剂量。第11列仅接收空白培养基。每种化合物以一式四份进行测定,每次重复是四个小孔的平均值。
进一步生长5天后,倒空板,并且在4℃下使细胞在10%三氯乙酸中固定30分钟。在流动的自来水中充分漂洗后,将板干燥,并通过添加50μL的0.1%磺酰罗丹明-B在1%乙酸中的溶液,在室温下染色10分钟。倒出染料,在1%乙酸流下充分漂洗板(从而除去末结合的染料)并干燥。通过添加100μL Tris缓冲液(pH 8),随后在板振荡器上振摇10分钟(约500rpm),使所结合的染料吸收进溶液中。使用酶标仪测定各孔在540nm的吸光度(与存在的细胞数成比例)。
在将第12列的空白值平均后,将其从所有值中减去,并且将结果表示为未经处理值(第11列)的百分比。将如此推导的10个数值(一式四份)针对药物浓度的对数进行标绘,并且通过非线性回归的四参数逻辑方程进行分析,如果检查建议的话则设置约束。通过这一程序产生的GI50是产生在饱和与零-效应平台之间的百分比对照A540中间值的药物浓度。
一系列细胞系的结果总结如下。
异种移植研究
对于标准细胞系,以悬浮液(0.2mL)将细胞皮下接种到雌性无胸腺或重度联合免疫缺陷小鼠的侧腹。在肿瘤体积的分层分配之后,将每组7-8只小鼠的各组指定处理。使用TBAP-01的处理在细胞给予后11-14天之间开始。对于强饲法,给予200μL的悬浮液(在10mL/kg下的DMSO:水,1:19,v/v)。对照动物接受类似剂量的运载体(DMSO:水,1:19,v/v)。继续使用TBAP-01处理,每日一次,持续24个剂量。
对于患者衍生的异种移植物(PDX),将新鲜组织在手术后立即收集到补充有10%FBS的RPMI中。将组织转移到无菌皮氏培养皿中。去除肿瘤的坏死部分并且将一5x 5x 5mm片皮下植入到Cb 17NOD SCID小鼠的侧腹中。当肿瘤达到内务部许可大小限制,将其切除,并且将活体组织切成5x 5x 5mm立方体并使用相同的程序移植到另外的Cb 17NOD SCID小鼠中。基因组和组织学分析证实在每个点的肿瘤衍生自起始材料。移植后,允许肿瘤RM-2(系2)(BRAF突变体,固有威罗菲尼抗性的患者衍生的异种移植物)、肿瘤RM-17(系3)(BRAF突变体患者衍生的对达拉菲尼+曲美替尼组合有抗性的异种移植物)、和RM33S(来自伊匹单抗-难治性的患者的BRAF野生型Ras野生型)在通过以下各项处理起始之前生长至约50-60mm3,所述处理为每日以20mg/kg/天进行TBAP-01或运载体的口胃强饲法分别持续24天或17天。从手术后采集的新鲜组织中建立患者衍生的细胞LP2-CL2(系1)(BRAF突变体,衍生自在临床上在3个月的治疗之后对威罗菲尼有获得性抗性的患者)。细胞生长在用10%FBS取代的RPMI中。
这些结果总结在下表中。
生物标志物研究
以悬浮液(0.2mL)将细胞皮下接种到雌性无胸腺小鼠的侧腹。在细胞给予后14-21天,将每组3-6只小鼠的各组指定用单一剂量的测试化合物(用于报道于表13中的免疫印迹研究)或4个日剂量(用于报道于表13中的免疫组织化学研究)处理。对于强饲法,给予200μL的40-50mg/kg TBAP-01于DMSO:水中的悬浮液。对照动物接受类似剂量的运载体(DMSO:水,1:19,v/v)。给予后2-8小时收获肿瘤,并且使用组织均质机(Precellys 24)将其溶解于1%NP40裂解缓冲液中(100μL的缓冲液/15mg的组织)。使用660nm蛋白测定(皮尔斯(Pierce))测量总蛋白质含量,并且将40μg的总蛋白质加载到SDS-page中用于进一步免疫印迹。将ERK2(圣克鲁兹生物技术(Santa Cruz Technologies)、磷酸化-MEK(细胞信号传导公司(Cell Signaling))、以及磷酸化-ERK(西格玛)抗体用于免疫印迹;使用荧光第二抗体(英杰公司(Invitrogen))和拜力(Li-cor))在奥德赛(Odyssey)系统(拜力(Li-cor))上揭示信号。可替代地,在治疗(24个日剂量)结束时在最终给药之后1小时收获肿瘤并且用如上所描述的类似方式处理。
免疫组织化学(IHC):将肿瘤如在别处描述的进行福尔马林固定和制备(参见例如多曼(Dhomen)等人,2009)用于用苏木精和伊红染色、兔pSRC(英杰公司(Invitrogen)44660G)和pERK(细胞信号传导公司(Cell Signaling)20G11)染色。在各个实验中包括阳性和阴性对照。以盲法方式进行图案和染色强度的打分。
数据总结于下表中,所述表显示磷酸化-MEK(ppMEK)和磷酸化-ERK(ppERK)的百分比降低,如与TBAP-01的运载体处理的对照相比的。将pMEK和pERK针对在处理的样品连同在对照样品中的总ERK归一化。
药物代谢动力学研究
至少6周龄的雌性BALB/cAnNCrl小鼠被用于所述PK分析。将小鼠静脉内(2mg/kg,于DMSO中:吐温20:水10:1:89v/v)给药或通过强饲法口服给药。针对静脉内途径,在5分钟与18或24小时之间在7或8个时间点处取得样品;针对口服途径,在15分钟与18或24小时之间在6或8个时间点处取得样品。每途径每时间点使用三只小鼠。将它们置于氟烷或异氟烷麻醉下并且通过末梢心脏穿刺取得用于血浆制剂的血液至肝素化注射器。将血浆样品急速冷冻于液氮中并且然后在分析之前储存在-70℃下。根据进行国家内务部动物守则(科学程序)法案1986以及由研究所动物伦理委员会和英国协调委员会关于实验性赘生物形成中动物福利的癌症研究特别委员会提出的指南之内进行所有涉及动物的程序。
数据总结于下表中。
hERG抑制
根据承包商的方案在英国柴郡Cyprotex发现公司(Cyprotex Discovery)进行研究。这些研究在IonWorksTM HT仪器(分子设备公司(Molecular Devices Corporation))上进行,所述仪器在专门化384-孔板(PatchPlateTM)中同时在48个单细胞中自动地进行电生理学测量。所用的细胞是用hERG(获自英国Cytomyx的细胞系)稳定转染的中国仓鼠卵巢(CHO)细胞。在胞外溶液(具有钙和镁的杜尔贝科氏磷酸盐缓冲盐水,pH 7-7.2)中制备单细胞悬浮液,并且等分试样自动添加至PatchPlateTM的每个孔中。然后通过在所述板下方施加真空以形成电气密封件而将细胞定位在每个孔底部的小孔上。通过所有孔共用的单一隔室施加真空,将所述隔室用胞内溶液(用HEPES缓冲至pH 7.2)填充。经由胞内隔室中的共用接地-电极和放置到每个较高孔中的单独电极测量每个密封件的抗性。
然后通过在PatchPlateTM的下面循环穿孔剂、两性霉素来实现电进入至细胞,并且然后测量前化合物hERG电流。将电极定位在细胞外隔室并且-80mV的保持电位施加持续15秒。然后将这些hERG通道通过施加去极化步骤至+40mV持续5秒而激活,并且然后夹在-50mV持续4秒以引发hERG尾电流,之后返回到-80mV持续0.3秒。然后将测试化合物从包含一系列浓度的化合物TBAP-01的96-孔微量滴定板自动地添加至PatchPlateTM的较高的孔中。包括一种已确立的hERG抑制剂奎尼定,作为实验对照。将TBAP-01溶解于DMSO中,并且以从100μM至32nM于0.25%DMSO中范围内的最终浓度进行测定。包括含有0.25%DMSO的缓冲液,作为阴性对照。使用与前化合物扫描中相同的电压步骤方案,在记录电流之前,将测试化合物留下与这些细胞接触持续300秒。在4个重复孔中测试每个浓度。
将后化合物电流表示为前化合物电流的百分比,并且针对每个化合物的浓度进行标绘。其中观察到浓度依赖性抑制,将数据拟合为以下等式:
y=(y最大-y最小)/(1+(x/x50)s)+y最小
其中:
y=(后化合物电流/前化合物电流)x 100;
x=浓度;
x50=抑制电流达50%所需的浓度(IC50);以及
s=图的斜率。
数据总结于下表中。
抗其他靶标的活性
根据承包商的方案在佩斯利生命技术公司(Life Technologies in Paisley)进行研究。在100μM的ATP浓度存在下,将TBAP-01溶解于DMSO中,并且以从10μM至0.5nM于1%DMSO中范围内的最终浓度进行测定。使用采用基于荧光的、基于磷酸化和非磷酸化的肽对蛋白水解裂解的差异灵敏度的酶偶联酶形式的生物化学测定来确定测试化合物的IC50值。
根据承包商的方案在国际邓迪激酶分析中心(The International Centre forKinase Profiling in Dundee)进行另外的研究。将TBAP-01溶解于DMSO中,并且以1μM于2%DMSO中的最终浓度针对131激酶进行测定。使用放射性的(33P-ATP)滤膜结合测定来进行这些测定。
数据总结于下表中。
注意,例如,熟知的是:TAK1是癌症例如淋巴瘤和结直肠癌和胰腺癌中的靶标;TrkA是肺癌和乳腺癌中的靶标;DDR2是癌症例如鳞状细胞肺癌中的靶标;VEGFR和Tie-2是抗血管生成的靶标;ABL是白血病中的靶标;并且YES1是癌症例如黑色素瘤和乳腺癌中的靶标。
抗病毒活性
将化合物针对HepG2细胞的脑心肌炎病毒(ECMV)VR-129B感染;维洛(Vero)细胞的单纯性疱疹病毒HSV-1、SC16感染;和MDCK细胞中的甲型流感病毒、A/Panama/2007/99(H3N2);的抗病毒活性根据承包商的方案在KWSBiotest(布里斯托尔(Bristol),UK)进行评估。
使允许病毒复制的细胞在具有补充剂的生长培养基中生长到足够数量。一旦细胞融合,将它们接种到96孔平-底板中。对于EC50(有效浓度,50%)确定,去除培养基,并且在病毒感染之前10分钟,将化合物以于0.4%DMSO中的10x终浓度添加。感染之后1小时,将覆盖培养基添加至各孔中,以给出1x浓度的化合物用于本研究的持续时间。设置运载体和阳性对照孔以控制对细胞活力的任何影响。对于CC50(细胞毒性浓度,50%)确定,遵循相同的方法,除了仅添加培养基代替病毒接种物。
然后使用MTT测定来评估单独的孔,MTT测定是用于哺乳动物细胞存活的定量比色测定。将细胞与1mg/mL MTT溶液孵育3小时。然后通过量化在适当波长下的吸光度来确定颜色强度。结果提供每种化合物的抗病毒功效的指示为EC50、连同CC50,以显示这些化合物在病毒感染不存在下对细胞的任何细胞毒效应。还目视检查病毒感染的孔的任何CPE或合胞体形成。
有效浓度(EC50):使用用于哺乳动物细胞存活的MTT比色测定来评估化合物降低病毒诱导的细胞死亡的能力。使用ELISA酶标仪来定量自测定的结果,并且确定对于有待用每种病毒评估的这些化合物中的每者的EC50。结果以图表形式连同每组的平均标准误差(SEM)一起显示。计算每种化合物的功效的统计显著性。
细胞毒性浓度(CC50):使用用于哺乳动物细胞存活的MTT比色测定评估化合物的细胞毒性效应。使用ELISA酶标仪来定量自测定的结果,并且确定对于有待评估的这些化合物中的每者的CC50。结果以图表形式连同每组的平均标准误差(SEM)一起显示。计算每种化合物的功效的统计显著性。
LPS刺激的TNF-α从人外周血单核细胞(PBMC)的释放
肿瘤坏死因子-α(TNF-α),一种17kDa分泌的细胞因子,在炎症疾病和免疫病症中起着重要的作用。TNF-α主要通过活化巨噬细胞(参见例如沙霍夫(Shakhov)等人,1990)和单核细胞(参见例如姚(Yao)等人,1997)响应于若干炎症和免疫刺激物而分泌。例如,在细菌感染期间,脂多糖(LPS),即革兰氏阴性细菌细胞壁的一种组分,诱导TNF-α的释放(参见例如马蒂科(Martich)等人,1991)。
炎症细胞因子例如TNF-α的过度产生已经与以下各项关联:炎症疾病例如克罗恩氏病(CD)和炎症性肠病(参见例如卡姆(Kam)等人,2000;纳卡穆拉(Nakamura)等人,2006)、类风湿性关节炎(参见例如凯非(Keffer)等人,1991;麦卡恩(McCann)等人,2010)、败血症性休克(参见例如林克(Link)等人,2008;沙皮拉(Shapira)等人.,1996)、哮喘(参见例如贝瑞(Berry)等人,2007)、慢性支气管炎(CB)、慢性阻塞性肺病(COPD)、急性肺损伤(ALI)、以及急性呼吸窘迫综合征(ARDS)(参见例如穆克霍帕蒂亚(Mukhopadhyay)等人,2006)。TNF-α水平的降低已经与这些病状中的改善相关联。
将化合物TBAP-01在LPS刺激的TNFα自人外周血单核细胞(PBMC)的释放中的活性在牛津高里市阿金塔(Argenta)/查尔斯河根据承包商的方案进行确定。使用标准密度梯度离心技术将PBMC分离自健康人志愿者血液。将PBMC悬浮于培养基中并且分配到96-孔板中并且在37℃下在加湿培养箱中孵育3小时。孵育后,更换培养基并且将测试化合物、参考化合物(BIRB796)、或适当的运载体添加至细胞中,并且将所述板在37℃下孵育1小时。孵育后,然后将LPS(大肠杆菌0111:84,10ng/mL)、或一种适当的运载体对照添加至细胞中,并且将所述板返回到培养箱中持续过夜孵育。孵育后,将所述板以300x g在室温下离心4分钟。去除细胞游离上清液并储存(冷冻)直至使用可商购的EUSA试剂盒(R&D系统公司(R&DSystems))测定TNF-α水平。
将测试化合物溶解于DMSO中,并且将等分试样储存冷冻。单独等份试样用于每个实验。对于每个实验,将测试化合物稀释于DMSO中(至1000倍最终测定浓度),然后将其稀释到细胞培养基中,以给出所需浓度同时维持恒定的DMSO浓度(在测定中最终浓度为0.1%DMSO)。
进行具有三个独立实验(n=3)的8-点剂量-响应曲线。将测试化合物在每个实验中的影响表达为LPS-刺激的应答的百分比抑制。将针对每种测试化合物在每个实验中的百分比抑制数据进行合并,以确定每种测试化合物的单一IC50值。
使用所述测定发现化合物TBAP-01展现出有效的抑制,其中IC50为3.4nM并且95%置信区间为2.0-5.7nM。
比较数据-1
将TBAP-01和结构相关的已知化合物(AA-04于施普林格(Springer)等人,2011中;和AA-018、AA-019、AA-062、AA-084于施普林格等人,2009中)的数据总结如下。
比较数据-2
与施普林格(Springer)等人,2011中的化合物AA-04相比,TBAP-01是:
(a)对BRAF激酶测定10-倍更强的;
(b)对pERK细胞测定8-倍更强的;以及
(b)对细胞增殖抑制测定5-倍更强的。
比较数据-3
与施普林格(Springer)等人,2009中的化合物AA-018相比,TBAP-01是:
(a)以最大有效剂量对突变体BRAF黑色素瘤异种移植物A375M为7-倍更有效的;以及
(b)2-倍更高的口服生物利用度。
比较数据-4
与施普林格(Springer)等人,2009中的化合物AA-019相比,TBAP-01是:
(a)以剂量2-倍更高(即40-50mg/kg)为体内耐受的,尽管具有比按相同剂量的AA-019更高的C最大和AUC;
(b)在对BRAF突变的未用药(naive drug)或批准药物抗性细胞系和突变体RAS细胞系的细胞增殖抑制中高达16-倍更强的;
(c)2-倍更可溶的(即,具有2-倍更高的热力学溶解度);
(d)以最大有效剂量对突变体BRAF黑色素瘤异种移植物A375M和突变体BRAF黑色素瘤异种移植物WM266.4为2-倍更有效的;
(e)以最大有效剂量对突变体RAS结直肠异种移植物SW620为1.2-倍更有效的;
(f)以最大有效剂量对威罗菲尼有抗性的患者衍生的突变体BRAF黑色素瘤异种移植物RM-2(系2)和突变体BRAF黑色素瘤异种移植物A375R为1.2-1.5-倍更有效的;以及
(g)以最大有效剂量对达拉菲尼+曲美替尼有抗性的患者衍生的突变体BRAF黑色素瘤异种移植物RM-17(系3)为2.4-倍更有效的。
(h)以最大有效剂量在抑制胰腺PDAC R172H同种异体移植物的pERK生物标志物中为>6.5-倍更有效的。
(i)以最大有效剂量在抑制胰腺PDAC R172H同种异体移植物的pSRC生物标志物中为2.5-倍更有效的。
比较数据-5
与施普林格(Springer)等人,2009中的化合物AA-062相比,TBAP-01以最大有效剂量对突变体BRAF黑色素瘤异种移植物A375M为9-倍更有效的。这是令人惊讶的且出乎意料的,因为与TBAP-01相比,AA-062具有5-倍更高的C最大和12-倍更高的AUC。
比较数据-6
与施普林格(Springer)等人,2009中的化合物AA-084相比,TBAP-01是:
(a)对BRAF激酶测定11-倍更强的;
(b)对pERK细胞测定8-倍更强的;以及
(b)对细胞增殖抑制测定5-倍更强的。
上述已经描述了本发明的原理、优选实施例和运行模式。然而,本发明不应被解释为限于所讨论的具体实施例。相反,上述实施例应当被视为说明性的而不是限制性的。应理解的是,在不脱离本发明范围的情况下,本领域技术人员可以在那些实施例中做出变化。
参考文献
在此引用多个出版物以便更充分地说明和披露本发明以及本发明所属领域的现状。以下提供这些参考文献的完全引用。这些参考文献各自通过引用以其全文在此结合入本披露中,其程度如同每个单独的参考文献特定地并且单独地指明为通过引用而结合。
安可达(Akula)等人,2004,“Raf促进人类疱疹病毒-8(HHV-8/KSHV)感染(Rafpromotes human herpesvirus-8(HHV-8/KSHV)infection)”,致癌基因(Oncogene),第23卷,第5227-5241页。
阿里塔洛(Alitalo)等人,1996,“受体酪氨酸激酶Tie的启动子”,1999年3月2日授权的美国专利号5,877,020。
阿龙(Alon)等人,1995,“血管内皮生长因子充当新形成的视网膜血管的存活因子并且对早产儿视网膜病变有影响(Vascular endothelial growth factor acts as asurvival factor for newly formed retinal vessels and has implications forretinopathy of prematurity)”,自然医学(Nature Med.),第1卷,第1024-1028页。
阿拉斯田崎(Anastasaki)等人,2012,“持续低水平的MEK抑制改善斑马鱼中的心脏-面-皮肤综合征(Continual low-level MEK inhibition ameliorates cardio-facio-cutaneous phenotypes in zebrafish)”,疾病模型与机制(Disease Models & Mechanisms),第5卷,第546-552页。
安东尼(Antony)等人,2013,“C-RAF突变赋予对RAF抑制剂有抗性(C-RAFMutations Confer Resistance to Inhibitors)”,癌症研究(Cancer Research),第73卷,第4840-4851页。
阿尔凯尼(Arcaini)等人,2012,“毛发细胞白血病和其他成熟B细胞肿瘤中的BRAFV600E突变(The BRAF V600E mutation in hairy cell leukemia and other mature B-cell neoplasms)”,血液(Blood),第119卷,第188-191页。
阿斯里(Asrih)等人,2013,“分裂素激活的蛋白激酶途径在与代谢综合征相关的多因子不良心脏重塑中的作用(Role of Mitogen-Activated Protein Kinase Pathwaysin multifactorial adverse cardiac remodeling associated with MetabolicSyndrome)”,炎症介质(Mediators of Inflammation),第2013卷,文献ID号367245。
巴达连-维里(Badalian-Very)等人,2011,“朗格汉斯细胞组织细胞增生症的理解中的研究进展(Recent advances in the understanding of Langerhans cellhistiocytosis)”,英国血液学杂志(British Journal of Haematology),第156卷,第163-172页。
贝戈雷(Belgore)等人,2004,“血管内皮生长因子(VEGF)家族成员和它们的受体在人动脉粥样硬化的动脉中的定位(Localisation of members of the vascularendothelial growth factor(VEGF)family and their receptors in humanatherosclerotic arteries)”,临床病理学杂志(J.Clin.Pathol.),第57卷,第266-272页。
本(Benn)等人,1994,“乙型肝炎病毒激活Ras-GTP复合物形成并确立一种Ras、Raf、MAP激酶信号传导级联(Hepatitis B virus HBx protein activates Ras-GTPcomplex formation and establishes a Ras,Raf,MAP kinase signaling cascade)”,PNAS,第91卷,第10350-10354页。
贝瑞(Berry)等人,2007,“哮喘的TNF-α(TNF-alpha in asthma)”,药理学新见 (Curr.Opin.Pharmacol.),第7卷,第3期,第279-282页。
博斯(Bos)等人,1989,“人类癌症中的Ras致癌基因(Ras oncogenes in humancancer:a review)”,癌症研究(Cancer Research),第49卷,第4682-4689页。
布里奇斯(Bridges)等人,2000,“用MEK抑制剂治疗哮喘(Treatment of asthmawith MEK inhibitors)”,国际(PCT)专利申请公开号WO 00/40235,2000年7月13日公开。
边(Byeon)等人,2012,“Src激酶在巨噬细胞介导的炎症应答中的作用(The roleof Src kinase in macrophage-mediated inflammatory responses)”,炎症介质 (Mediators of Inflammation),第2012卷,文献ID号512926。
卡尔霍恩(Calhoun)等人,2003,“胰腺癌的不同亚组中的BRAF和FBXW7(CDC4、FBW7、AGO、SEL10)突变(BRAF and FBXW7(CDC4,FBW7,AGO,SEL10)Mutations in DistinctSubsets of Pancreatic Cancer)”,美国病理学杂志(American Journal of Pathology),第163卷,第1255-1260页。
坎廷(Cantin)等人,2007,“可用于治疗癌症的吡唑基脲衍生物(Pyrazolyl ureaderivatives useful in the treatment of cancer)”,国际(PCT)专利公开号WO 2007/059202A2,2007年5月24日公开。
坎特雷尔(Cantrell),2003,“GTP酶和T细胞活化(GTPases and T cellactivation)”,免疫学综述(Immunol.Rev.),第192卷,第122-130页。
钱(Chan)等人,1996,“通过蛋白质酪氨酸激酶调节抗原受体信号传导(Regulation of antigen receptor signal transduction by protein tyrosinekinases)”,Curr.Opin.Immunol.,第8卷,第3期,第394-401页。
查普曼(Chapman)等人,2011,“在具有BRAF V600E突变的黑色素瘤中用威罗菲尼改善存活(Improved survival with威罗菲尼in melanoma with BRAF V600Emutation)”,新英格兰医学杂志(New England Journal of Medicine),第364卷,第2507-2516页。
查普曼(Chapman)等人,2011,“多发性骨髓瘤的最初基因组测序和分析(Initialgenome sequencing and analysis of multiple myeloma)”,自然(Nature),第471卷,第467-472页。
春(Chun)等人,2002,“用于预防和治疗关节关节炎的药物组合物及其筛选方法(Pharmaceutical composition for prevention and treatment of joint arthritisand a screening method thereof)”,国际专利申请公开号WO02/102367,2002年2月27公开。
希安比(Ciampi)等人,2005,“致瘤的AKAP9-BRAF融合是甲状腺癌中的MAPK途径活化的新颖机制(Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathwayactivation in thyroid cancer)”,临床研究杂志(J.Clin.Invest.),第115卷,第94-101页。
科尔维尔-纳什(Colville-Nash)和斯科特(Scott),1992,“血管生成和类风湿性关节炎:致病性和治疗意义(Angiogenesis and rheumatoid arthritis:pathogenic andtherapeutic implications)”,风湿病年鉴(Ann.Rhum.Dis.),第51卷,第919页。
库珀(Cooper)等人,1994,“膜相关的酪氨酸激酶作为分子开关(Membrane-associated tyrosine kinases as molecular switches)”,细胞生物学讨论会文集 (Semin.Cell Biol.),第5卷,第6期,第377-387页。
科科伦(Corcoran)等人,2010,“BRAF基因扩增可以在具有BRAF V600E突变的癌细胞中促进对MEK抑制剂有获得性抗性(BRAF Gene Amplification Can Promote AcquiredResistance to MEK Inhibitors in Cancer Cells Harboring the BRAF V600EMutation)”,科学信号(Sci.Signal.),第3卷,ra84。
库尔撒德(Coulthard)等人,2009,“p38MAPK:来自分子治疗机制的胁迫反应(p38MAPK:stress responses from molecular mechanisms to therapeutics)”,分子医 学进展(TrendsMol.Med.),第15卷,第369-379页。
考特尼奇(Courtneidge)等人,1993,“蛋白酪氨酸激酶的Src家族:调节与功能(The Src family of protein tyrosine kinases:regulation and functions)”,发育增 刊(Dev.Suppl.),第57-64页。
夸德拉多(Cuadrado)等人,2010,“p38MAPK信号传导的机制和功能(Mechanismsand functions of p38MAPK signalling)”,生物化学杂志(Biochem.J.),第429卷,第403-417页。
莫达尔雷迪(Damodar Reddy)等人,2001,“MAP激酶途径在原发性神经外胚层瘤中的作用(Role of MAP kinase pathways in primitive neuroectodermal tumours)”, 癌研究(Anticancer Research),第21卷,第2733-2738页。
戴维斯(Davies)等人,1996,“Raf和分裂素激活的蛋白激酶调节星状细胞胶原蛋白基因表达(Raf and Mitogen-activated Protein Kinase Regulate Stellate CellCollagen Gene Expression)”,生物化学杂志(J.Biol.Chem.),第271卷,第11039-11042页。
戴维斯(Davies)等人,2002,“人类癌症中的BRAF基团的突变(Mutations of theBRAF gene in human cancer)”,自然(Nature),第417卷,第949-954页。
戴维斯(Davis)等人,1994,“Tie-2配体1(Tie-2ligand 1)”,1999年3月9日授权的美国专利号5,879,672。
戴维斯(Davis)等人,1994,“Tie-2配体以及制备方法(TIE-2ligand,and methodof making)”,1996年5约28日授权的美国专利号5,521,073。
戴维斯(Davis)等人,1996,“通过分泌-诱捕表达克隆来分离针对TIE2受体的配体的血管生成素(Isolation of Angiopoietin-1,a Ligand for the TIE2Receptor,bySecretion-Trap Expression Cloning)”,细胞(Cell),第87卷,第1161-1169页。
登尼顿(Denekamp),1993,“血管生成、新生血管性增殖和血管病理生理学作为用于癌症治疗的靶标(Angiogenesis,neovascular proliferation and vascularpathophysiology as targets for cancer therapy)”,英国放射学杂志(Br.J.Rad.),第66卷,第181-196页。
多曼(Dhomen)等人,2009,“在小鼠中致癌的Braf诱导黑素细胞衰老和黑色素瘤(Oncogenic Braf induces melanocyte senescence and melanoma in mice)”,癌细胞 (Cancer Cell),第15卷,第294-303页。
狄克逊(Dixon)等人,2001,“使用MEK抑制剂治疗慢性疼痛的方法(Method fortreating chronic pain using MEK inhibitors)”,国际(PCT)专利申请公开号WO 01/05392,2001年1月25日公开。
唐沃德(Downward)等人,2003,“癌症治疗中靶向RAS信号传导途径(TargetingRAS signalling pathways in cancer therapy)”,自然综述癌症(Nature Reviews Cancer),第3卷,第11-22页。
达德利(Dudley)等人,2000,“用MEK抑制剂治疗关节炎(Treatment of arthritiswith MEK inhibitors)”,国际(PCT)专利申请公开号WO 00/35436,2000年6月22日公开.
埃利斯(Ellis)等人,2008,“靶向VEGF的疗法:抗肿瘤活性的机制(VEGF-targetedtherapy:mechanisms of anti-tumour activity)”,自然综述癌症(Nature Reviews Cancer),第8卷,第579-591页。
法尔霍克(Falchook)等人,2012,“达拉菲尼在具有黑色素瘤、未处理的脑转移瘤以及其他实体瘤的患者中:一种阶段1剂量递增试验(Dabrafenib in patients withmelanoma,untreated brain metastases,and other solid tumours:a phase 1dose-escalation trial)”,柳叶刀(The Lancet),第379卷,第1893-1901页。
费尔南德斯-梅达德(Fernandes-Medarde),2011,“癌症和发展的疾病中的Ras(Ras in Cancer and Developmental Diseases)”,基因与癌症(Genes&Cancer),第2卷,第344-358页。
菲德勒(Fidler)和埃利斯(Ellis),1994,“血管生成对于癌症转移的生物学和疗法的意义(The implications of angiogenesis for the biology and therapy ofcancer metastasis)”,细胞(Cell),第79卷,第185-188页。
弗莱厄蒂(Flaherty)等人,2010,“突变的、活化的BRAF在转移性黑色素瘤中的抑制(Inhibition of mutated,activated BRAF in metastatic melanoma)”,新英格兰医学 杂志(New England Journal of Medicine),第363卷,第页809-819。
弗林(Flynn)等人,2008,“酶调节剂与治疗(Enzyme modulators andtreatments)”,美国专利申请公开号US 2008/0113967A1,2008年5月15日公开。
福尔克曼(Folkman)等人,1992,“血管生成(Angiogenesis)”,生物化学杂志 (J.Biol.Chem.),第267卷,第10931-10934页。
福尔克曼(Folkman),1992,“血管生成在肿瘤生长中的作用(The role ofangiogenesis in tumour growth)”,癌症生物学研究会(Semin.Cancer Biol.),第3卷,第65-71页。
福尔克曼(Folkman),1995,“癌症、血管、类风湿及其他疾病中的血管生成(Angiogenesis in cancer,vascular,rheumatoid and other disease)”,自然医学 (Nature Medicine),第1卷,第27-31页。
福尔克曼(Folkman),1997,“血管生成和血管生成抑制:综述(Angiogenesis andangiogenesis inhibition:an overview)”,EXS,第79卷,第1-81页。
弗里德兰德(Friedlander)等人,1995,“通过不同αv整联蛋白定义两个血管生成途径(Definition of two angiogenic pathways by distinct alpha v integrins)”, 学(Science),第270卷,第1500-1502页。
藤田(Fujita)等人,2004,“在肾小管细胞中ERK和p38介导高-葡萄糖-诱导的肥大和TGF-α表达(ERK and p38mediate high-glucose-induced hypertrophy and TGF-αexpression in renal tubular cells)”,美国生理学杂志:心脏与循环生理学 (Am.J.Physiol.Renal.Physiol.),第286卷,第F120页。
福田(Fukuda)等人,2007,“艾伯斯坦-巴尔(Epstein-Barr)病毒潜伏的膜蛋白2A通过Ras/PI3-K/Akt途径的组成性激活介导转化(Epstein-Barr Virus Latent MembraneProtein 2A Mediates Transformation through Constitutive Activation of theRas/PI3-K/Akt Pathway)”,病毒学杂志(J.Virol.),第81卷,第9299-9306页。
古田(Furuta)等人,2012,“氮化的芳香族杂环衍生物(Nitrogenated aromaticheterocyclic ring derivative)”,国际(PCT)专利申请公开号WO 2012/008564A1,2012年1月19日公开。
加纳特(Garnett)等人,2004,“罪名成立:B-RAF是一种人致癌基因(Guilty ascharged:B-RAF is a human oncogene)”,癌细胞(Cancer Cell),第6卷,第313-319页。
高迪(Gaudi)等人,2011,“皮肤的和葡萄膜黑色素瘤的分子基础(MolecularBases of Cutaneous and Uveal Melanomas)”,国际病理学研究(Pathology Research International),第2011卷,文献ID号159421。
格奥特(Genot)等人,2000,“Ras在淋巴细胞中的调节和功能(Ras regulationand function in lymphocytes)”,当前免疫学观点(Curr.Opin.Immunol.),第12卷,第289-294页。
吉勃特(Geppert)等人,1994,“肿瘤坏死因子生物合成通过Ras/Raf-1/MEK/MAPK途径的活化脂多糖信号(Lipopolysaccharide signals activation of Tumour NecrosisFactor biosynthesis through the Ras/Raf-1/MEK/MAPK pathway)”,分子医学(Mol.Med.),第1卷,第93-103页。
吉尔伯特森(Gilbertsen)等人,2000,“MEK抑制剂用于预防移植排斥的用途(Useof a MEK inhibitor for preventing transplant rejection)”,国际(PCT)专利申请公开号WO 00/35435,2000年6月22日公开。
吉洛提(Girotti)等人,2013,“抑制EGF受体或SRC家族激酶信号传导克服BRAF抑制剂在黑色素瘤中的抗性(Inhibiting EGF receptor or SRC family kinase signalingovercomes BRAF inhibitor resistance in melanoma)”,癌症发现(Cancer Discovery),第3卷,第158-167页。
戈多希(Godowski)等人,1997,“Tie配体同系物(Tie ligand homologues)”,2000年2月29日美国专利号6,030,831。
格拉夫(Graf)等人,1997,“分裂素激活的蛋白激酶活化参与血小板衍生的生长因子通过血管平滑肌细胞的定向迁移(Mitogen-Activated Protein Kinase Activation IsInvolved in Platelet-Derived Growth Factor-Directed Migration by VascularSmooth Muscle Cells)”,高血压(Hypertension),第29卷,第334-339页。
格雷-朔普费尔(Gray-Schopfer)等人,2007,“黑色素瘤生物学和新的靶向治疗(Melanoma biology and new targeted therapy)”,自然(Nature),第445卷,第851-857页。
格雷格(Greger)等人,2012,“BRAF、MEK和PI3K/mTOR抑制剂的组合克服通过NRAS或MEK突变介导的对BRAF抑制剂GSK2118436达拉菲尼有获得性抗性(Combinations ofBRAF,MEK,and PI3K/mTOR Inhibitors Overcome Acquired Resistance to the BRAFInhibitor GSK2118436Dabrafenib,Mediated by NRAS or MEK Mutations)”,分子癌症治 疗学(Molecular Cancer Therapeutics),第11卷,第909-920页。
格赛欧思(Grosios)等人,2004,“通过新颖的VEGF受体酪氨酸激酶抑制剂PTK787/ZK222584的血管生成抑制在类风湿性关节炎的模型中引起显著的抗关节炎作用(Angiogenesis inhibition by the novel VEGF receptor tyrosine kinaseinhibitor,PTK787/ZK222584,causes significant anti-arthritic effects in modelsof rheumatoid arthritis)”,炎症研究(Inflamm.Res.),第53卷,第133-142页。
顾(Gu)等人,2013,“有机化合物用于治疗努南综合征的用途(Use of organiccompound for the treatment of Noonan syndrome)”,国际(PCT)专利申请公开号WO2013/033133,2013年3月7日公开。
哈泽(Haase)等人,2001,“分裂素激活的蛋白激酶活化通过整联蛋白在银屑病发病机理中的作用(A role for mitogen-activated protein kinase activation byintegrins in the pathogenesis of psoriasis)”,临床研究杂志(J.Clin.Invest.),第108卷,第527-536页。
阿罗什(Haroche)等人,2012,“BRAF V600E突变在脂质肉芽肿病疾病但不在其他非-朗格汉斯细胞组织细胞增生症中的高流行率(High prevalence of BRAF V600Emutations in Erdheim-Chester disease but not in other non-Langerhans cellhistiocytoses)”,血液(Blood),第120卷,第2700-2703页。
哈提瓦西里欧(Hatzivassiliou)等人,2011,“通过检测K-ras突变和RTK表达水平确定细胞对B-Raf抑制剂治疗的敏感性(Determining sensitivity of cells to B-Rafinhibitor treatment by detecting K-ras mutation and RTK expression levels)”,2011年3月10日公开的国际(PCT)专利申请公开号WO 2011/028540。
哈提瓦西里欧(Hatzivassiliou)等人,2011,“通过检测K-ras突变和RTK表达水平确定细胞对B-Raf抑制剂治疗的敏感性(Determining sensitivity of cells to B-Rafinhibitor treatment by detecting K-ras mutation and RTK expression levels)”,2011年3月10日公开的国际(PCT)专利申请公开号WO 2011/028540。
海多恩(Heidorn)等人,2010,“激酶死亡BRAF和致癌的RAS协作以通过CRAF驱动肿瘤进展(Kinase-dead BRAF and oncogenic RAS cooperate to drive tumourprogression through CRAF)”,细胞(Cell),第140卷,第209-221页。
胡(Hu)等人,2011,“阻断ATP结合的突变产生一个使Ras、CRAF和BRAF的激酶抑制剂的支架功能稳定的假激酶(Mutation that blocks ATP binding creates apseudokinase stabilizing the scaffolding function of kinase suppressor ofRas,CRAF and BRAF)”,PNAS,第18卷,第6067-6072页。
黄(Hwang)等人,2004,“c-raf-1原癌基因在肝硬化和肝细胞癌中的过表达(Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellularcarcinoma)”,肝脏病学研究(Hepatology Research),第29卷,第113-121页。
英格博(Ingber)等人,1990,“抑制血管生成和抑制肿瘤生长的烟曲霉素的合成类似物(Synthetic analogues of fumagillin that inhibit angiogenesis and suppresstumour growth)”,自然(Nature),第348卷,第555-557页。
井上(Inoue)等人,1998,“人冠状动脉动脉粥样硬化损伤中的血管内皮生长因子(VEGF)表达:VEGF在动脉粥样硬化进展中的可能病理生理显著性(Vascular endothelialgrowth factor(VEGF)expression in human coronary atherosclerotic lesions:possible pathophysiological significance of VEGF in progression ofatherosclerosis)”,循环(Circulation),第98卷,第2108-2116页。
捷夫(Jaffee)等人,2000,“MAP激酶激酶(MEK)的抑制导致体内抗炎反应(Inhibition of MAP Kinase Kinase(MEK)Results in an Anti-inflammatory Responsein Vivo)”,生物化学与生物物理研究通讯(Biochem.Biophys.Res.Com.),第268卷,第647页。
杰森(Jessen)等人,2013,“MEK抑制展示在人和小鼠神经纤维瘤肿瘤中的功效(MEK inhibition exhibits efficacy in human and mouse neurofibromatosistumours)”,临床研究杂志(Journal of Clinical Investigation),第123卷,第340-347页。
纪(Ji)等人,2002,“浅表脊髓神经元中的ERK MAP激酶激活诱导强啡肽原和NK-1上调并有助于持续性炎性疼痛超敏性(ERK MAP Kinase Activation in SuperficialSpinal Cord Neurons Induces Prodynorphin and NK-1 Upregulation andContributes to Persistent Inflammatory Pain Hypersensitivity)”,神经科学杂志 (J.Neurosci.),第22卷,第478页。
乔(Jo)等人,2005,“MEK抑制剂U0126通过降低炎症和细胞凋亡减弱了顺铂诱导的肾损伤(MEK inhibitor,U0126,attenuates cisplatin-induced renal injury bydecreasing inflammation and apoptosis)”,国际肾脏期刊(Kidney Intl.),第67卷,第458-466页。
约翰逊(Johnson)等人,2001,“MKK1/2激酶活性在人巨细胞病毒感染中的作用(The role of MKK1/2kinase activity in human cytomegalovirus infection)”,遗传 病毒学杂志(J.Gen.Virol.),第82卷,第493-497页。
卡隆(Kahlon)等人,1992,“动脉粥样硬化中的血管生成(Angiogenesis inatherosclerosis)”,加拿大心脏病学杂志(Can.J.Cardiol.),第8卷,第60页。
卡姆(Kam)等人,2000,“用于治疗克罗恩氏病的TNF-α拮抗剂(NF-alphaantagonists for the treatment of Crohn's disease)”,药理治疗专家意见杂志 (Expert Opin.Pharmacother.),第1卷,第615-622页。
卡里姆(Karim)等人,2006,“在表达神经元特异性显性阴性分裂素激活的蛋白激酶激酶(MEK)小鼠中的受损的炎症疼痛和热痛觉过敏(Impaired inflammatory pain andthermal hyperalgesia in mice expressing neuron-specific dominant negativemitogen activated protein kinase kinase(MEK))”,分子疼痛(Mol.Pain.),第2卷,第2页。
凯非(Keffer)等人,1991,“表达人坏死因子转基因小鼠的:一种预测的关节炎遗传模型(Transgenic mice expressing human necrosis factor:a predictive geneticmodel of arthritis)”,欧洲分子生物学学会杂志(EMBO J.),第10卷,第13期,第4025-4031页。
凯非(Keffer)等人,2013,“用于抑制调节性T细胞的活化的方法和组合物(Methods and compositions for inhibition of activation of regulatory Tcells)”,国际(PCT)专利申请公开号WO 2013/001372,2013年1月3日公开。
古刀拉(Kotoula)等人,2009,“BRAF、RAS和EGFR基因在人类肾上腺皮质癌中的突变分析(Mutational analysis of the BRAF,RAS and EGFR genes in humanadrenocortical carcinomas)”,内分泌相关的癌症(Endocrine-Related Cancer),第16卷,第565-572页。
李(Li)等人,1998,“NF-kB经由Src依赖性Ras-MAPK-pp90rsk途径的激活对于铜绿假单胞菌诱导的粘蛋白在上皮细胞中过量产生是需要的(Activation of NF-kB via aSrc-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonasaeruginosa-induced mucin overproduction in epithelial cells)”,PNAS,第95卷,第5718-5723页。
林(Lin)等人,2010,“VEGF及其受体-2参与通过初级感觉神经元介导的P2X2/3受体介导的神经性疼痛传递(VEGF and its receptor-2involved in neuropathic paintransmission mediated by P2X2/3receptor of primary sensory neurons)”,脑研究通 报(Brain Research Bulletin),第83卷,第284-291页。
林道尔(Lindauer)等人,2012,“达沙替尼”,癌症研究当前结果(Recent Results in Cancer Research),第184卷,第83-102页。
林克(Link)等人,2008,“磷酸二酯酶4抑制但不是β-肾上腺素在败血症性休克的外周血单核细胞中刺激抑制肿瘤坏死因子-α释放(Phosphodiesterase 4inhibition butnot beta-adrenergic stimulation suppresses tumor necrosis factor-alpharelease in peripheral blood mononuclear cells in septic shock)”,重症监护杂志 (Crit.Care),第12卷,第6期,R159。
朗(Long)等人,2011,“致癌BRAF在转移黑色素瘤中的预测性和临床病理性关联(Prognostic and clinicopathologic associations of oncogenic BRAF inmetastatic melanoma)”,临床肿瘤学杂志(J.Clin.Oncol.),第29卷,第10期,第1239-1246页。
洛伦兹(Lorenz)等人,2009,“心脏肥大:靶向Raf/MEK/ERK1/2-信号传导(Cardiachypertrophy:Targeting Raf/MEK/ERK1/2-signaling)”,国际生化细胞生物学与细胞生物 学杂志(The International Journal of Biochemistry&Cell Biology),第41卷,第2351-2355页。
洛温柏格(Lowenberg)等人,2005,“通过塞马莫德对c-Raf活性的特异性抑制诱导严重克罗恩氏病的临床缓解(Specific Inhibition of c-Raf Activity by SemapimodInduces Clinical Remission in Severe Crohn’s Disease)”,免疫学杂志 (J.Immunol.),第175卷,第2293-2300页。
罗(Luo)等人,2002,“柯萨奇病毒B3复制通过抑制细胞外信号调节激酶(ERK)信号传导途径而降低(Coxsackievirus B3Replication Is Reduced by Inhibition of theExtracellular Signal-Regulated Kinase(ERK)Signaling Pathway)”,病毒学杂志 (J.Virol.),第76卷,第3365-3373页。
马(Ma)等人,2005,“RK/MAPK途径,作为用于治疗神经性疼痛的靶标(The ERK/MAPK pathway,as a target for the treatment of neuropathic pain)”,治疗靶标的专 家意见(Expert Opin Ther Targets),第9卷,第699页。
麦德达西(Maddahi)等人,2010,“大脑局部缺血经由MEK/ERK途径诱导微血管促炎细胞因子表达(Cerebral ischemia induces microvascular pro-inflammatorycytokine expression via the MEK/ERK pathway)”,神经炎症杂志 (J.Neuroinflammation),第7卷,第1-14页。
马姆斯(Mammas)等人,2005,“女性生殖道癌中的ras基因参与(Involvement ofthe ras genes in female genital tract cancer(Review))”,国际肿瘤学杂志 (International Journal of Oncology),第26卷,第1241-1255页。
马蒂科(Martich)等人,1991,“正常人类的白细胞介素8和肿瘤坏死因子在静脉内毒素后的检测(Detection of interleukin 8and tumor necrosis factor in normalhumans after intravenous endotoxin:the effect of antiinflammatory agents)”, 验医学杂志(J.Exp.Med.),第173卷,第1021-1024页。
马丁(Martin)等人,2010,“对淋巴细胞特异性激酶抑制剂的更新:专利调查(Update on lymphocyte specific kinase inhibitors:a patent survey)”,治疗术专利 专家评论(Expert Opin.Ther.Pat.),第20卷,第1573-1593页。
玛莎布米(Masabumi)等人,2013,“血管内皮生长因子及其受体系统:各种疾病中的血管生成和病理作用的生理功能(Vascular endothelial growth factor and itsreceptor system:physiological functions in angiogenesis and pathologicalroles in various diseases)”,生物化学杂志(J.Biochem.),第153卷,第13-19页。
麦卡恩(McCann)等人,2010,“一种新颖PDE4抑制剂阿普斯特抑制肿瘤坏死因子-α自人类风湿性滑膜细胞的自发产生并改善实验性关节炎(Apremilast,a novelPDE4inhibitor,inhibits spontaneous production of tumour necrosis factor-alphafrom human rheumatoid synovial cells and ameliorates experimentalarthritis)”,关节炎研究与治疗(Arthritis Res.Ther.),第12卷,第3期,R107。
麦克凯(McKay)等人,2011,“显示由Raf抑制剂和KSR结构研究揭示的KSR功能复杂性(Complexity in KSR function revealed by Raf inhibitor and KSR structurestudies)”,小GTP酶(Small GTPases),第2卷,第276-281页。
麦克马洪(McMahon)等人,2000,“肿瘤血管生成中的VEGF受体信号传导(VEGFreceptor signaling in tumour angiogenesis)”,肿瘤学家(The Oncologist),第5卷,第3-10页。
梅伊(Mei)等人,2006,“Raf-1在阿尔茨海默病中的分配、水平和磷酸化(Distribution,levels and phosphorylation of Raf-1in Alzheimer’s disease)”, 神经化学杂志(J.Neurochem.),第99卷,第1377-1388页。
默瑟(Mercer)等人,2006,“MAP激酶途径作为COPD中的治疗靶标的新兴作用(Emerging role of MAP kinase pathways as therapeutic targets in COPD)”,国际慢性阻塞性肺病杂志(Int.J.of COPD),第1卷,第137-150页。
梅茨纳(Metzner)等人,2012,“成纤维细胞生长因子受体作为人黑色素瘤中的治疗靶标:与BRAF抑制协同作用(Fibroblast Growth Factor Receptors as TherapeuticTargets in Human Melanoma:Synergism with BRAF Inhibition)”,皮肤病学研究杂志 (Journal of Investigative Dermatology),第131卷,第2087-2095页。
迈耶斯(Meyers)等人,1996,“GFR2外显子IIIa和IIIc在克鲁宗、杰克逊-威斯和斐弗综合征中的突变:错义变化、插入和缺失归因于替代性RNA剪接的证据(FGFR2exon IIIaand IIIc mutations in Crouzon,Jackson-Weiss,and Pfeiffer syndromes:evidencefor missense changes,insertions,and a deletion due to alternative RNAsplicing)”,美国人类遗传学杂志(Am.J.Hum.Genet.),第58卷,第491-498页。
米莱拉(Milella)等人,2001,“MEK/EMAPK信号传导模块在急性髓性白血病中的治疗靶标(Therapeutic targeting of the MEK/MAPK signal transduction module inacute myeloid leukemia)”,临床研究杂志(Journal of Clinical Investigation),第108卷,第851-859页。
缪拉(Miura)等人,2004,“辛伐他汀通过破坏Ras/Raf/ERK信号传导而抑制冠状动脉内皮细胞管形成(Simvastatin suppresses coronary artery endothelial tubeformation by disrupting Ras/Raf/ERK signaling)”,动脉粥样硬化 (Atherosclerosis),第175卷,第235-243页。
梦特娇(Montagut)等人,2008,“升高的CRAF在黑色素瘤中作为对BRAF抑制有获得性抗性的潜在机制(Elevated CRAF as a Potential Mechanism of AcquiredResistance to BRAF Inhibition in Melanoma)”,癌症研究(Cancer Research),第68卷,第4853-4861页。
慕克吉(Mukherjee)等人,2005,“Raf-1表达可以影响雄激素不敏感性前列腺癌的进展(Raf-1expression may influence progression to androgen insensitiveprostate cancer)”,前列腺(Prostate),第64卷,第101-107页。
穆克霍帕蒂亚(Mukhopadhyay)等人,2006,“TNFα在肺部病理生理学中的作用(Role of TNFalpha in pulmonary pathophysiology)”,呼吸研究(Respir.Res.),第7卷,第125页。
默里(Murray)等人,2011,“呼吸配制品及其中所使用的化合物(Respiratoryformulations and compounds for use therein)”,国际(PCT)专利申请公开号WO 2011/158044A2,2011年12月22日公开。
穆斯托宁(Mustonen)等人,1995,“内皮受体酪氨酸激酶参与血管生成(Endothelial receptor tyrosine kinases involved in angiogenesis)”,细胞生物学 杂志(J.Cell Biol.),第129卷,第895-898页。
纳卡穆拉(Nakamura)等人,2006,“用于治疗炎性肠病的新型策略:选择性抑制细胞因子和粘附分子(Novel strategies for the treatment of inflammatory boweldisease:Selective inhibition of cytokines and adhesion molecules)”,世界胃肠病 学杂志(World J.Gastroenterol.),第12卷,第4628-4235页。
纳扎里安(Nazarian)等人,2010,“黑色素瘤通过RTK或N-RAS上调获得对B-RAF(V600E)抑制有抗性(Melanomas acquire resistance to B-RAF(V600E)inhibition byRTK or N-RAS upregulation)”,自然(Nature),第468卷,第973-979页。
尼古列斯库-杜瓦斯(Niculescu-Duvaz)等人,2006,“咪唑并[4,5-b]吡啶-2-酮和噁唑并[4,5-b]吡啶-2-酮化合物及其类似物作为治疗化合物(Imidazo[4,5-b]pyridin-2-one and oxazolo[4,5-b]pyridin-2-one compounds and analogs thereof astherapeutic compounds)”,国际(PCT)专利申请公开号WO 2006/043090A1,2006年4月27日公开。
尼古列斯库-杜瓦斯(Niculescu-Duvaz)等人,2007,“咪唑并[4,5-b]吡啶-2-酮和噁唑并[4,5-b]吡啶-2-酮化合物及其类似物作为治疗化合物(Imidazo[4,5-b]pyridin-2-one and oxazolo[4,5-b]pyridin-2-one compounds and analogs thereof astherapeutic compounds)”,国际(PCT)专利申请公开号WO 2007/125330A1,2007年11月8日公开。
尼古列斯库-杜瓦斯(Niculescu-Duvaz)等人,2009,“芳基-啉基化合物及其用途(Aryl-quinolyl compounds and their use)”,国际(PCT)专利申请公开号WO 2009/130487A1,2009年10月29日公开。
奥赖利(O’Reilly)等人,1994,“血管抑制素:一种新颖血管生成抑制剂,其介导抑制由路易斯肺癌的转移(Angiostatin:a novel angiogenesis inhibitor that mediatesthe suppression of metastases by a Lewis lung carcinoma.)”,细胞(Cell),第79卷,第315-328页。
厄兹蒂尔克-温德尔(Oeztuerk-Winder)等人,2012,“p38分裂素激活的蛋白激酶在祖细胞/干细胞分化的很多方面(The many faces of p38mitogen-activated proteinkinase in progenitor/stem cell differentiation)”,生物化学杂志(Biochem.J.),第445卷,第1-10页。
小泽征尔(Ozawa)等人,2001,“胰腺癌中的生长因子及其受体(Growth factorsand their receptors in pancreatic cancer)”,致癌、致畸、致突变杂志(Teratog.Carcinog.Mutagen.),第21卷,第27-44页。
拉马沙米(Palanisamy)等人,2010,“RAF激酶途径在前列腺癌症、胃癌和黑色素瘤中的重排(Rearrangements of the RAF Kinase Pathway in Prostate Cancer,GastricCancer and Melanoma)”,自然医学(Nat.Med.),第16卷,第793-798页。
帕尔塔内恩(Partanen)等人,1992,“新颖的具有细胞外表皮生长因子同源性结构域的内皮细胞表面受体酪氨酸激酶(A novel endothelial cell surface receptortyrosine kinase with extracellular epidermal growth factor homologydomains)”,分子细胞生物学(Mol.Cell Biol.),第12卷,第1698-1707页。
帕尔塔内恩(Partanen)等人,1999,“Tie1和Tie2受体酪氨酸激酶在血管发育中的功能(Functions of Tie1and Tie2Receptor Tyrosine Kinases in VascularDevelopment)”,微生物学和免疫学的当前话题(Curr.Topics Microbiol.Immunol),第237卷,第159-172页。
保尔森(Paulson)等人,1995,“受体酪氨酸激酶及血细胞生成的调节(Receptortyrosine kinases and the regulation of hematopoiesis)”,免疫学研讨会(Semin.Immunol.),第7卷,第4期,第267-277页。
佩恩(Payne)等人,2001,“人乳头瘤病毒类型6b病毒样颗粒能够激活Ras-MAP激酶涂径并诱导细胞分化(Human Papillomavirus Type 6b Virus-Like Particles Are AbleTo Activate the Ras-MAP Kinase Pathway and Induce Cell Proliferation)”,病毒学 杂志(J.Virol.),第75卷,第4150-4157页。
皮科克(Peacock)等人,1992,“血管生成抑制压制胶原蛋白关节炎(Angiogenesisinhibition suppresses collagen arthritis)”,实验医学杂志(J.Exp.Med.),第175卷,第1135-1138页。
皮科克(Peacock)等人,1995,“一种新颖抑制剂压制大鼠佐剂性关节炎(A novelangiogenesis inhibitor suppresses rat adjuvant arthritis)”,细胞免疫学(Cell.Immunol.),第160卷,第178-184页。
佩尔蒂埃(Pelletier)等人,2003,“分裂素激活的蛋白激酶激酶1/2在兔实验性骨关节炎中的体内选择性抑制与结构改变的发展中的减少相关联(In vivo selectiveinhibition of mitogen-activated protein kinase kinase 1/2in rabbitexperimental osteoarthritis is associated with a reduction in the developmentof structural changes)”,关节炎和风湿病(Arthritis&Rheumatism),第48卷,第1582-1593页。
彼得斯(Peters),1998,“血管内皮生长因子和血管新生:一起起作用以建造更好的血管(Vascular Endothelial Growth Factor and the Angiopoietins:WorkingTogether to Build a Better Blood Vessel)”,循环研究杂志(Circ.Res.),第83卷,第3期,第342-343页。
彼得万(Petrovan)等人,2007,“抗VEGF受体2的DNA疫苗接种降低LDL受体即缺陷小鼠中的动脉粥样硬化(DNA Vaccination Against VEGF Receptor 2ReducesAtherosclerosis in LDL Receptor-Deficient Mice)”,动脉粥样硬化、血栓形成和血管 生物学(Arteriosclerosis,Thrombosis,and Vascular Biology),第27卷,第1095-1100页。
皮内多(Pinedo)等人,2000,“VEGF在肿瘤血管生成中的作用(The Role ofVEGFin Tumour Angiogenesis)”,肿瘤学家(The Oncologist),第5卷,第1-2页。
纳(Pinner)等人,2009,“神经退行性疾病中的CD44剪接变体(CD44 splicevariants in neurodegenerative diseases)”,国际(PCT)专利申请公开号WO 2009/007934,2009年1月15日公开。
朗兹(Planz)等人,2001,“MEK特异性抑制剂U0126阻滞博尔纳病病毒在培养细胞中的扩散(MEK-specific inhibitor U0126blocks spread of Borna disease virus incultured cells)”,病毒学杂志(J.Virol.),第75卷,第4871-4877页。
佩雷西卡(Pleschka)等人,2001,“流感病毒繁殖通过抑制Raf/MEK/ERK信号传导级联而受损(Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade)”,自然细胞生物学(Nature Cell Biology),第3卷,第301-305页。
普洛波(Plomp)等人,1998,“斐弗综合征2型:文献的进一步描述和综述(Pfeiffersyndrome type 2:further delineation and review of the literature)”,美国医学遗 传学杂志(Am.J.Med.Genet.),第75卷,第245-251页。
布利卡科斯(Poulikakos)等人,2010,“RAF抑制剂在具有野生型BRAF细胞中反式激活RAF二聚体和ERK信号传导(RAF inhibitors transactivate RAF dimers and ERKsignalling in cells with wild-type BRAF)”,自然(Nature),第464卷,第427-430页。
布利卡科斯(Poulikakos)等人,2011,“RAF抑制剂抗性是通过异常剪接的BRAF(V600E)的二聚化介导的(RAF inhibitor resistance is mediated by dimerization ofaberrantly spliced BRAF(V600E))”,自然(Nature),第480卷,第387-390页。
鲍尔斯(Powers)等人,2000,“成纤维细胞生长因子、其受体和信号传导(Fibroblast growth factors,their receptors and signaling)”,内分泌相关的癌症(Endocr.Relat.Cancer),第7卷,第165-197页。
莉娃(Riva)等人,1995,“头颈部鳞状细胞癌中的差别c-myc、c-jun、c-raf和p53表达:药物和抗辐射性中的意义(Differential c-myc,c-jun,c-raf and p53expression insquamous cell carcinoma of the head and neck:Implication in drug andradioresistance)”,欧洲癌症杂志B部分:口腔肿瘤学(European Journal of Cancer Part B:Oral Oncology),第31卷,第384-391页。
罗特索(Rotsos)等人,2008,“囊样黄斑水肿(Cystoid macular edema)”,临床眼 科学(Clin.Ophthalmol.),第2卷,第919-930页。
鲁宾斯坦(Rubinstein)等人,2010,“在具有BRAF突变的黑色素瘤患者之间的V600K突变的发生率以及对特定BRAF抑制剂PLX4032的潜在治疗反应(Incidence of theV600K mutation among melanoma patients with BRAF mutations,and potentialtherapeutic response to the specific BRAF inhibitor PLX4032)”,转化医学杂志 (J.Transl.Med.),第8卷,第67页。
萨拉马(Salama)等人,2013,“黑色素瘤中的BRAF:当前策略和未来方向(BRAF inMelanoma:Current strategies and future directions)”,临床癌症研究(Clinical Cancer Research),第19卷,第16期,第4326-4334页。
辛德勒(Schindler)等人,2011,“对1,320神经系统肿瘤中的BRAF V600E突变的分析揭示在多形性黄色星形细胞瘤、神经节胶质瘤和小脑外毛细胞型星形细胞瘤中的高突变频率(Analysis of BRAF V600E mutation in1,320nervous system tumours revealshigh mutation frequencies in pleomorphic xanthoastrocytoma,ganglioglioma andextra-cerebellar pilocytic astrocytoma)”,神经病理学报(Acta Neuropathologica),第121卷,第397-405页。
施雷克(Schreck)等人,2006,“Raf激酶:瘤形成和药物发现(Raf kinases:Oncogenesis and drug discovery)”,国际癌症杂志(International Journal of Cancer),第119卷,第2261-2271页。
沙霍夫(Shakhov)等人,1990,“κB型增强子在初级巨噬细胞中参与脂多糖介导的肿瘤坏死因子α基因的转录激活(Kappa B-type enhancers are involved inlipopolysaccharide-mediated transcriptional activation of the tumor necrosisfactor alpha gene in primary macrophages)”,实验医学杂志(J.Exp.Med.),第171卷,第35-47页。
沙皮拉(Shapira)等人,1996,“通过四环素对抗内毒素休克和脂多糖诱导的局部炎症的保护:与细胞因子分泌的抑制的相关性(Protection against endotoxic shockand lipopolysaccharide-induced local inflammation by tetracycline:correlationwith inhibition of cytokine secretion)”,感染免疫学(Infect.Immun.),第64卷,第3期,第825-828页。
史(Shi)等人,2012,“黑色素瘤全外显子组测序鉴别(V600E)B-RAF扩增介导的获得性B-RAF抑制剂抗性(Melanoma whole-exome sequencing identifies(V600E)B-RAFamplification-mediated acquired B-RAF inhibitor resistance)”,自然通讯(Nature Commun.),第3卷,第724页。
西韦特(Sievert)等人,2013“表征儿科星形细胞瘤的BRAF蛋白激酶融合的反常活化和RAF抑制剂抗性(Paradoxical activation and RAF inhibitor resistance of BRAFprotein kinase fusions characterizing pediatric astrocytomas)”,PNAS,第110卷,第5957-5962页。
斯莫利(Smalley)等人,2009,“CRAF抑制诱导具有非-V600E BRAF突变的黑色素瘤细胞中的细胞凋亡(CRAF inhibition induces apoptosis in melanoma cells withnon-V600E BRAF mutations)”,致癌基因(Oncogene),第28卷,第85-94页。
史密斯(Smith)等人,2007,“可用于治疗癌症的脲化合物(Urea compoundsuseful in the treatment of cancer)”,国际(PCT)专利公开号WO 2007/064872A2,2007年6月7日公开。
史密斯(Smith)等人,2010,“血管内皮生长因子受体VEGFR-2和VEGFR-3主要定位于人原发性实体癌中的脉管系统(Vascular Endothelial Growth Factor ReceptorsVEGFR-2and VEGFR-3Are Localized Primarily to the Vasculature in Human PrimarySolid Cancers)”,临床癌症研究(Clin.Cancer Res.),第16卷,第3548-3561页。
萧提(Solit)等人,2006,“BRAF突变预测对NEK抑制的敏感性(BRAF mutationpredicts sensitivity to MEK inhibition)”,自然(Nature),第439卷,第358-362页。
宋(Song)等人,2005,“在大鼠中,在脊髓中的ERK/CREB途径的激活促成慢性压缩性损伤诱导的神经性疼痛(Activation of ERK/CREB pathway in spinal cordcontributes to chronic constrictive injury-induced neuropathic pain inrats)”,中国药理学报(Acta Pharmacol Sin.),第26卷,第789页。
索斯曼(Sosman)等人,2012,“用威罗菲尼治疗的BRAF V600-突变晚期黑色素瘤中的存活(Survival in BRAF V600-mutant advanced melanoma treated withvemurafenib)”,新英格兰医学杂志(New England Journal of Medicine),第366卷,第707-714页。
施普林格(Springer)等人,2009,“吡啶并[2,3-b]吡嗪-8-取代的化合物及其用途(Pyrido[2,3-b]pyrazine-8-substituted compounds and their use)”,国际(PCT)专利申请公开号WO 2009/077766A1,2009年6月25日公开。
施普林格(Springer)等人,2011,“1-(5-叔丁基-2-苯基-2H-吡唑-3-基)-3-[2-氟-4-(1-甲基-2-氧代-2,3-二氢-1H-咪唑并[4,5-b]]吡啶-7-基氧基)-苯基]脲和相关的化合物及其在疗法中的用途”,国际(PCT)专利申请公开号WO 2011/092469A1,2011年8月4日公开。
斯特拉顿(Stratton)等人,2003,“基因(Genes)”,2003年7月10日公开的国际(PCT)专利申请公开号WO 03/056036A2。
施特劳斯曼(Straussman)等人,2012,“肿瘤微环境通过HGF分泌引发对RAF抑制剂的先天抗性(Tumour micro-environment elicits innate resistance to RAFinhibitors through HGF secretion)”,自然(Nature),第487卷,第500-506页。
苏可布克(Suijkerbuijk)等人,2010,“新颖的高度有效的鼠肉瘤病毒致癌基因同系物B1(BRAF)的抑制剂V-RAF:通过优化远端杂芳族基团增加细胞效力(Development ofnovel,highly potent inhibitors of V-RAF murine sarcoma viral oncogenehomologue B1(BRAF):increasing cellular potency through optimization of adistal heteroaromatic group)”,医药化学杂志(J.Med.Chem.),第53卷,第2741-2756页。
苏利文(Sullivan)等人,2011,“黑色素瘤:发病机理、诊断、抑制和抗性中的BRAF(BRAF in melanoma:pathogenesis,diagnosis,inhibition,and resistance)”,皮肤癌杂 志(J.Skin Cancer),第2011卷,文献ID号423239。
苏蕊(Suri)等人,1996,“血管生成素-1即用于TIE2受体的配体在胚胎血管生成过程中的必要作用(在Requisite Role of Angiopoietin-1,a Ligand for theTIE2Receptor,during Embryonic Angiogenesis)”,细胞(Cell),第87卷,第1171-1180页。
塔姆(Tam)等人,2009,“VEGFR2和Not VEGFR1的阻滞可以限制饮食诱导的肥胖组织扩增(Blockade of VEGFR2and Not VEGFR1Can Limit Diet-Induced Fat TissueExpansion:Role of Local versus Bone Marrow-Derived Endothelial Cells)”,公共科学图书馆·综合(PLoS One),第4卷,e4974。
塔拉博莱蒂(Taraboletti)等人,1995,“血管生成和鼠血管瘤生长通过巴马司他即一种基质金属蛋白酶类的合成抑制剂的抑制(Inhibition of angiogenesis andmurine hemangioma growth by batimastat,a synthetic inhibitor of matrixmetalloproteinases)”,国家癌症研究所(J.Natl.Cancer Inst.),第87卷,第293页。
塔尔哈默(Thalhamer)等人,2008,“MAPK及其与关节炎和炎症的相关性(MAPKsand their relevance to arthritis and inflammation)”,风湿病学(Rheumatology),第47卷,第409-414页。
韦尔加尼(Vergani)等人,2011,“在显示对PLX4032有原发抗药性的黑色素瘤细胞系中鉴定MET和SRC活化(Identification of MET and SRC activation in melanomacell lines showing primary resistance to PLX4032)”,赘生物形成(Neoplasia),第13卷,第1132-1142页。
维克库拉(Vikkula)等人,2004,“ras拮抗剂用于治疗毛细血管畸形的药学用途(Medical use of ras antagonists for the treatment of capillarymalformation)”,国际(PCT)专利申请公开号WO 2004/083458,2004年9月30日公开。
维拉努埃瓦(Villanueva)等人,2011,“通过黑色素瘤中一种RAF激酶开关介导的对BRAF抑制剂有获得性抗性可以通过共靶向MEK和IGF-1R/PI3K来克服(Acquiredresistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma canbe overcome by co-targeting MEK and IGF-1R/PI3K)”,癌症细胞(Cancer Cell),第18卷,第683-695页。
万(Wan)等人,2004,“RAF-ERK信号传导途径通过B-RAF的致癌突变而活化的机制(Mechanism of activation of RAF-ERK signalling pathway by oncogenic mutationsin B-RAF)”,细胞(Cell),第116卷,第855-867页。
王(Wang)等人,1997,“反义靶向人黑色素瘤中的碱性成纤维细胞生长因子和成纤维细胞生长因子受体-1阻断肿瘤内血管生成和肿瘤生长(Antisense targeting of basicfibroblast growth factor and fibroblast growth factor receptor-1in humanmelanomas blocks intratumoural angiogenesis and tumour growth)”,自然医学 (Nature Medicine),第3卷,第887-893页。
王(Wang)等人,2003,“在小鼠中通过抑制MEK1蛋白激酶而显著性神经保护对抗局部缺血性脑损伤(Significant Neuroprotection against Ischemic Brain Injury byInhibition of the MEK1Protein Kinase in Mice:Exploration of PotentialMechanism Associated with Apoptosis)”,药理学和实验治疗学杂志 (J.Pharmacol.Exp.Ther.),第304卷,第172页。
王(Wang)等人,2004,“MEK/ERK 1/2途径的抑制降低促炎细胞因子白细胞介素-1在局灶性脑缺血中的表达(Inhibition of MEK/ERK 1/2pathway reduces pro-inflammatory cytokine interleukin-1expression in focal cerebral ischemia)”, 研究(Brain Res.),第996卷,第55页。
沃德(Ward)等人,2012,“靶向恶性血液病中的致癌Ras信号传导(Targetingoncogenic Ras signaling in hematologic malignancies)”,血液(Blood),第120卷,第3397-3406页。
韦尔布罗克(Wellbrock)等人,2004,“V599EB-RAF是黑色素细胞中的一种致癌基因(V599EB-RAF is an oncogene in melanocytes)”,癌症研究(Cancer Research),第64卷,第2338-2342页。
惠特克(Whittaker)等人,2010,“一种V600EBRAF的新颖、选择性和有效的纳摩尔吡啶并吡嗪酮抑制剂(A novel,selective and efficacious nanomolarpyridopyrazinone inhibitor of V600EBRAF)”,癌症研究(Cancer Research),第70卷,第20期,第80368044页。
威尔克斯(Wilks)等人,1990,“蛋白酪氨酸激酶的结构和功能(Structure andfunction of the protein tyrosine kinases)”,生长因子研究进展(Progress in Growth Factor Research),第2卷,第97-111页。
威尔逊(Wilson)等人,2012,“对于生长因子驱使的对抗癌激酶抑制剂有抗性的广泛可能性(Widespread potential for growth-factor-driven resistance toanticancer kinase inhibitors)”,自然(Nature),第487卷,第505-509页。
邢(Xing),2013,“甲状腺癌的分子发病机理和机制(Molecular pathogenesisand mechanisms of thyroid cancer)”,自然综述癌症(Nature Reviews Cancer),第13卷,第184-199页。
扬科普洛斯(Yancopoulos)等人,1998,“血管发生、血管生成和生长因子:肝配蛋白在边界进入战斗(Vasculogenesis,Angiogenesis,and Growth Factors:Ephrins Enterthe Fray at the Border)”,细胞(Cell),第93卷,第661-664页。
杨(Yang)等人,1999,“人类免疫缺陷病毒1型感染性通过ERK分裂素激活的蛋白激酶信号传导途径的调节(Regulation of Human Immunodeficiency Virus Type1Infectivity by the ERK Mitogen-Activated Protein Kinase Signaling Pathway)”,病毒学杂志(J.Virol.),第73卷,第3460-3466页。
姚(Yao)等人,1997,“肿瘤坏死因子-α启动子在人单核细胞中的脂多糖诱导,通过Egr-1、c-Jun和NF-κB转录因子调控(Lipopolysaccharide induction of the tumornecrosis factor-alpha promoter in human monocytic cells.Regulation by Egr-1,c-Jun and NF-kappaB transcription factors)”,生物化学杂志(J.Biol.Chem.),第272卷,第17795-17801页。
耶特曼(Yeatman)等人,2004,“SRC的复兴(A renaissance for SRC)”,自然综述 癌症(Nature Reviews Cancer),第4卷,第470-480页。
杨格(Young)等人,2009,“Ras信号传导和疗法(Ras signaling andtherapies)”,癌症研究进展(Advances in Cancer Research),第102卷,第1-17页。
余(Yu)等人,2000,“成纤维细胞生长因子受体2配体结合特异性在阿佩尔综合征中的损失(Loss of fibroblast growth factor receptor 2ligand bindingspecificity in Apert syndrome)”,美国科学院院刊(Proc.Natl.Acad.Sci.U.S.A.),第97卷,第14536-14541页。
赞邦(Zambon)等人,2010,“新颖铰链粘合剂改善BRAF抑制剂的活性和药物代谢动力学特性(Novel hinge binder improves activity and pharmacokinetic propertiesof BRAF inhibitors)”,医药化学杂志(J.Med.Chem.),第53卷,第15期,第5639-5655页。
泽娜迪(Zennadi)等人,2012,“治疗血红蛋白病的方法(Methods of treatinghemoglobinopathies)”,国际(PCT)专利申请公开号WO 2012/149547,2012年11月1日公开。
张(Zhang)等人,2012,“Ras/Raf/MEK途径的活化经由干扰素-JAK-STAT途径的弱化而促进丙型肝炎病毒复制(Activation of the Ras/Raf/MEK Pathway FacilitatesHepatitis C Virus Replication via Attenuation of the Interferon-JAK-STATPathway)”,病毒学杂志(J.Virol.),第86卷,第1544-1554页。
张(Zhang)等人,2012,“在抗癌疗法中靶向Src激酶:将希望转化为成功(Targeting Src family kinases in anti-cancer therapies:turning promise intotriumph)”,药物科学与医学趋势(Trends Pharmacol.Sci.Med.),第33卷,第122-128页。
邹基(Zouki)等人,2000,“过氧化亚硝酸盐经由Raf-1/MEK/Erk途径的活化而诱导人嗜中性粒细胞的整联蛋白依赖性粘附至内皮细胞(Peroxynitrite induces integrin-dependent adhesion of human neutrophils to endothelial cells via activationof the Raf-1/MEK/Erk pathway)”,美国实验生物学会联合会会志(FASEB J.),第15卷,第25-27页。

Claims (49)

1.化合物,所述化合物选自具有以下化学式的化合物、以及其药学上可接受的盐:
其中:
=X-独立地是=CH-或=N-;
-Y独立地是-Y1、-Y2、-Y3、-Y4、-Y5、或-Y6
-Y1独立地是-F、-Cl、-Br、或-I;
-Y2是直链或支链的饱和C1-4烷基;
-Y3是直链或支链的饱和C1-4卤代烷基;
-Y4是-OH;
-Y5是直链或支链的饱和C1-4烷氧基;并且
-Y6是直链或支链的饱和C1-4卤代烷氧基。
2.根据权利要求1所述的化合物,其中=X-是=CH-。
3.根据权利要求1所述的化合物,其中=X-是=N-。
4.根据权利要求1所述的化合物,其中:
-Y1如果存在的话是-F;
-Y2如果存在的话是-Me;
-Y3如果存在的话是-CF3
-Y5如果存在的话是-O-Me;以及
-Y6如果存在的话是-O-CF3
5.根据权利要求2所述的化合物,其中:
-Y1如果存在的话是-F;
-Y2如果存在的话是-Me;
-Y3如果存在的话是-CF3
-Y5如果存在的话是-O-Me;以及
-Y6如果存在的话是-O-CF3
6.根据权利要求3所述的化合物,其中:
-Y1如果存在的话是-F;
-Y2如果存在的话是-Me;
-Y3如果存在的话是-CF3
-Y5如果存在的话是-O-Me;以及
-Y6如果存在的话是-O-CF3
7.根据权利要求1所述的化合物,选自以下化合物及其药学上可接受的盐:
8.根据权利要求1所述的化合物,选自以下化合物及其药学上可接受的盐:
9.根据权利要求1所述的化合物,选自以下化合物及其药学上可接受的盐:
10.根据权利要求1所述的化合物,选自以下化合物及其药学上可接受的盐:
11.根据权利要求1所述的化合物,选自以下化合物及其药学上可接受的盐:
12.组合物,包括根据权利要求1至11中任一项所述的化合物以及药学上可接受的载体或稀释剂。
13.制备组合物的方法,所述方法包括以下步骤:将根据权利要求1至11中任一项所述的化合物和药学上可接受的载体或稀释剂混合。
14.在体外抑制细胞中的RAF功能的方法,所述方法包括使所述细胞与有效量的根据权利要求1至11中任一项所述的化合物接触。
15.根据权利要求1至11中任一项所述的化合物在制备用于治疗以下病症的方法中使用的药物中的用途:与RAF的突变形式相关的病症;通过抑制RAF而改善的病症;通过抑制突变体BRAF而改善的病症;通过抑制BRAF和CRAF而改善的病症;与RAS突变和/或MAPK途径活化相关的病症;通过抑制SRC、p38、FGFRA、VEGFR-2、和/或LCK而改善的病症。
16.根据权利要求1至11中任一项所述的化合物在制备用于治疗病症的方法中使用的药物中的用途,其中所述病症是增殖性病症。
17.根据权利要求1至11中任一项所述的化合物在制备用于治疗病症的方法中使用的药物中的用途,其中所述病症是癌症。
18.根据权利要求1至11中任一项所述的化合物在制备用于治疗病症的方法中使用的药物中的用途,其中所述病症是:胰腺癌;非小细胞肺癌;卵巢肿瘤;腹膜肿瘤;输卵管肿瘤;肺癌和相关胸腔积液;复发性或转移性鳞状细胞头颈癌;局部晚期鼻咽癌;成胶质细胞瘤;神经胶质肉瘤;弥漫性内在脑桥胶质瘤;HIV-相关的卡波西肉瘤;多发性骨髓瘤;肾细胞癌;转移性胃腺癌;急性骨髓性白血病;肝细胞癌;皮肤纤维肉瘤;髓样甲状腺癌;乳头状甲状腺癌;滤泡状甲状腺癌;骨髓增生异常综合征;神经纤维瘤1型;丛状神经纤维瘤;脊髓神经纤维瘤;乳腺癌;胆管肿瘤;宫颈癌;前列腺癌;黑色素瘤;膀胱癌;尿道癌;输尿管癌;肾癌;骨盆癌;肉瘤;脂肪肉瘤;结直肠癌;骨肉瘤;滑膜癌;成神经细胞瘤;或横纹肌肉瘤。
19.根据权利要求18所述的用途,其中所述病症是多形性成胶质细胞瘤或巨细胞性成胶质细胞瘤。
20.根据权利要求1至11中任一项所述的化合物在制备用于治疗病症的方法中使用的药物中的用途,其中所述病症是:恶性黑色素瘤;结直肠癌;转移性结直肠癌;滤泡状甲状腺癌;岛状甲状腺癌;乳头状甲状腺癌;卵巢癌;低级卵巢癌;非小细胞肺癌;毛发细胞白血病;胆管癌;儿科低级神经胶质瘤;多发性骨髓瘤;胰腺髓样癌;或胰腺导管腺癌。
21.根据权利要求20所述的用途,其中所述病症是毛细胞型星形细胞瘤;神经节胶质瘤;或多形性黄色星形细胞瘤。
22.根据权利要求1至11中任一项所述的化合物在制备用于治疗病症的方法中使用的药物中的用途,其中所述病症是恶性黑色素瘤。
23.根据权利要求1至11中任一项所述的化合物在制备用于治疗病症的方法中使用的药物中的用途,其中所述病症是结直肠癌。
24.根据权利要求1至11中任一项所述的化合物在制备用于治疗病症的方法中使用的药物中的用途,其中所述病症是胰腺癌。
25.根据权利要求16所述的用途,其中所述病症与RAF的突变形式相关。
26.根据权利要求17所述的用途,其中所述病症与RAF的突变形式相关。
27.根据权利要求18所述的用途,其中所述病症与RAF的突变形式相关。
28.根据权利要求19所述的用途,其中所述病症与RAF的突变形式相关。
29.根据权利要求20所述的用途,其中所述病症与RAF的突变形式相关。
30.根据权利要求21所述的用途,其中所述病症与RAF的突变形式相关。
31.根据权利要求22所述的用途,其中所述病症与RAF的突变形式相关。
32.根据权利要求23所述的用途,其中所述病症与RAF的突变形式相关。
33.根据权利要求24所述的用途,其中所述病症与RAF的突变形式相关。
34.根据权利要求25所述的用途,其中:
所述病症对使用已知的RAF抑制剂的治疗有抗性;或
所述病症对使用已知的RAF抑制剂与已知的MEK抑制剂的组合的治疗有抗性;或
所述病症对使用已知的抗体的治疗有抗性。
35.根据权利要求26所述的用途,其中:
所述病症对使用已知的RAF抑制剂的治疗有抗性;或
所述病症对使用已知的RAF抑制剂与已知的MEK抑制剂的组合的治疗有抗性;或
所述病症对使用已知的抗体的治疗有抗性。
36.根据权利要求27所述的用途,其中:
所述病症对使用已知的RAF抑制剂的治疗有抗性;或
所述病症对使用已知的RAF抑制剂与已知的MEK抑制剂的组合的治疗有抗性;或
所述病症对使用已知的抗体的治疗有抗性。
37.根据权利要求28所述的用途,其中:
所述病症对使用已知的RAF抑制剂的治疗有抗性;或
所述病症对使用已知的RAF抑制剂与已知的MEK抑制剂的组合的治疗有抗性;或
所述病症对使用已知的抗体的治疗有抗性。
38.根据权利要求29所述的用途,其中:
所述病症对使用已知的RAF抑制剂的治疗有抗性;或
所述病症对使用已知的RAF抑制剂与已知的MEK抑制剂的组合的治疗有抗性;或
所述病症对使用已知的抗体的治疗有抗性。
39.根据权利要求30所述的用途,其中:
所述病症对使用已知的RAF抑制剂的治疗有抗性;或
所述病症对使用已知的RAF抑制剂与已知的MEK抑制剂的组合的治疗有抗性;或
所述病症对使用已知的抗体的治疗有抗性。
40.根据权利要求31所述的用途,其中:
所述病症对使用已知的RAF抑制剂的治疗有抗性;或
所述病症对使用已知的RAF抑制剂与已知的MEK抑制剂的组合的治疗有抗性;或
所述病症对使用已知的抗体的治疗有抗性。
41.根据权利要求32所述的用途,其中:
所述病症对使用已知的RAF抑制剂的治疗有抗性;或
所述病症对使用已知的RAF抑制剂与已知的MEK抑制剂的组合的治疗有抗性;或
所述病症对使用已知的抗体的治疗有抗性。
42.根据权利要求33所述的用途,其中:
所述病症对使用已知的RAF抑制剂的治疗有抗性;或
所述病症对使用已知的RAF抑制剂与已知的MEK抑制剂的组合的治疗有抗性;或
所述病症对使用已知的抗体的治疗有抗性。
43.根据权利要求1至11中任一项所述的化合物在制备用于治疗以下病症的方法中使用的药物中的用途:炎症;免疫病症;病毒性感染;或纤维化病症。
44.根据权利要求1至11中任一项所述的化合物在制备用于治疗病症的方法中使用的药物中的用途,其中所述病症是选自以下各项的炎症疾病:囊性纤维化;肺高血压;肺结节病;特发性肺纤维化;慢性阻塞性肺病;哮喘;儿科哮喘;特应性皮炎;过敏性皮炎;接触性皮炎;银屑病;过敏性鼻炎;鼻炎;鼻窦炎;结膜炎;过敏性结膜炎;干燥性角膜结膜炎;青光眼;糖尿病性视网膜病;黄斑水肿;视网膜中央静脉阻塞;干性和/或湿性年龄相关性黄斑变性;白内障术后炎症;葡萄膜炎;角膜移植物和角膜缘细胞移植排斥;谷蛋白敏感性肠病;嗜酸性食道炎;肠移植物抗宿主疾病;克罗恩氏病;以及溃疡性结肠炎。
45.根据权利要求44所述的用途,其中所述病症是慢性支气管炎或肺气肿。
46.根据权利要求44所述的用途,其中所述病症是糖尿病性黄斑水肿。
47.根据权利要求44所述的用途,其中所述病症是后葡萄膜炎;前葡萄膜炎;或全葡萄膜炎。
48.根据权利要求1至11中任一项所述的化合物在制备用于治疗哮喘或慢性阻塞性肺病的方法中使用的药物中的用途。
49.根据权利要求1至11中任一项所述的化合物在制备用于治疗葡萄膜炎、克罗恩氏病或溃疡性结肠炎的方法中使用的药物中的用途。
CN201480062652.6A 2013-11-25 2014-11-25 作为用于治疗癌症的raf抑制剂的1‑(5‑叔丁基‑2‑芳基‑吡唑‑3‑基)‑3‑[2‑氟‑4‑[(3‑氧代‑4h‑吡啶并[2,3‑b]吡嗪‑8‑基)氧基]苯基]脲衍生物 Active CN105793260B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1320729.5 2013-11-25
GBGB1320729.5A GB201320729D0 (en) 2013-11-25 2013-11-25 Therapeutic compounds and their use
PCT/GB2014/053490 WO2015075483A1 (en) 2013-11-25 2014-11-25 1 -(5-tert-butyl-2-aryl-pyrazol-3-yl)-3-[2-fluoro-4-[(3-oxo-4h-pyrido[2, 3-b]pyrazin-8-yl)oxy]phenyl]urea derivatives as raf inhibitors for the treatment of cancer

Publications (2)

Publication Number Publication Date
CN105793260A CN105793260A (zh) 2016-07-20
CN105793260B true CN105793260B (zh) 2018-04-10

Family

ID=49918123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480062652.6A Active CN105793260B (zh) 2013-11-25 2014-11-25 作为用于治疗癌症的raf抑制剂的1‑(5‑叔丁基‑2‑芳基‑吡唑‑3‑基)‑3‑[2‑氟‑4‑[(3‑氧代‑4h‑吡啶并[2,3‑b]吡嗪‑8‑基)氧基]苯基]脲衍生物

Country Status (19)

Country Link
US (2) US9725447B2 (zh)
EP (1) EP3074396B1 (zh)
JP (1) JP6389529B2 (zh)
KR (1) KR102327096B1 (zh)
CN (1) CN105793260B (zh)
AU (1) AU2014351571B2 (zh)
BR (1) BR112016011078B1 (zh)
CA (1) CA2928009C (zh)
DK (1) DK3074396T3 (zh)
EA (1) EA034216B1 (zh)
ES (1) ES2740325T3 (zh)
GB (1) GB201320729D0 (zh)
HU (1) HUE045596T2 (zh)
IL (1) IL245062B (zh)
MX (1) MX2016006119A (zh)
PL (1) PL3074396T3 (zh)
PT (1) PT3074396T (zh)
SA (1) SA516371189B1 (zh)
WO (1) WO2015075483A1 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2520940T3 (es) 2007-12-19 2014-11-12 Cancer Research Technology Limited Compuestos de pirido[2,3-b]pirazina 8-sustituida y su uso
BR112012018415A2 (pt) 2010-02-01 2020-08-04 Cancer Research Technology Limited composto, composição, métodos de preparar uma composição e de tratamento, e, uso de um composto.
GB201320729D0 (en) 2013-11-25 2014-01-08 Cancer Rec Tech Ltd Therapeutic compounds and their use
GB201320732D0 (en) 2013-11-25 2014-01-08 Cancer Rec Tech Ltd Methods of chemical synthesis
AU2016334041B2 (en) * 2015-10-08 2023-02-09 Macrogenics, Inc. Combination therapy for the treatment of cancer
AU2017214574A1 (en) * 2016-02-05 2018-09-27 Evol Science LLC Combinations to treat cancer
CA3015455A1 (en) 2016-02-23 2017-08-31 Cancer Research Technology Limited Dietary product devoid of at least two non essential amino acids
CN109072311A (zh) 2016-04-15 2018-12-21 豪夫迈·罗氏有限公司 用于癌症的诊断和治疗方法
KR101796684B1 (ko) * 2016-05-19 2017-11-10 건국대학교 산학협력단 케라틴 8 인산화 억제제를 포함하는 황반변성 예방 또는 치료용 약학 조성물 및 황반변성 치료제의 스크리닝 방법
MX2019007643A (es) 2016-12-22 2019-09-09 Amgen Inc Benzoisotiazol, isotiazolo[3,4-b]piridina, quinazolina, ftalazina, pirido[2,3-d]piridazina y derivados de pirido[2,3-d]pirimidina como inhibirores de kras g12c para tratar el cancer de pulmon, pancreatico o colorrectal.
JP7300394B2 (ja) 2017-01-17 2023-06-29 ヘパリジェニックス ゲーエムベーハー 肝再生の促進又は肝細胞死の低減もしくは予防のためのプロテインキナーゼ阻害
CN110290808B (zh) * 2017-02-10 2023-07-11 诺华股份有限公司 1-(4-氨基-5-溴-6-(1h-吡唑-1-基)嘧啶-2-基)-1h-吡唑-4-醇及其在治疗癌症中的用途
CN106986860A (zh) * 2017-05-19 2017-07-28 南京大学 一类含酰胺键的吡唑类抗肿瘤化合物的设计、合成
JOP20190272A1 (ar) 2017-05-22 2019-11-21 Amgen Inc مثبطات kras g12c وطرق لاستخدامها
CN111065414A (zh) * 2017-08-07 2020-04-24 埃沃尔科学有限责任公司 用以治疗癌症的组合
AU2018329925A1 (en) 2017-09-08 2020-03-05 F. Hoffmann-La Roche Ag Diagnostic and therapeutic methods for cancer
CA3075046A1 (en) * 2017-09-08 2019-03-14 Amgen Inc. Inhibitors of kras g12c and methods of using the same
WO2019084030A1 (en) 2017-10-24 2019-05-02 Genentech, Inc. (4-HYDROXYPYRROLIDIN-2-YL) -HYDROXAMATE COMPOUNDS AND METHODS OF USE
EP3700901A1 (en) 2017-10-24 2020-09-02 Genentech, Inc. (4-hydroxypyrrolidin-2-yl)-heterocyclic compounds and methods of use thereof
US20200281243A1 (en) 2017-11-13 2020-09-10 Cancer Research Technology Ltd Dietary product
WO2019158579A1 (en) 2018-02-13 2019-08-22 Vib Vzw Targeting minimal residual disease in cancer with rxr antagonists
WO2019183523A1 (en) 2018-03-23 2019-09-26 Genentech, Inc. Hetero-bifunctional degrader compounds and their use as modulators of targeted ubiquination (vhl)
PT3788116T (pt) * 2018-05-04 2022-09-22 Univ Do Porto Fotossensibilizadores quimioluminescentes à base de imidazopirazinona com estados excitados de singleto e tripleto disponíveis
EP3788038B1 (en) 2018-05-04 2023-10-11 Amgen Inc. Kras g12c inhibitors and methods of using the same
MX2020011582A (es) 2018-05-04 2020-11-24 Amgen Inc Inhibidores de kras g12c y metodos para su uso.
MA52564A (fr) 2018-05-10 2021-03-17 Amgen Inc Inhibiteurs de kras g12c pour le traitement du cancer
ES2938987T3 (es) 2018-06-01 2023-04-18 Amgen Inc Inhibidores de KRAS G12c y métodos de uso de los mismos
GB201809295D0 (en) 2018-06-06 2018-07-25 Institute Of Cancer Res Royal Cancer Hospital Lox inhibitors
WO2020050890A2 (en) 2018-06-12 2020-03-12 Amgen Inc. Kras g12c inhibitors and methods of using the same
GB201818649D0 (en) 2018-11-15 2019-01-02 Univ Sheffield Compounds
GB201818651D0 (en) 2018-11-15 2019-01-02 Univ Sheffield Compounds
JP2020090482A (ja) 2018-11-16 2020-06-11 アムジエン・インコーポレーテツド Kras g12c阻害剤化合物の重要な中間体の改良合成法
GB201818750D0 (en) 2018-11-16 2019-01-02 Institute Of Cancer Res Royal Cancer Hospital Lox inhibitors
AU2019384118A1 (en) 2018-11-19 2021-05-27 Amgen Inc. KRAS G12C inhibitors and methods of using the same
JP7377679B2 (ja) 2018-11-19 2023-11-10 アムジエン・インコーポレーテツド がん治療のためのkrasg12c阻害剤及び1種以上の薬学的に活性な追加の薬剤を含む併用療法
JP2022523100A (ja) * 2019-02-01 2022-04-21 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッド ベランタマブマフォドチンおよび抗ox40抗体を含むがんの併用治療ならびにその使用および方法
KR102192576B1 (ko) * 2019-03-21 2020-12-17 경북대학교 산학협력단 다브라페닙을 유효성분으로 포함하는 알레르기 질환 예방, 치료 또는 개선용 조성물
EP3738593A1 (en) 2019-05-14 2020-11-18 Amgen, Inc Dosing of kras inhibitor for treatment of cancers
WO2020236947A1 (en) 2019-05-21 2020-11-26 Amgen Inc. Solid state forms
KR20220038696A (ko) 2019-07-19 2022-03-29 아나제네시스 바이오테크놀로지스 에스.에이.에스. 폴리방향족 우레아 유도체 및 근육 질환 치료에서의 이들의 용도
EP4029501A1 (en) 2021-01-19 2022-07-20 Anagenesis Biotechnologies Combination of polyaromatic urea derivatives and glucocorticoid or hdac inhibitor for the treatment of diseases or conditions associated with muscle cells and/or satellite cells
CN117677398A (zh) 2021-07-27 2024-03-08 东丽株式会社 用于癌的治疗和/或预防的药品
WO2023178269A1 (en) 2022-03-17 2023-09-21 SpringWorks Therapeutics Inc. Treatment of cutaneous neurofibromas with mirdametinib
CN115400122B (zh) * 2022-04-29 2023-04-18 佛山病原微生物研究院 一种tak-632在制备用于抗腺病毒感染的药物中的用途
TW202404581A (zh) 2022-05-25 2024-02-01 美商醫肯納腫瘤學公司 Mek抑制劑及其用途
GB202208347D0 (en) 2022-06-07 2022-07-20 Univ Court Univ Of Glasgow Targets for cancer therapy
GB202209622D0 (en) 2022-06-30 2022-08-17 Institute Of Cancer Res Royal Cancer Hospital Compounds
GB202209624D0 (en) 2022-06-30 2022-08-17 Institute Of Cancer Res Royal Cancer Hospital Prodrugs
WO2024033381A1 (en) 2022-08-10 2024-02-15 Vib Vzw Inhibition of tcf4/itf2 in the treatment of cancer

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082845A (en) 1977-04-25 1978-04-04 Merck & Co., Inc. 3-(1-Piperazinyl)-pyrido[2,3-b]pyrazines
JPS5665863A (en) 1979-10-31 1981-06-03 Tokyo Organ Chem Ind Ltd Novel aniline derivative, its preparation and pesticide containing the same
JPS5738777A (en) 1980-08-19 1982-03-03 Sogo Yatsukou Kk 2-sufanilamidopyrathyn derivative
US4666828A (en) 1984-08-15 1987-05-19 The General Hospital Corporation Test for Huntington's disease
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4801531A (en) 1985-04-17 1989-01-31 Biotechnology Research Partners, Ltd. Apo AI/CIII genomic polymorphisms predictive of atherosclerosis
US5272057A (en) 1988-10-14 1993-12-21 Georgetown University Method of detecting a predisposition to cancer by the use of restriction fragment length polymorphism of the gene for human poly (ADP-ribose) polymerase
US5192659A (en) 1989-08-25 1993-03-09 Genetype Ag Intron sequence analysis method for detection of adjacent and remote locus alleles as haplotypes
US5879672A (en) 1994-10-07 1999-03-09 Regeneron Pharmaceuticals, Inc. Tie-2 ligand 1
US5643755A (en) 1994-10-07 1997-07-01 Regeneron Pharmaceuticals Inc. Nucleic acid encoding tie-2 ligand
ATE294236T1 (de) 1994-09-22 2005-05-15 Licentia Ltd Promotor der tie rezeptor protein kinase
CA2262403C (en) 1995-07-31 2011-09-20 Urocor, Inc. Biomarkers and targets for diagnosis, prognosis and management of prostate disease
US6218529B1 (en) 1995-07-31 2001-04-17 Urocor, Inc. Biomarkers and targets for diagnosis, prognosis and management of prostate, breast and bladder cancer
ZA971896B (en) 1996-03-26 1998-09-07 Du Pont Merck Pharma Aryloxy-and arythio-fused pyridines and pyrimidines and derivatives
AU733551B2 (en) 1996-09-25 2001-05-17 Astrazeneca Ab Qinoline derivatives inhibiting the effect of growth factors such as VEGF
US6030831A (en) 1997-09-19 2000-02-29 Genetech, Inc. Tie ligand homologues
JP2001517699A (ja) 1997-09-26 2001-10-09 アスタ メディカ アクチエンゲゼルシャフト セリン/トレオニンプロテインキナーゼ作用の変性のためのアザベンズイミダゾールを基礎とする化合物
GB9721437D0 (en) 1997-10-10 1997-12-10 Glaxo Group Ltd Heteroaromatic compounds and their use in medicine
HUP0104693A3 (en) 1998-12-16 2003-12-29 Warner Lambert Co Treatment of arthritis with mek inhibitors
US6696440B1 (en) 1999-01-07 2004-02-24 Warner-Lambert Company Treatment of asthma with MEK inhibitors
AU3475900A (en) 1999-01-29 2000-08-18 University Of Akron, The Polyimides used as microelectronic coatings
HUP0202623A3 (en) 1999-07-16 2003-03-28 Warner Lambert Co Method for treating chronic pain using mek inhibitors
GB2356398A (en) 1999-11-18 2001-05-23 Lilly Dev Ct S A Preparation of arylsulfamides
WO2001046196A1 (en) 1999-12-21 2001-06-28 Sugen, Inc. 4-substituted 7-aza-indolin-2-ones and their use as protein kinase inhibitors
US6492529B1 (en) 2000-01-18 2002-12-10 Boehringer Ingelheim Pharmaceuticals, Inc. Bis pyrazole-1H-pyrazole intermediates and their synthesis
AU2002232439A1 (en) 2000-11-29 2002-06-11 Glaxo Group Limited Benzimidazole derivatives useful as tie-2 and/or vegfr-2 inhibitors
KR20020096367A (ko) 2001-06-19 2002-12-31 주식회사 티지 바이오텍 관절염 예방 또는 치료제 및 그것의 스크리닝 방법
CA2471114C (en) 2001-12-21 2012-03-20 The Wellcome Trust Mutant b-raf polypeptide and a use thereof in the diagnosis of cancer
US20060128783A1 (en) 2002-08-09 2006-06-15 Dinsmore Christopher J Tyrosine kinase inhibitors
US20060141472A1 (en) 2003-03-20 2006-06-29 Miikka Vikkula Medical use of ras antagonists for the treatment of capillary malformation
CA2529090A1 (en) 2003-06-13 2004-12-23 Novartis Ag 2-aminopyrimidine derivatives as raf kinase inhibitors
TW200538120A (en) 2004-02-20 2005-12-01 Kirin Brewery Compound having TGF-beta inhibitory activity and pharmaceutical composition containing same
TW200616974A (en) 2004-07-01 2006-06-01 Astrazeneca Ab Chemical compounds
NZ553087A (en) 2004-08-31 2010-12-24 Astrazeneca Ab Quinazolinone derivatives and their use as B-raf inhibitors
US20080207616A1 (en) 2004-10-15 2008-08-28 Astrazeneca Ab Quinoxalines as B Baf Inhhibitors
GB0423554D0 (en) 2004-10-22 2004-11-24 Cancer Rec Tech Ltd Therapeutic compounds
GB0428082D0 (en) 2004-12-22 2005-01-26 Welcome Trust The Ltd Therapeutic compounds
EP2942349A1 (en) 2004-12-23 2015-11-11 Deciphera Pharmaceuticals, LLC Enzyme modulators and treatments
CA2629468A1 (en) 2005-11-15 2007-05-24 Bayer Pharmaceuticals Corporation Pyrazolyl urea derivatives useful in the treatment of cancer
MX2008006979A (es) 2005-12-01 2009-01-14 Bayer Healthcare Llc Compuestos de urea utiles en el tratamiento contra el cancer.
BRPI0619514A2 (pt) 2005-12-08 2011-10-04 Millennium Pharm Inc compostos bicìclicos com atividade inibidora cinase, composição farmacêutica contendo os mesmos e uso de ditos compostos
US7989461B2 (en) 2005-12-23 2011-08-02 Amgen Inc. Substituted quinazolinamine compounds for the treatment of cancer
EP2013207B1 (en) * 2006-04-26 2012-04-25 Cancer Research Technology Limited Imidazo[4,5-b]pyridin-2-one compounds and analogs thereof as cancer therapeutic compounds
EP1992628A1 (en) 2007-05-18 2008-11-19 Glaxo Group Limited Derivatives and analogs of N-ethylquinolones and N-ethylazaquinolones
US8188113B2 (en) * 2006-09-14 2012-05-29 Deciphera Pharmaceuticals, Inc. Dihydropyridopyrimidinyl, dihydronaphthyidinyl and related compounds useful as kinase inhibitors for the treatment of proliferative diseases
WO2008044688A1 (fr) 2006-10-11 2008-04-17 Daiichi Sankyo Company, Limited Dérivé de l'urée
ES2423182T3 (es) 2007-07-10 2013-09-18 Neurim Pharmaceuticals (1991) Ltd. Variantes de unión CD44 en las enfermedades neurodegenerativas
ES2520940T3 (es) 2007-12-19 2014-11-12 Cancer Research Technology Limited Compuestos de pirido[2,3-b]pirazina 8-sustituida y su uso
GB0807609D0 (en) * 2008-04-25 2008-06-04 Cancer Rec Tech Ltd Therapeutic compounds and their use
GB0818033D0 (en) 2008-10-02 2008-11-05 Respivert Ltd Novel compound
AU2009299555B2 (en) 2008-10-02 2014-01-16 Respivert Limited p38 map kinase inhibitors
NZ593104A (en) 2008-12-11 2012-11-30 Respivert Ltd P38 map kinase inhibitors
GB0905955D0 (en) 2009-04-06 2009-05-20 Respivert Ltd Novel compounds
WO2011004276A1 (en) 2009-07-06 2011-01-13 Pfizer Limited Hepatitis c virus inhibitors
SG10201402917XA (en) 2009-08-24 2014-08-28 Genentech Inc Determining sensitivity of cells to b-raf inhibitor treatment by detecting kras mutation and rtk expression levels
GB0918249D0 (en) 2009-10-19 2009-12-02 Respivert Ltd Compounds
GB0921730D0 (en) 2009-12-11 2010-01-27 Respivert Ltd Method of treatment
GB0921731D0 (en) 2009-12-11 2010-01-27 Respivert Ltd Theraputic uses
BR112012018415A2 (pt) 2010-02-01 2020-08-04 Cancer Research Technology Limited composto, composição, métodos de preparar uma composição e de tratamento, e, uso de um composto.
GB201005589D0 (en) 2010-04-01 2010-05-19 Respivert Ltd Novel compounds
US9260410B2 (en) 2010-04-08 2016-02-16 Respivert Ltd. P38 MAP kinase inhibitors
JP5787977B2 (ja) 2010-04-08 2015-09-30 レスピバート・リミテツド P38mapキナーゼ阻害剤
WO2011158044A2 (en) * 2010-06-17 2011-12-22 Respivert Limited Respiratory formulations and compounds for use therein
GB201010193D0 (en) 2010-06-17 2010-07-21 Respivert Ltd Medicinal use
GB201010196D0 (en) 2010-06-17 2010-07-21 Respivert Ltd Methods
WO2012008564A1 (ja) 2010-07-16 2012-01-19 協和発酵キリン株式会社 含窒素芳香族複素環誘導体
UY33337A (es) 2010-10-18 2011-10-31 Respivert Ltd DERIVADOS SUSTITUIDOS DE 1H-PIRAZOL[ 3,4-d]PIRIMIDINA COMO INHIBIDORES DE LAS FOSFOINOSITIDA 3-QUINASAS
WO2012149547A1 (en) 2011-04-28 2012-11-01 Duke University Methods of treating hemoglobinopathies
IN2014DN00286A (zh) 2011-06-23 2015-06-05 Viamet Pharmaceuticals Inc
WO2013001372A2 (en) 2011-06-30 2013-01-03 University Of Oslo Methods and compositions for inhibition of activation of regulatory t cells
RU2014112324A (ru) 2011-09-01 2015-10-10 Новартис Аг Применение органического соединения для лечения синдрома нунан
ES2583853T3 (es) 2011-10-03 2016-09-22 Respivert Limited 1-Pirazolil-3-(4-((2-anilinopirimidin-4-il)oxi)naftalen-1-il)ureas como inhibidores de p38 MAP cinasa
EP2578582A1 (en) 2011-10-03 2013-04-10 Respivert Limited 1-Pyrazolyl-3-(4-((2-anilinopyrimidin-4-yl)oxy)napththalen-1-yl)ureas as p38 MAP kinase inhibitors
GB201214750D0 (en) 2012-08-17 2012-10-03 Respivert Ltd Compounds
EP2890701B1 (en) 2012-08-29 2017-03-29 Respivert Limited Kinase inhibitors
WO2014033447A2 (en) 2012-08-29 2014-03-06 Respivert Limited Kinase inhibitors
GB201215357D0 (en) 2012-08-29 2012-10-10 Respivert Ltd Compounds
US20150210722A1 (en) 2012-08-29 2015-07-30 Respivert Limited Kinase inhibitors
EP2925742B1 (en) 2012-11-16 2016-10-26 Respivert Limited Kinase inhibitors
EP2970190A1 (en) 2013-03-14 2016-01-20 Respivert Limited Kinase inhibitors
TW201522341A (zh) 2013-03-15 2015-06-16 Respivert Ltd 化合物
WO2014162121A1 (en) 2013-04-02 2014-10-09 Topivert Pharma Limited Kinase inhibitors based upon n-alkyl pyrazoles
EP2981535B8 (en) 2013-04-02 2021-03-10 Oxular Acquisitions Limited Urea derivatives useful as kinase inhibitors
GB201320729D0 (en) 2013-11-25 2014-01-08 Cancer Rec Tech Ltd Therapeutic compounds and their use
WO2015092423A1 (en) 2013-12-20 2015-06-25 Respivert Limited Urea derivatives useful as kinase inhibitors
ES2774249T3 (es) 2014-02-14 2020-07-20 Respivert Ltd Compuestos heterocíclicos aromáticos como compuestos antiinflamatorios
MA40775A (fr) 2014-10-01 2017-08-08 Respivert Ltd Dérivé d'acide 4-(4-(4-phényluréido-naphtalén -1-yl) oxy-pyridin-2-yl) amino-benzoïque utilisé en tant qu'inhibiteur de la kinase p38
WO2016051186A1 (en) 2014-10-01 2016-04-07 Respivert Limited N-phenyl-3-quinazolin-6-yl-benzamide derivatives as p38 kinase inhibitors

Also Published As

Publication number Publication date
GB201320729D0 (en) 2014-01-08
US20170298066A1 (en) 2017-10-19
CA2928009A1 (en) 2015-05-28
JP6389529B2 (ja) 2018-09-12
US10167282B2 (en) 2019-01-01
MX2016006119A (es) 2016-12-14
US9725447B2 (en) 2017-08-08
BR112016011078A8 (pt) 2020-04-22
EP3074396B1 (en) 2019-05-01
EA201690531A1 (ru) 2016-08-31
PL3074396T3 (pl) 2019-11-29
BR112016011078B1 (pt) 2022-12-06
HUE045596T2 (hu) 2020-01-28
JP2016538345A (ja) 2016-12-08
EP3074396A1 (en) 2016-10-05
PT3074396T (pt) 2019-08-06
KR102327096B1 (ko) 2021-11-16
CN105793260A (zh) 2016-07-20
AU2014351571B2 (en) 2019-02-14
AU2014351571A1 (en) 2016-05-19
CA2928009C (en) 2022-08-30
SA516371189B1 (ar) 2018-06-30
IL245062B (en) 2019-09-26
US20160355510A1 (en) 2016-12-08
WO2015075483A1 (en) 2015-05-28
EA034216B1 (ru) 2020-01-17
DK3074396T3 (da) 2019-07-29
IL245062A0 (en) 2016-06-30
KR20160079792A (ko) 2016-07-06
ES2740325T3 (es) 2020-02-05

Similar Documents

Publication Publication Date Title
CN105793260B (zh) 作为用于治疗癌症的raf抑制剂的1‑(5‑叔丁基‑2‑芳基‑吡唑‑3‑基)‑3‑[2‑氟‑4‑[(3‑氧代‑4h‑吡啶并[2,3‑b]吡嗪‑8‑基)氧基]苯基]脲衍生物
JP6993985B2 (ja) イソキノリン-3イル-カルボキサミドならびにその調製および使用の方法
CN103261198B (zh) 2-芳基咪唑并[1, 2-b]哒嗪、2-苯基咪唑并[1, 2-a]吡啶、和2-苯基咪唑并[1, 2-a]吡嗪衍生物
JP5452811B2 (ja) 有糸分裂進行を阻害するための化合物
TW202144345A (zh) Kras突變蛋白抑制劑
JP6151919B2 (ja) ヘタリールアミノナフチリジン
CN101222850B (zh) 治疗对药物有抗性的癌症的方法
CN102399218A (zh) 一类并合三杂环及其作为pi3k抑制剂的用途
CN102414210A (zh) 作为β-分泌酶抑制剂的取代的咪唑并[1,2-a]吡啶衍生物、药物组合物和使用方法
CN102124005A (zh) cMET抑制剂
CN114650868A (zh) Helios的小分子降解剂及其使用方法
JP7323896B2 (ja) カゼインキナーゼ1ε阻害剤、医薬組成物及びその使用
CN104603134A (zh) 酰氨基-苄基砜和亚砜衍生物
JP2021536436A (ja) キノリン誘導体から調製される新規な阻害剤
JP2021516674A (ja) 5−ヘテロアリール置換イミダゾール−3−カルボキサミドならびにその調製および使用の方法
CN103214481B (zh) 新型咪唑并[1,2-a]吡啶类化合物、其制备方法、包含此类化合物的药物组合物及其用途
JP2020523348A (ja) プロテインキナーゼ阻害剤としてのアミノチアゾール化合物
CN104822658B (zh) 作为多种激酶抑制剂的稠合三环酰胺类化合物
CN117653636B (zh) 含稠合双环类化合物的抗癌药及该化合物的制药用途
TWI565698B (zh) 喹啉化合物,其製造方法及用途
WO2024092011A1 (en) Irak degraders and uses thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant