CN105645952B - 一种小损耗超高压陶瓷电容器用介质材料 - Google Patents

一种小损耗超高压陶瓷电容器用介质材料 Download PDF

Info

Publication number
CN105645952B
CN105645952B CN201511026266.4A CN201511026266A CN105645952B CN 105645952 B CN105645952 B CN 105645952B CN 201511026266 A CN201511026266 A CN 201511026266A CN 105645952 B CN105645952 B CN 105645952B
Authority
CN
China
Prior art keywords
dielectric material
ceramic capacitor
capacitor dielectric
zno
srbi2nb2o9
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511026266.4A
Other languages
English (en)
Other versions
CN105645952A (zh
Inventor
袁峰
张艳茹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Qixing Flying Electronic Coltd
Original Assignee
Beijing Qixing Flying Electronic Coltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Qixing Flying Electronic Coltd filed Critical Beijing Qixing Flying Electronic Coltd
Priority to CN201511026266.4A priority Critical patent/CN105645952B/zh
Publication of CN105645952A publication Critical patent/CN105645952A/zh
Application granted granted Critical
Publication of CN105645952B publication Critical patent/CN105645952B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • H01G4/1245Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

本发明公开了一种小损耗超高压陶瓷电容器用介质材料,所述介质材料的组成按重量百分比计为:BaTiO3 70‑90%,SrTiO3 2‑20%,CaTiO3 1.5‑10%,SrBi2Nb2O9 0.2‑5%,Bi3ZrNbO9 2‑8%,Nb2O50.05‑0.8%,CeO2 0.1‑0.6%,ZnO 1‑5%,和MnCO3 0.1‑0.5%。在本发明中,通过在陶瓷电容器用介质材料中同时掺杂SrBi2Nb2O9和Bi3ZrNbO9而实现了介电常数、介质损耗、直流耐电压、和体积电阻率之间的良好的性能平衡。另外,本发明还提供了一种用于制备陶瓷电容器用介质材料的方法以及所述介质材料的用途。

Description

一种小损耗超高压陶瓷电容器用介质材料
技术领域
本发明涉及无机非金属材料领域,尤其是涉及一种小损耗超高压陶瓷电容器用介质材料。
背景技术
近几年来,在高端民用产品市场中随着电力系统和脉冲功率的不断升级改造,例如遮断器、负载关闭器、高压电源等的设备对陶瓷电容器提出了高耐电压、低损耗、高可靠性、小型化和大容量等的要求。目前我国加大了对激光武器和电磁武器等的研究,并取得了一定的成果。激光武器需要瞬间提供巨大的能量,这种功能通过电路中的超高压电容倍压来实现,并且超高压电容器是电路中的核心器件。由于国内原材料的限制,我国在军事领域对超高压电容器的需求主要依赖进口,这给我国的国防安全带来了一定的风险。目前所需的超高压陶瓷电容器用介质材料不仅要求耐电压更高,而且还需要较小的介质损耗及较高的体积电阻率,以满足超高压电容器高可靠性。
在近期国内专利可查到的同类产品有:
中国专利号200410041863.X公开了一种中低温烧结高压陶瓷电容器介质,它采用的配方是:BaTiO360%-90%,SrTiO31-20%,CaZrO30.1-10%,Nb2O50.01-1%,MgO 0.01%-1%,CeO20.01-0.8%,ZnO0.01-0.6%,Co2O30.03-1%,铋锂固溶体0.05-10%。其电性能为介电常数2000-3000,耐电压为6kV/mm以上,降低烧结温度的添加物是铋锂固溶体。该专利中的陶瓷电容器介质损耗太高,介电常数较低,该专利的配方组成不同于本申请。
中国期刊《电子元件与材料》1989年第5期在“高介高压2B4介质陶瓷”的文章中公开了一种高压陶瓷电容器介质材料,该介质材料采用97.8wt.%BaTiO3+0.8wt.%Bi2O3+0.7wt.%Nb2O5+0.5wt.%CeO2+0.2wt.%MnO2的配方,其电性能为介电常数2500-2600,介电损耗为0.5-1.4%,直流耐电压为7kV/mm,该介质存在耐电压较差,介电常数太小,介质损耗大,且配方组成不同于本申请。
中国专利号2012101187726(授权公告号CN 102627456B)公开了一种低损耗高压陶瓷电容器介质,其组成按重量百分比计算为:BaTiO354%-91%,MgTiO31%-4%,BaZrO34-20%,SrZrO33-12%,CeO20.03-1.0%,ZnO 0.1-1.5%,CaTiSiO30.5%-7.5%,其介电常数最高值为3688,这直接限制了电容器大容量的应用,为了获得大容量超高压电容器,往往导致电容器体积过大,这与装备的小型化趋势相悖,并且其体积电阻率较小(数量级为1011),从而影响了超高压电容器的绝缘性能,且其配方组成与本申请不同。
中国专利号201210034278.1(授权公告号CN 102568821B)公开了一种高介电高压陶瓷电容器介质,按重量百分比计算其配方组成为:BaTiO355%-90%,SrTiO32-25%,MgZrO32%-15%,Bi3NbZrO32-10%,CeO20.1-1.0%,ZnO 0.5-1.5%,MnCO30.2-1.0%,其介电常数虽然较高10050-11603,但是体积电阻率小于1012,因此影响了电容器的绝缘性能及可靠性。另外,其介质损耗均在40×10-4左右,这将提高在使用过程中发生热击穿的概率,从而影响电容器的使用寿命及安全性能,并且其配方组成与本申请不同。
发明内容
本发明的目的是提供一种介电常数高、介质损耗小、耐直流电压高且体积电阻率高的小损耗超高压陶瓷电容器用介质材料。在本发明中,通过调整陶瓷电容器用介质材料的配方组成,实现了超高压陶瓷电容器用介质材料的介质损耗<20×10-4,直流耐电压>12.6kV/mm,介电常数>5600,且体积电阻率>2.1x 1012Ω·cm。
在本发明的一个方面中,提供了一种小损耗超高压陶瓷电容器用介质材料,所述介质材料包括按重量百分比计的以下组分:BaTiO370-90%,SrTiO32-20%,CaTiO31.5-10%,SrBi2Nb2O90.2-5%,Bi3ZrNbO92-8%,Nb2O50.05-0.8%,CeO20.1-0.6%,ZnO 1-5%,MnCO30.1-0.5%。
优选地,本发明的小损耗超高压陶瓷电容器用介质材料的组成按重量百分比计为:BaTiO375-88%,SrTiO33-17%,CaTiO32-8.5%,SrBi2Nb2O90.5-4%,Bi3ZrNbO92.5-7%,Nb2O50.1-0.7%,CeO20.1-0.5%,ZnO 2-5%,和MnCO30.2-0.45%。
优选地,本发明的小损耗超高压陶瓷电容器用介质材料的组成按重量百分比计为:BaTiO375-85%,SrTiO34-15%,CaTiO33-8%,SrBi2Nb2O91-3.5%,Bi3ZrNbO93-6.5%,Nb2O50.2-0.7%,CeO20.2-0.5%,ZnO 1-4%,和MnCO30.2-0.4%。
优选地,本发明的小损耗超高压陶瓷电容器用介质材料的组成按重量百分比计为:BaTiO380-85%,SrTiO35-10%,CaTiO33-8%,SrBi2Nb2O91.5-3%,Bi3ZrNbO93-6%,Nb2O50.1-0.5%,CeO20.2-0.5%,ZnO 2-5%,和MnCO30.2-0.4%。
优选地,本发明的小损耗超高压陶瓷电容器用介质材料的组成按重量百分比计为:BaTiO380-90%,SrTiO32-10%,CaTiO31.5-5%,SrBi2Nb2O92-4%,Bi3ZrNbO93-5%,Nb2O50.2-0.7%,CeO20.1-0.5%,ZnO 1-3%,和MnCO30.2-0.35%。
在本发明的陶瓷电容器用介质材料中,以BaTiO3为主料。BaTiO3为钙钛矿型化合物,其介电常数最高可达25000,但是纯BaTiO3的介电常数在室温下只有1600。因此必须加入移峰剂,可以用不同的元素来取代钙钛矿结构中的A位和B位离子,以使BaTiO3居里点向室温移动,从而提高介电常数,例如A位取代的Sr2+,B位取代的Zr4+;同时为了降低材料的容量变化率,还需要添加展宽剂,例如A位取代的Ca2+、Mg2+、Bi3+,B位取代的Zr4+、Nb5+。另外,由于部分稀土离子在烧结过程中聚集于晶界,可以抑制晶粒生长,因此通过添加稀土氧化物可以显著提高介质材料的耐电压。同时通过添加锌、锰等氧化物来提高致密度,降低损耗,同时考虑环保的要求及良好的社会效益和经济效益,在本申请的陶瓷电容器用介质材料的系统中不添加铅、隔等有害物质。
随着介电常数的提高,BaTiO3的掺杂改性难度不断提高,仅依靠调整各组原材料的比例,无法满足电性能的改善,需要预先合成熔块进行掺杂。虽然现有技术中存在的陶瓷电容器用介质材料的介电常数>10000,但损耗较大接近50×10-4、直流耐电压小于12kV/mm。此外,虽然现有技术中存在陶瓷电容器用介质材料的直流耐电压>12kV/mm的情况,但其体积电阻率<1012Ω·cm、且介电常数<4000。
针对上述现有技术中的陶瓷电容器用介质材料存在的问题,在本发明中,通过在陶瓷电容器用介质材料中掺杂少量SrBi2Nb2O9和Bi3ZrNbO9而使得在实现降低介质损耗(<20×10-4),提高直流耐电压强度(>12.6kV/mm)的同时,还提高了介电常数>5600且使体积电阻率>2.1x 1012Ω·cm。即,在本申请中,通过在陶瓷电容器用介质材料中同时使用SrBi2Nb2O9和Bi3ZrNbO9而解决了现有技术中存在的不能同时兼顾介电常数高、介质损耗小、直流耐电压高、和体积电阻率大的技术问题。在本发明中,通过在陶瓷电容器用介质材料中同时掺入SrBi2Nb2O9和Bi3ZrNbO9而实现了介电常数、介质损耗、直流耐电压、和体积电阻率之间的良好的性能平衡。
在另一个方面,本发明提供了一种用于制备上述陶瓷电容器用介质材料的方法,包括以下步骤:取按重量百分比计的上述原料进行配料;将配好的原料进行研磨;在研磨的物料达到要求的粒径后与造粒添加剂一起研磨0.5-2小时,利用离心干燥塔进行造粒;以及对造粒料进行过筛,以获得陶瓷电容器用介质材料。
优选地,所述方法中使用的造粒添加剂为聚乙烯醇。
本发明的介质材料中所用的BaTiO3的制备方法包括:将常规的化学原料BaCO3和TiO2按照1:1的摩尔比进行配料,将配料研磨混合均匀后放入氧化铝坩埚内在1230-1250℃下保温2.5-3.5小时,通过固相反应来合成BaTiO3,冷却后研磨过120目筛,备用。
本发明的介质材料中所用的SrTiO3的制备方法包括:将常规的化学原料SrCO3和TiO2按照1:1的摩尔比进行配料,将配料研磨混合均匀后放入氧化铝坩埚内在1260-1280℃下保温2.5-3.5小时,通过固相反应来合成SrTiO3,冷却后研磨过120目筛,备用。
本发明的介质材料中所用的CaTiO3的制备方法包括:将常规的化学原料CaCO3和TiO2按照1:1的摩尔比进行配料,将配料研磨混合均匀后放入氧化铝坩埚内在1240-1260℃下保温2.5-3.5小时,通过固相反应来合成CaTiO3,冷却后研磨过120目筛,备用。
本发明的介质材料中所用的Bi3ZrNbO9的制备方法为:将常规的化学原料Bi2O3、ZrO2和Nb2O5按3:2:1摩尔比进行配料,球磨混合后在110-130℃下进行烘干,然后将烘干料放入氧化铝坩埚中在1150℃-1170℃下保温2.5-3.5小时,通过固相反应来合成Bi3ZrNbO9,冷却后研磨过120目筛备用。
本发明的介质材料中所用的SrBi2Nb2O9的制备方法为:将常规的化学原料Bi2O3、SrCO3和Nb2O5按1:1:1摩尔比进行配料,球磨混合后在110-130℃下进行烘干,然后将烘干料放入氧化铝坩埚内在1030℃-1050℃下保温2.5-3.5小时,固相反应合成SrBi2Nb2O9,冷却后研磨过120目筛备用。
在又一个方面中,本发明提供了上述介质材料在电容器中的应用。
在本发明中,经过优化以后的超高压陶瓷电容器用介质材料的直流耐电压>12.6kV/mm,介电常数>5600,介质损耗<20×10-4,且体积电阻率>2.1x 1012Ω·cm。这些电性能的提高为生产优异的超高压陶瓷电容器奠定了良好的基础,能够满足电力系统、脉冲功率、航空航天、激光武器等对电容器的要求。
此外,本发明的陶瓷电容器用介质材料烧成温度范围宽1280~1330℃,能够提高电容器瓷件的合格率,降低高压陶瓷电容器的成本,并且本申请的介质材料的组分中不含铅和镉,因此对环境无污染。本发明的介质材料的介质损耗小,因此使用过程中性能稳定性好,安全性高。而且,本发明中的陶瓷电容器用介质材料的制备工艺简单,原料易得。该介质材料的介电常数高,能实现陶瓷电容器的小型化、大容量,并降低成本。
附图说明
图1为本发明实施方式的超高压陶瓷电容器用介质材料的生产工艺流程图。
具体实施方式
为了使本发明的目的及优点更加清楚,现结合实施例对本发明所要求保护的技术方案作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用来解释本发明而并不用于限制本发明。
在本发明的一个实施方式中,提供了一种小损耗超高压陶瓷电容器用介质材料,所述介质材料包括按重量百分比计的以下组分:BaTiO370-90%,SrTiO32-20%,CaTiO31.5-10%,SrBi2Nb2O90.2-5%,Bi3ZrNbO92-8%,Nb2O50.05-0.8%,CeO20.1-0.6%,ZnO 1-5%,和MnCO30.1-0.5%。
在本发明的一个优选实施方式中,该小损耗超高压陶瓷电容器用介质材料的组成按重量百分比计为:BaTiO375-88%,SrTiO33-17%,CaTiO32-8.5%,SrBi2Nb2O90.5-4%,Bi3ZrNbO92.5-7%,Nb2O50.1-0.7%,CeO20.1-0.5%,ZnO 2-5%,和MnCO30.2-0.45%。
在本发明的一个优选实施方式中,该小损耗超高压陶瓷电容器用介质材料的组成按重量百分比计为:BaTiO375-88%,SrTiO33-17%,CaTiO32-8.5%,SrBi2Nb2O90.5-4%,Bi3ZrNbO92.5-7%,Nb2O50.1-0.7%,CeO20.1-0.5%,ZnO 2-5%,和MnCO30.2-0.45%。
在本发明的一个优选实施方式中,该小损耗超高压陶瓷电容器用介质材料的组成按重量百分比计为:BaTiO380-85%,SrTiO35-10%,CaTiO33-8%,SrBi2Nb2O91.5-3%,Bi3ZrNbO93-6%,Nb2O50.1-0.5%,CeO20.2-0.5%,ZnO 2-5%,和MnCO30.2-0.4%。
在本发明的一个优选实施方式中,该小损耗超高压陶瓷电容器用介质材料的组成按重量百分比计为:BaTiO380-90%,SrTiO32-10%,CaTiO31.5-5%,SrBi2Nb2O92-4%,Bi3ZrNbO93-5%,Nb2O50.2-0.7%,CeO20.1-0.5%,ZnO 1-3%,和MnCO30.2-0.35%。
在本发明的另一实施方式中,提供了一种用于制备上述陶瓷电容器用介质材料的方法,包括以下步骤:取按重量百分比计的上述原料进行配料;将配好的原料进行研磨;在研磨的物料达到要求粒径后与造粒添加剂一起研磨0.5-2小时,利用离心干燥塔进行造粒;对造粒料进行过筛,以获得陶瓷电容器用介质材料。
优选地,所述方法中使用的造粒添加剂为聚乙烯醇。
图1为根据本发明实施方式的超高压陶瓷电容器用介质材料的生产工艺流程图。具体地,如图1所示,在制备本发明的陶瓷电容器用介质材料的方法中,包括以下步骤:步骤101.取按重量百分比计的上述原料进行配料;步骤102.将配好的原料经过球磨机研磨一定时间;步骤103.在研磨的物料达到要求粒径后与造粒添加剂一起研磨0.5-2小时,利用离心干燥塔进行造粒;以及步骤104.对造粒料进行过筛,以获得陶瓷电容器用介质材料。
具体地,本发明的介质材料中所用的BaTiO3的制备方法包括:将常规的化学原料BaCO3和TiO2按照1:1的摩尔比进行配料,研磨混合均匀后放入氧化铝坩埚内在1230-1250℃下保温2.5-3.5小时,固相反应来合成BaTiO3,冷却后研磨过120目筛,备用。
本发明的介质材料中所用的SrTiO3的制备方法包括:将常规的化学原料SrCO3和TiO2按照1:1的摩尔比进行配料,将配料研磨混合均匀后放入氧化铝坩埚内在1260-1280℃下保温2.5-3.5小时,固相反应来合成SrTiO3,冷却后研磨过120目筛,备用。
本发明的介质材料中所用的CaTiO3的制备方法包括:将常规的化学原料CaCO3和TiO2按照1:1的摩尔比进行配料,将配料研磨混合均匀后放入氧化铝坩埚内在1240-1260℃下保温2.5-3.5小时,固相反应来合成CaTiO3,冷却后研磨过120目筛,备用。
本发明的介质材料中所用的Bi3ZrNbO9的制备方法为:将常规的化学原料Bi2O3、ZrO2和Nb2O5按3:2:1摩尔比进行配料,球磨混合后在110-130℃下进行烘干,然后将烘干料放入氧化铝坩埚内在1150℃-1170℃下保温2.5-3.5小时,通过固相反应合成Bi3ZrNbO9,冷却后研磨过120目筛备用。
本发明的介质材料中所用的SrBi2Nb2O9的制备方法为:将常规的化学原料Bi2O3、SrCO3和Nb2O5按1:1:1摩尔比进行配料,球磨混合后在110-130℃下进行烘干,然后将烘干料放入氧化铝坩埚内在1030℃-1050℃下保温2.5-3.5小时,固相反应合成SrBi2Nb2O9,冷却后研磨过120目筛备用。
在本发明中,经过优化以后的超高压陶瓷电容器用介质材料的直流耐电压>12.6kV/mm,介电常数>5600,介质损耗<20×10-4,且体积电阻率>2.1x 1012Ω·cm。这些电性能的提高为生产优异的超高压陶瓷电容器奠定了良好的基础,能够满足电力系统、脉冲功率、航空航天、激光武器等对电容器的要求。
实施例
现在结合实施例对本发明进行进一步描述。表1中给出了本发明各实施例试样的配方。
采用图1中所示的工艺流程来制备本发明的各实施例中的小损耗超高压陶瓷电容器用介质材料。
实施例1
首先,采用常规的化学原料通过固相法来合成以下熔块:BaTiO3、SrTiO3、CaTiO3、SrBi2Nb2O9、和Bi3ZrNbO9
BaTiO3的制备:将常规的化学原料BaCO3和TiO2按照1:1的摩尔比进行配料,研磨混合均匀,然后将混合物放入氧化铝坩埚内在1240℃下保温煅烧3小时,通过固相反应来合成BaTiO3,冷却后研磨过120目筛,备用。
SrTiO3的制备:将常规的化学原料SrCO3和TiO2按照1:1的摩尔比进行配料,将其研磨混合均匀,然后将混合物放入氧化铝坩埚内在1270℃保温煅烧3小时,通过固相反应来合成SrTiO3,冷却后研磨过120目筛,备用。
CaTiO3的制备:将常规的化学原料CaCO3和TiO2按照1:1的摩尔比进行配料,研磨混合均匀,然后将混合物放入氧化铝坩埚内在1250℃下保温煅烧3小时,通过固相反应来合成CaTiO3,冷却后研磨过120目筛,备用。
Bi3ZrNbO9的制备:将常规的化学原料Bi2O3、ZrO2和Nb2O5按3:2:1的摩尔比进行配料,球磨混合后在120℃下进行烘干,然后将烘干的混合物放入氧化铝坩埚中在1150℃至1170℃下保温煅烧3小时,通过固相反应来合成Bi3ZrNbO9,冷却后研磨过120目筛备用。
SrBi2Nb2O9的制备:将常规的化学原料Bi2O3、SrCO3和Nb2O5按1:1:1摩尔比进行配料,球磨混合后在120℃下进行烘干,然后将烘干的混合物放入氧化铝坩埚中在1030℃-1050℃下保温煅烧3小时,通过固相反应来合成SrBi2Nb2O9,冷却后研磨过120目筛备用。
然后,取按重量百分比计的按照上述制备方法合成的BaTiO370%,SrTiO320%,CaTiO31.5%,SrBi2Nb2O90.2%,Bi3ZrNbO94.5%,以及按重量百分比计的Nb2O50.5%,CeO20.1%,ZnO 3.1%,MnCO30.1%。随后,将以上组分进行配料。将配好的料利用蒸馏水或去离子水通过球磨机进行研磨混合,其中料:球:水的质量比为1:3:0.8,球磨3小时,加入浓度为8%的聚乙烯醇溶液,球磨1小时进行造粒,然后将造粒料过70目筛,以获得粒度均匀、分布良好的粉料。然后,利用25吨的机械压机将该粉料压成生坯密度为3.8±0.02g/cm3的坯料,烧成温度为1280~1330℃,从而获得本实施例的陶瓷电容器用介质材料。然后,用68%浓度的银浆被银,在850℃下保温10分钟进行烧银,形成银电极,焊接引线,用环氧树脂进行包封,即得陶瓷电容器。对所获得的陶瓷电容器进行电性能测试,使用实施例1的介质材料制成的陶瓷电容器所对应的电性能在表2中示出。
表2中的各性能参数的测试条件如下:
利用4288A电容量测量仪来测试瓷料的容量与损耗,其中使用的测试电压为1±0.2V、测试频率为1kHz、测试温度为20±2℃。
电容器的介电常数按下列公式计算:
ε=14.4C·h/D2
式中:
ε:电容率(介电常数);
C:试样的电容量,pF;
h:介质的厚度,cm;
D:电极的直径,cm。
利用TH2681A型绝缘电阻测试仪来测试材料的绝缘电阻,其中使用的测试电压为100V、测试温度为20±2℃。
利用CS2674AX型耐压仪来测试材料的直流、交流下的耐电压,其中使用的测试温度为20±2℃。
实施例2
以与实施例1中相同的方式来制备实施例2的陶瓷电容器用介质材料。首先,采用常规的化学原料用固相法来合成以下熔块:BaTiO3、SrTiO3、CaTiO3、SrBi2Nb2O9、Bi3ZrNbO9。然后,取按重量百分比计的以下组分:BaTiO371%,SrTiO317.5%,CaTiO32.0%,SrBi2Nb2O90.6%,Bi3ZrNbO94.0%,Nb2O50.5%,CeO20.3%,ZnO4.0%,MnCO30.1%,并将以上组分进行配料。将配好的料利用蒸馏水或去离子水通过球磨机进行研磨混合,其中料:球:水的质量比为1:3:0.8,球磨3小时,加入浓度为8%的聚乙烯醇溶液,球磨1小时进行造粒,然后将造粒料过70目筛,利用25吨的机械压机将其压成生坯密度为3.8g/cm3的坯料,烧成温度为1280~1330℃,从而获得实施例2的陶瓷电容器用介质材料。然后,用68%浓度的银浆被银,在850℃下保温10分钟进行烧银,形成银电极,焊接引线,用环氧树脂进行包封,即得陶瓷电容器。对陶瓷电容器进行电性能测试,利用实施例2的配方制备的电容器所对应的电性能在下面的表2中示出。
实施例3-30
以与实施例1中相同的方式来制备表1中的实施例3-30中的陶瓷电容器用介质材料。并且,采用与实施例1中相同的测试条件对利用表1中的实施例3-30中的陶瓷电容器用介质材料制成的陶瓷电容器的电性能进行测试,使用实施例3-30的配方制成的电容器所对应的电性能均在下面的表2中示出。
比较例1
以与实施例1中相同的方式来制备比较例1的陶瓷电容器用介质材料。首先,采用常规的化学原料利用固相法来合成以下熔块:BaTiO3、SrTiO3、CaTiO3、Bi3ZrNbO9。然后,取按重量百分比计的以下组分:BaTiO371%,SrTiO318.2%,CaTiO34.0%,Bi3ZrNbO94.0%,Nb2O50.5%,CeO20.2%,ZnO 2.0%,和MnCO30.1%,并对以上组分进行配料。将配好的料利用蒸馏水或去离子水通过球磨机进行研磨混合,其中料:球:水的质量比为1:3:0.8,球磨3小时,加入浓度为8%的聚乙烯醇溶液,球磨1小时进行造粒,然后将造粒料过70目筛,利用25吨的机械压机将其压成生坯密度为3.8g/cm3的坯料,烧成温度为1280~1330℃,从而获得比较例1的陶瓷电容器用介质材料。然后,用68%浓度的银浆被银,在850℃下保温10分钟进行烧银,形成银电极,焊接引线,用环氧树脂进行包封,即得陶瓷电容器。采用与实施例1中相同的测试条件对陶瓷电容器的电性能进行测试,在下面的表4中给出了利用比较例1的配方制备的陶瓷电容器所对应的电性能。
比较例2-15
以与实施例1中相同的方式来制备表3中的比较例2-15中的陶瓷电容器用介质材料。并且,采用与实施例1中相同的测试条件对利用表3中的比较例2-15中的陶瓷电容器用介质材料制成的陶瓷电容器的电性能进行测试,利用比较例2-15的各配方制备的陶瓷电容器所对应的电性能在下面的表4中示出。
表1 本发明实施例1-30的陶瓷电容器用介质材料的组成
表2 实施例1-30的配方试样的电性能
表3 比较例1-15的配方组成
表4 比较例1-15的配方试样的电性能
从以上表2和表4中可以看出,在制备超高压陶瓷电容器用介质材料时,随着介质材料介电常数的提高,选择不同的合成熔块及控制其掺杂比例对电容器的电性能是至关重要的。在本发明实施例1-30的陶瓷电容器用介质材料中,通过同时使用SrBi2Nb2O9和Bi3ZrNbO9,可以获得以下优异的电性能:直流耐电压>12.6kV/mm,介电常数>5600,介质损耗<20×10-4,且体积电阻率>2.1x 1012Ω·cm。
与本发明的通过在陶瓷电容器用介质材料中同时掺杂SrBi2Nb2O9和Bi3ZrNbO9的实施例1-30相比,在陶瓷电容器用介质材料中仅使用SrBi2Nb2O9或Bi3ZrNbO9的比较例1-15中,直流耐电压<10.3kV/mm,介电常数<5200,介质损耗>30×10-4,且体积电阻率<5×1011Ω·cm。
由表2和表4中的电性能对比可知,在陶瓷电容器用介质材料中仅使用SrBi2Nb2O9或Bi3ZrNbO9的情况下,不能同时兼顾介电常数高、介质损耗小、直流耐电压高和体积电阻率大的性能之间的平衡。相反,在本发明中,通过在本发明的陶瓷电容器用介质材料中同时掺杂SrBi2Nb2O9和Bi3ZrNbO9而实现了介电常数、介质损耗、直流耐电压和体积电阻率之间的良好的性能平衡。
经过本发明优化后的超高压陶瓷电容器用瓷料的直流耐电压>12.6kV/mm,介电常数>5600,介质损耗<20×10-4,且体积电阻率>2.1x 1012Ω·cm,这些电性能的提高为生产优异的超高压陶瓷电容器奠定了良好的基础,能够满足电力系统、脉冲功率、航空航天、激光武器等对电容器的要求。
以上实施例仅是本发明的一些优选实施方式,但本发明的保护范围并不仅限于此。本领域技术人员应该理解,所有不背离本发明精神和范围的任何修改、替换或将本发明分成若干部分再进行组合的方式都在本发明的保护范围之内。

Claims (9)

1.一种小损耗超高压陶瓷电容器用介质材料,所述陶瓷电容器用介质材料的组成按重量百分比计为:BaTiO3 70-90%,SrTiO3 2-20%,CaTiO3 1.5-10%,SrBi2Nb2O9 0.2-5%,Bi3ZrNbO9 2-8%,Nb2O5 0.05-0.8%,CeO2 0.1-0.6%,ZnO 1-5%,和MnCO3 0.1-0.5%;其中,所述小损耗是指介质损耗<20×10-4,所述超高压是指直流耐电压>12.6kV/mm。
2.根据权利要求1所述的陶瓷电容器用介质材料,其中,所述陶瓷电容器用介质材料的组成按重量百分比计为:BaTiO3 75-88%,SrTiO3 3-17%,CaTiO3 2-8.5%,SrBi2Nb2O90.5-4%,Bi3ZrNbO9 2.5-7%,Nb2O5 0.1-0.7%,CeO2 0.1-0.5%,ZnO 2-5%,和MnCO30.2-0.45%。
3.根据权利要求1所述的陶瓷电容器用介质材料,其中,所述陶瓷电容器用介质材料的组成按重量百分比计为:BaTiO3 75-85%,SrTiO3 4-15%,CaTiO3 3-8%,SrBi2Nb2O9 1-3.5%,Bi3ZrNbO9 3-6.5%,Nb2O5 0.2-0.7%,CeO2 0.2-0.5%,ZnO 1-4%,和MnCO3 0.2-0.4%。
4.根据权利要求1所述的陶瓷电容器用介质材料,其中,所述陶瓷电容器用介质材料的组成按重量百分比计为:BaTiO3 80-85%,SrTiO3 5-10%,CaTiO3 3-8%,SrBi2Nb2O91.5-3%,Bi3ZrNbO9 3-6%,Nb2O5 0.1-0.5%,CeO2 0.2-0.5%,ZnO 2-5%,和MnCO3 0.2-0.4%。
5.根据权利要求1所述的陶瓷电容器用介质材料,其中,所述陶瓷电容器用介质材料的组成按重量百分比计为:BaTiO3 80-90%,SrTiO3 2-10%,CaTiO3 1.5-5%,SrBi2Nb2O92-4%,Bi3ZrNbO9 3-5%,Nb2O5 0.2-0.7%,CeO2 0.1-0.5%,ZnO 1-3%,和MnCO3 0.2-0.35%。
6.根据权利要求1至5中任一项所述的陶瓷电容器用介质材料,其中,所述陶瓷电容器用介质材料的直流耐电压>12.6kV-/mm,介电常数K>5600,介质损耗<20×10-4,且体积电阻率>2.1x1012Ω·cm。
7.根据权利要求1至5中任一项所述的陶瓷电容器用介质材料,其中,所述介质材料中所使用的Bi3ZrNbO9的制备方法为:将常规的化学原料Bi2O3、ZrO2和Nb2O5按3:2:1摩尔比进行配料,球磨混合后在110-130℃下进行烘干,然后将烘干料放入氧化铝坩埚中在1150℃至1170℃下保温2.5-3.5小时,通过固相反应来合成Bi3ZrNbO9,冷却后研磨过120目筛备用。
8.根据权利要求1至5中任一项所述的陶瓷电容器用介质材料,其中,所述介质材料中所使用的SrBi2Nb2O9的制备方法为:将常规的化学原料Bi2O3、SrCO3和Nb2O5按1:1:1摩尔比进行配料,球磨混合后在110-130℃下进行烘干,然后将烘干料放入氧化铝坩埚中在1030℃至1050℃下保温2.5-3.5小时,通过固相反应来合成SrBi2Nb2O9,冷却后研磨过120目筛备用。
9.根据权利要求1-8中任一项所述的陶瓷电容器用介质材料在制备电容器中的应用。
CN201511026266.4A 2015-12-30 2015-12-30 一种小损耗超高压陶瓷电容器用介质材料 Active CN105645952B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511026266.4A CN105645952B (zh) 2015-12-30 2015-12-30 一种小损耗超高压陶瓷电容器用介质材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511026266.4A CN105645952B (zh) 2015-12-30 2015-12-30 一种小损耗超高压陶瓷电容器用介质材料

Publications (2)

Publication Number Publication Date
CN105645952A CN105645952A (zh) 2016-06-08
CN105645952B true CN105645952B (zh) 2017-03-15

Family

ID=56491077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511026266.4A Active CN105645952B (zh) 2015-12-30 2015-12-30 一种小损耗超高压陶瓷电容器用介质材料

Country Status (1)

Country Link
CN (1) CN105645952B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107188562A (zh) * 2017-06-23 2017-09-22 汕头市瑞升电子有限公司 一种高介电常数低损耗高温度稳定陶瓷电容器介质及其制备方法
CN107324800A (zh) * 2017-07-04 2017-11-07 合肥市大卓电力有限责任公司 一种陶瓷电容器用介质材料及其制备工艺
CN107342794A (zh) * 2017-08-15 2017-11-10 蓝洞物联科技(宁波)有限公司 一体化高压宽带数字载波机
CN112110723B (zh) * 2020-09-22 2022-06-03 中国人民解放军国防科技大学 一种满足x9r型mlcc应用需求的介质材料及其制备方法
CN115959904B (zh) * 2022-12-30 2023-10-13 北京七星飞行电子有限公司 一种用于制备小损耗超高压交流瓷介电容器的介质材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060267709A1 (en) * 2005-05-31 2006-11-30 York Robert A Analog phase shifter using cascaded voltage tunable capacitor
CN101028979A (zh) * 2006-02-27 2007-09-05 西北工业大学 钛酸铋钠—钛酸铋钾无铅压电织构陶瓷及其制备方法
CN101386534A (zh) * 2008-10-24 2009-03-18 江苏大学 一种高性能中低温烧结高压陶瓷电容器介质
CN102060522A (zh) * 2010-11-11 2011-05-18 汕头高新区松田实业有限公司 一种陶瓷电容器的电介质及其制备方法
CN103113100A (zh) * 2013-03-01 2013-05-22 江苏大学 一种高温度稳定陶瓷电容器介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060267709A1 (en) * 2005-05-31 2006-11-30 York Robert A Analog phase shifter using cascaded voltage tunable capacitor
CN101028979A (zh) * 2006-02-27 2007-09-05 西北工业大学 钛酸铋钠—钛酸铋钾无铅压电织构陶瓷及其制备方法
CN101386534A (zh) * 2008-10-24 2009-03-18 江苏大学 一种高性能中低温烧结高压陶瓷电容器介质
CN102060522A (zh) * 2010-11-11 2011-05-18 汕头高新区松田实业有限公司 一种陶瓷电容器的电介质及其制备方法
CN103113100A (zh) * 2013-03-01 2013-05-22 江苏大学 一种高温度稳定陶瓷电容器介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BiFeO3-SrBi2Nb2O9陶瓷的介电与铁电性能研究;黄海等;《硅酸盐通报》;20061228;第25卷(第6期);全文 *

Also Published As

Publication number Publication date
CN105645952A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN105645952B (zh) 一种小损耗超高压陶瓷电容器用介质材料
CN102260044B (zh) 一种储能铌酸盐微晶玻璃介质材料及其制备方法
US9153643B2 (en) Semiconductor ceramic and method for manufacturing the same, and laminated semiconductor ceramic capacitor with varistor function and method for manufacturing the same
CN109694248B (zh) 高抗电强度无铅储能介质陶瓷材料及其制备方法
CN103408301B (zh) 一种超高压陶瓷电容器介质及其制备方法
CN109369154B (zh) 一种储能效率提高的反铁电储能陶瓷及其制备方法与应用
CN104183342A (zh) 一种钛酸铜钙(CaCu3Ti4O12)的新用途及其制备方法
Muhammad et al. Enhanced dielectric properties in Nb-doped BT-BMT ceramics
CN105732020A (zh) 一种巨介电、低损耗二氧化钛基复合陶瓷的制备方法
CN107216145A (zh) 一种陶瓷电容器的电介质及其制备工艺
CN102674832A (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN102030528B (zh) 一种高温度稳定性的介电陶瓷材料及其制备方法
CN110668816A (zh) 一种钨青铜结构的无铅储能介质陶瓷材料及其制备方法
CN103664163B (zh) 一种高介晶界层陶瓷电容器介质及其制备方法
CN113213923A (zh) 一种铪钛酸铅基反铁电陶瓷材料及其制备方法
Luo et al. High polarization stability of Sr modified Pb (Zr, Sn) NbO3 antiferroelectric ceramics
Wang et al. Dielectric ceramics with excellent energy storage properties were obtained by doping 0.92 NaNbO3-0.08 Bi (Ni0. 5Zr0. 5) O3 ceramics
CN103408302A (zh) 一种高介高温度稳定陶瓷电容器介质及其制备方法
CN111410530A (zh) 一种抗还原BaTiO3基介质陶瓷及其制备方法
CN102568821B (zh) 一种高介电高压陶瓷电容器介质
CN102690118B (zh) Np0型陶瓷电容器介质材料及其制备方法
CN106348748A (zh) 一种高温x8r型陶瓷电容器介质材料及其制备方法
CN106631002A (zh) Mg‑Zn‑Ti基射频多层陶瓷电容器用介质材料及其制备方法
CN103113100A (zh) 一种高温度稳定陶瓷电容器介质
CN103524127B (zh) 一种高频晶界层陶瓷电容器介质及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant