CN106348748A - 一种高温x8r型陶瓷电容器介质材料及其制备方法 - Google Patents

一种高温x8r型陶瓷电容器介质材料及其制备方法 Download PDF

Info

Publication number
CN106348748A
CN106348748A CN201610738044.3A CN201610738044A CN106348748A CN 106348748 A CN106348748 A CN 106348748A CN 201610738044 A CN201610738044 A CN 201610738044A CN 106348748 A CN106348748 A CN 106348748A
Authority
CN
China
Prior art keywords
barium
fused matter
dielectric material
capacitor dielectric
type ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610738044.3A
Other languages
English (en)
Other versions
CN106348748B (zh
Inventor
吴金剑
林志盛
黄祥贤
宋运雄
陈永虹
谢显斌
许金飘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIAN TORCH ELECTRON TECHNOLOGY Co Ltd
Original Assignee
FUJIAN TORCH ELECTRON TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIAN TORCH ELECTRON TECHNOLOGY Co Ltd filed Critical FUJIAN TORCH ELECTRON TECHNOLOGY Co Ltd
Priority to CN201610738044.3A priority Critical patent/CN106348748B/zh
Publication of CN106348748A publication Critical patent/CN106348748A/zh
Application granted granted Critical
Publication of CN106348748B publication Critical patent/CN106348748B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

本发明属于多层陶瓷电容器材料技术领域,特别涉及高温X8R型陶瓷电容器介质材料及其制备方法。该种高温X8R型陶瓷电容器介质材料,以钛酸钡和钛酸铋钠钡的共融物为主基料,添加铌锰和A的氧化物的共融物、硅锂共融物、硼钡共融物、Re2O3,其中,元素A为钴、镍、锌、铋等的一种或几种,元素Re为稀土元素镨、钐、钆、钕、镝等的一种或几种。使用本发明高温X8R型陶瓷电容器介质材料制得的电容器具有高介电常数、高耐压强度、高温度稳定性,并且能够在制备多层瓷介固定电容器时与中低温烧结的30Pd‑70Ag内电极相匹配而实现中温烧结,并实现在高温环境的应用,具有较高的产业化前景和工业应用价值。

Description

一种高温X8R型陶瓷电容器介质材料及其制备方法
技术领域
本发明属于多层陶瓷电容器材料技术领域,特别涉及高温X8R型陶瓷电容器介质材料及其制备方法。
背景技术
多层瓷介固定电容器(下称MLCC)是各种电子设备不可缺少的重要元件,具有容量范围大、介质损耗低、体积小、适合表面贴装等特点,广泛应用于航天、航空、武器装备、电子对抗、汽车控制、能源勘探、工业控制、移动通信、轨道交通等军事和工业领域。
随着现代信息技术和MLCC应用领域产业的高速发展,MLCC不断向高耐压强度、高温度稳定、高容量、微型化、高可靠方向发展,尤其是在一些特殊环境下的应用,对MLCC的工作温度范围和介电容温变化率提出更高的要求,如各种军事装备的大推力发动机、大功率相控雷达,石油钻井设备以及汽车领域的防抱死系统、电子控制单元等对MLCC工作温度要求延伸到150℃,甚至更高。
根据美国EIA标准,X7R的工作温度范围为-55℃~125℃,X8R的工作温度范围为-55℃~150℃,两者的容温变化率均为±15%以内;显然X7R在某些特殊环境的应用,特别是在高温环境的应用不及X8R。钛酸钡的居里温度为125℃左右,其介电常数高,但介质损耗过高、容温变化率恶劣以及老化率严重,近年来国内外研究人员以钛酸钡为基材对X8R材料展开研究,并取得一定程度的进展,如专利200480015816.6,使用稀土氧化物、Nb2O5、Ta2O5、Co3O4、玻璃粉等物质对钛酸钡进行改性,但其发明只能满足X7R要求,不能满足更高工作温度要求;又如专利201210146787.3,使用钛铋钠化合物BNT提高钛酸钡居里温度、并添加锆钛化合物、稀土化合物、玻璃粉等物质对钛酸钡进行改性,其满足X8R特性,介电常数可达2700以上,但是介电损耗最低仍达1.55%,并且其烧结温度在1270℃以上,制成MLCC时不能与中低温烧结用的30Pd-70Ag内电极匹配,只能选用纯Pd,制造成本昂贵,不利于产业化;再如专利201310413203.9,使用(Sr、Ca、Ba)Bi4Ti4O15提高钛酸钡居里温度,并通过微量稀土氧化物、ZnNb2O6、ZrO2、硅锌化合物、MnCO3、玻璃粉等物质对钛酸钡进行改性,其满足X8R特性的介电常数最高仅达1900,并且不涉及耐压强度。
因此,制备一种具有高介电常数(K值)、高耐压强度、高温度稳定性(150℃以上),并且能够在制备多层瓷介固定电容器时与中低温烧结的30Pd-70Ag内电极相匹配而实现中温烧结(1100℃~1190℃),并实现在高温环境的应用,具有较高的产业化前景和工业应用价值。
发明内容
为了克服现有技术的不足,本发明提供一种解决工作温度范围低、耐压强度低、介电常数低、介质损耗高、烧结温度高等问题,具有高介电常数(K值)、高耐压强度、高温度稳定性(150℃以上),并且能够在制备多层瓷介固定电容器时与中低温烧结的30Pd-70Ag内电极相匹配而实现中温烧结(1100℃~1190℃)的高温X8R型陶瓷电容器介质材料及其制备方法。
为实现上述目的,本发明提供了一种高温X8R型陶瓷电容器介质材料,其特征在于:其以100重量份的钛酸钡和钛酸铋钠钡的共融物为主基料,添加0.8~3.0份的铌锰和A的氧化物的共融物、0.2~1.0份的硅锂共融物、0.6~2.5份的硼钡共融物、0.5~2.0份的Re2O3
其中,元素A为钴(Co)、镍(Ni)、锌(Zn)、铋(Bi)等的一种或几种,元素Re为稀土元素镨(Pr)、钐(Sm)、钆(Gd)、钕(Nd)、镝(Dy)等的一种或几种。
进一步的,钛酸钡和钛酸铋钠钡的共融物的化学式为:
[(1-x)BaTiO3-xBay(NaO.5Bi0.5)(1-y)TiO3],其中,x=0.005~0.03;y=0.02~0.1。
进一步的,铌锰和A的氧化物的共融物中,铌与锰的原子比为6-11,铌与元素A的原子比为4.5-8.5。
进一步的,硅锂共融物中,Li/Si原子比=2-4。
进一步的,硼钡共融物中,Ba/B原子比=0.25-0.5。
一种高温X8R型陶瓷电容器介质材料的制备方法,其特征在于,包括以下步骤:
步骤1,先合成钛酸铋钠钡后再合成钛酸钡和钛酸铋钠钡的共融物;
步骤2,合成铌锰和A的氧化物的共融物;
步骤3,合成硅锂共融物;
步骤4,合成硼钡共融物;
步骤5,根据原料配比分别称量步骤1-4制备的共融物,以水为分散介质,依次进行球磨、干燥、破碎并造粒,造粒后的粉料在2~10Mpa条件下压制成圆片生坯,然后在空气气氛中升温至1100~1190℃,并保温烧结1~4h,即制得高温X8R型陶瓷电容器介质材料。
优化的,步骤1中:
合成钛酸铋钠钡[Bay(NaO.5Bi0.5)(1-y)TiO3],按化学式[Bay(Na0.5Bi0.5)(1-y)TiO3],以Ba(OH)2·8H2O、Na2CO3、Bi2O3、TiO2原料,进行配料、球磨、干燥、破碎、过40目标准筛网,然后在850~950℃条件下煅烧1~4h合成钛酸铋钠钡。
优化的,步骤1中:
合成钛酸钡和钛酸铋钠钡的共融物[(1-x)BaTiO3-xBay(NaO.5Bi0.5)(1-y)TiO3],按化学式[(1-x)BaTiO3-xBay(Na0.5Bi0.5)(1-y)TiO3],把合成的钛酸铋钠钡Bay(NaO.5Bi0.5)(1-y)TiO3添加到BaTiO3中进行配料、球磨、干燥、破碎、过40目标准筛网,然后在1020~1150℃条件下煅烧2~6h合成钛酸钡和钛酸铋钠钡的共融物。
优化的,步骤5中,球磨工艺采用2~5mm的氧化锆球作磨介,研磨2~10h,然后烘干、过筛,再加入5~10重量份的石蜡做粘结剂共同烘焙造粒,并再次过筛。
由上述对本发明描述可知,本发明具有如下有益效果:
第一,本发明的高温X8R型陶瓷电容器介质材料通过合成钛酸钡和钛酸铋钠钡的共融物提高钛酸钡体系的居里温度,使其具有更高的工作温度范围。
第二,本发明通过铌锰和A的氧化物的共融物以及稀土氧化物的共同作用,使得钛酸钡基介电陶瓷材料实现双峰结构,有效降低介电容温变化率,实现X8R特性;并且Nb5+、Gd3 +、Nd3+、Pr3+、Dy3+、Sm3+等离子的存在有利于维持电中性,提高体系绝缘电阻,并在烧结过程中抑制晶粒长大提高烧结致密性,从而降低介质损耗,提高体系的耐压强度。
第三,本发明通过添加硅锂共融物、硼钡共融物等助熔剂,一方面起到降低烧结温度作用;更重要的一方面是Li+能有效改善高温稳定性,Ba2+的存在也可以有效拟补陶瓷材料在烧结过程中产生的Ba空位,从而减少本发明中陶瓷材料的缺陷,提高绝缘电阻,降低介电损耗,实现高耐压强度,并保持钛酸钡晶体结构稳定,从而使本发明的陶瓷材料具有更好的高温稳定性。
第四,本发明的介电陶瓷材料能够中温烧结,其在制备多层瓷介固定电容器时能与中低温烧结的30Pd-70Ag内电极相匹配,从而降低生产成本,有利于产业化发展。
第五,本发明的介电陶瓷材料采用传统固相法工艺即可制备,工艺要求不高。
综上所述,本发明所制得的陶瓷电容器介质材料具有高介电常数(K值)、高耐压强度、高温度稳定性(150℃以上),并且能够在制备多层瓷介固定电容器时与中低温烧结的30Pd-70Ag内电极相匹配而实现中温烧结(1100℃~1190℃),并实现在高温环境的应用,具有较高的产业化前景和工业应用价值。
附图说明
图1为本发明制得的陶瓷电容器介质材料的电容温变化曲线示意图。
具体实施方式
参照图1所示,以下通过具体实施方式对本发明作进一步的描述。
一种高温X8R型陶瓷电容器介质材料,其以100重量份的钛酸钡和钛酸铋钠钡的共融物为主基料,添加0.8~3.0份的铌锰和A的氧化物的共融物、0.2~1.0份的硅锂共融物、0.6~2.5份的硼钡共融物、0.5~2.0份的Re2O3
其中,钛酸钡和钛酸铋钠钡的共融物的化学式为:[(1-x)BaTiO3-xBay(NaO.5Bi0.5)(1-y)TiO3],其中,x=0.005~0.03;y=0.02~0.1;
铌锰和A的氧化物的共融物中,元素A为钴(Co)、镍(Ni)、锌(Zn)、铋(Bi)等的一种或几种,铌与锰的原子比为6-11,铌与元素A的原子比为4.5-8.5;
硅锂共融物中,Li/Si原子比=2-4;
硼钡共融物中,Ba/B原子比=0.25-0.5。
Re2O3中,元素Re为稀土元素镨(Pr)、钐(Sm)、钆(Gd)、钕(Nd)、镝(Dy)等的一种或几种。
一种高温X8R型陶瓷电容器介质材料的制备方法,其特征在于,包括以下步骤:
步骤1,先合成钛酸铋钠钡后再合成钛酸钡和钛酸铋钠钡的共融物;
步骤2,合成铌锰和A的氧化物的共融物,按铌与锰的原子比为6ˉ11,铌与A元素的原子比为4.5ˉ8.5,以Nb2O5、MnCO3、A的氧化物为原料,其中A元素为钴(Co)、镍(Ni)、锌(Zn)、铋(Bi)等的一种或几种,进行配料、球磨、干燥、破碎、过40目标准筛网,然后在900~1150℃条件下煅烧2~6h合成铌锰和A的氧化物的共融物;
步骤3,合成硅锂共融物,按Li/Si原子比=2ˉ4,以Li2CO3、SiO2为原料,进行配料、球磨、干燥、破碎、过40目标准筛网,然后在550~750℃条件下煅烧1~4h合成硅锂共融物;
步骤4,合成硼钡共融物,按Ba/B原子比=0.25ˉ0.5,以Ba(OH)2·8H2O、H3BO3为原料,进行配料、球磨、干燥、破碎、过40目标准筛网,然后在500~700℃条件下煅烧2~6h合成硼钡共融物;
步骤5,以100重量份的钛酸钡和钛酸铋钠钡的共融物为主基料,添加0.8~3.0重量份的铌锰和A的氧化物的共融物、0.2~1.0重量份的硅锂共融物、0.6~2.5重量份的硼钡共融物及0.5~2.0重量份的Re2O3,以水为分散介质,依次进行球磨、干燥、破碎并造粒,造粒后的粉料在2~10Mpa条件下压制成圆片生坯,然后在空气气氛中升温至1100~1190℃,并保温烧结1~4h,即制得高温X8R型陶瓷电容器介质材料,球磨工艺采用2~5mm的氧化锆球作磨介,研磨2~10h,然后烘干、过筛,再加入5~10重量份的石蜡做粘结剂共同烘焙造粒,并再次过筛。
优化的,步骤1中:
合成钛酸铋钠钡[Bay(NaO.5Bi0.5)(1-y)TiO3],按化学式[Bay(Na0.5Bi0.5)(1-y)TiO3],以Ba(OH)2·8H2O、Na2CO3、Bi2O3、TiO2原料,进行配料、球磨、干燥、破碎、过40目标准筛网,然后在850~950℃条件下煅烧1~4h合成钛酸铋钠钡;
合成钛酸钡和钛酸铋钠钡的共融物[(1-x)BaTiO3-xBay(NaO.5Bi0.5)(1-y)TiO3],按化学式[(1-x)BaTiO3-xBay(Na0.5Bi0.5)(1-y)TiO3],把合成的钛酸铋钠钡Bay(NaO.5Bi0.5)(1-y)TiO3添加到BaTiO3中进行配料、球磨、干燥、破碎、过40目标准筛网,然后在1020~1150℃条件下煅烧2~6h合成钛酸钡和钛酸铋钠钡的共融物。
具体实施例一:
步骤1,先合成钛酸铋钠钡后再合成钛酸钡和钛酸铋钠钡的共融物,分别称取8.11g Ba(OH)2·8H2O、10.68g Na2CO3、46.96g Bi2O3、34.25g TiO2,混合球磨、干燥、破碎、过40目标准筛网,于850℃煅烧2h合成钛酸铋钠钡;分别称取98g BaTiO3和2g步骤①合成的钛酸铋钠钡,混合球磨、干燥、破碎、过40目标准筛网,于1100℃煅烧3h合成钛酸钡和钛酸铋钠钡的共融物;
步骤2,合成铌锰和A的氧化物的共融物,分别称取78g Nb2O5、10g MnCO3、3gZnO、9gCo2O3,混合球磨、干燥、破碎、过40目标准筛网,于900℃条件下煅烧2.5h合成铌锰锌钴共融物;
步骤3,合成硅锂共融物,分别称取71.09g Li2CO3、28.91g SiO2,混合球磨、干燥、破碎、过40目标准筛网,于600℃煅烧2h合成硅锂共融物;
步骤4,合成硼钡共融物,分别称取71.83g Ba(OH)2·8H2O、28.17g H3BO3,混合球磨、干燥、破碎、过40目标准筛网,于600℃煅烧2h合成硼钡共融物;
步骤5,准确称取100g钛酸钡和钛酸铋钠钡的共融物,1.5g铌锰锌钴共融物、0.3g硅锂共融物、0.9g硼钡共融物及0.8g Gd2O3进行配料,以水为分散介质,采用2mm的锆球研磨6h,烘干、过80目标准筛网,再加入8%的石蜡做粘结剂共同烘焙造粒,并再次过80目标准筛网,将造粒后的粉料在8Mpa条件下压制成圆片生坯,然后在空气气氛中升温至1170℃,并保温烧结3h,即制得高温X8R型陶瓷电容器介质材料。
具体实施例二:
步骤1,先合成钛酸铋钠钡后再合成钛酸钡和钛酸铋钠钡的共融物,分别称取8.11g Ba(OH)2·8H2O、10.68g Na2CO3、46.96g Bi2O3、34.25g TiO2,混合球磨、干燥、破碎、过40目标准筛网,于900℃煅烧2h合成钛酸铋钠钡,分别称取97.5g BaTiO3和2.5g步骤①合成的钛酸铋钠钡,混合球磨、干燥、破碎、过40目标准筛网,于1090℃煅烧3h合成钛酸钡和钛酸铋钠钡的共融物;
步骤2,合成铌锰和A的氧化物的共融物,分别称取80g Nb2O5、10g MnCO3、10gCo2O3,混合球磨、干燥、破碎、过40目标准筛网,于930℃条件下煅烧2.5h合成铌锰钴共融物;
步骤3,合成硅锂共融物,分别称取66.28g Li2CO3、33.72g SiO2,混合球磨、干燥、破碎、过40目标准筛网,于630℃煅烧2h合成硅锂共融物
步骤4,合成硼钡共融物,分别称取71.83g Ba(OH)2·8H2O、28.17g H3BO3,混合球磨、干燥、破碎、过40目标准筛网,于630℃煅烧2h合成硼钡共融物
步骤5,准确称取100g钛酸钡和钛酸铋钠钡的共融物,0.8g铌锰钴共融物、0.4g硅锂共融物、1.5g硼钡共融物及1.0g Dy2O3进行配料,以水为分散介质,采用2mm的锆球研磨6h,烘干、过80目标准筛网,再加入8%的石蜡做粘结剂共同烘焙造粒,并再次过80目标准筛网,将造粒后的粉料在8Mpa条件下压制成圆片生坯,然后在空气气氛中升温至1160℃,并保温烧结3h,即制得高温X8R型陶瓷电容器介质材料。
具体实施例三:
步骤1,先合成钛酸铋钠钡后再合成钛酸钡和钛酸铋钠钡的共融物,分别称取5.49g Ba(OH)2·8H2O、11.07g Na2CO3、48.67g Bi2O3、34.76g TiO2,混合球磨、干燥、破碎、过40目标准筛网,于890℃煅烧2h合成钛酸铋钠钡,分别称取97g BaTiO3和3g步骤①合成的钛酸铋钠钡,混合球磨、干燥、破碎、过40目标准筛网,于1100℃煅烧3h合成钛酸钡和钛酸铋钠钡的共融物;
步骤2,合成铌锰和A的氧化物的共融物,分别称取80g Nb2O5、10g MnCO3、10gBi2O3,混合球磨、干燥、破碎、过40目标准筛网,于930℃条件下煅烧2.5h合成铌锰铋共融物;
步骤3,合成硅锂共融物,分别称取71.09g Li2CO3、28.91g SiO2,混合球磨、干燥、破碎、过40目标准筛网,于650℃煅烧2h合成硅锂共融物;
步骤4,合成硼钡共融物,分别称取60.18g Ba(OH)2·8H2O、39.82g H3BO3,混合球磨、干燥、破碎、过40目标准筛网,于650℃煅烧2h合成硼钡共融物;步骤5,准确称取100g钛酸钡和钛酸铋钠钡的共融物,2.2g铌锰铋共融物、0.2g硅锂共融物、2.0g硼钡共融物及1.3gPr2O3进行配料,以水为分散介质,采用2mm的锆球研磨6h,烘干、过80目标准筛网,再加入8%的石蜡做粘结剂共同烘焙造粒,并再次过80目标准筛网,将造粒后的粉料在8Mpa条件下压制成圆片生坯,然后在空气气氛中升温至1160℃,并保温烧结3h,即制得高温X8R型陶瓷电容器介质材料。
具体实施例四:
步骤1,先合成钛酸铋钠钡后再合成钛酸钡和钛酸铋钠钡的共融物,分别称取5.49g Ba(OH)2·8H2O、11.07g Na2CO3、48.67g Bi2O3、34.76g TiO2,混合球磨、干燥、破碎、过40目标准筛网,于890℃煅烧2h合成钛酸铋钠钡,分别称取99g BaTiO3和1g步骤①合成的钛酸铋钠钡,混合球磨、干燥、破碎、过40目标准筛网,于1100℃煅烧3h合成钛酸钡和钛酸铋钠钡的共融物;
步骤2,合成铌锰和A的氧化物的共融物,分别称取85g Nb2O5、7g MnCO3、4g NiO、4gZnO,混合球磨、干燥、破碎、过40目标准筛网,于950℃条件下煅烧2.5h合成铌锰镍锌共融物;
步骤3,合成硅锂共融物,分别称取66.28g Li2CO3、33.72g SiO2,混合球磨、干燥、破碎、过40目标准筛网,于650℃煅烧2h合成硅锂共融物;
步骤4,合成硼钡共融物,分别称取61.18g Ba(OH)2·8H2O、39.82g H3BO3,混合球磨、干燥、破碎、过40目标准筛网,于650℃煅烧2h合成硼钡共融物;
步骤5,准确称取100g步骤钛酸钡和钛酸铋钠钡的共融物,3.0g铌锰镍锌共融物、1.0g硅锂共融物、1.0g硼钡共融物及1.5g Sm2O3进行配料,以水为分散介质,采用2mm的锆球研磨6h,烘干、过80目标准筛网,再加入8%的石蜡做粘结剂共同烘焙造粒,并再次过80目标准筛网,将造粒后的粉料在8Mpa条件下压制成圆片生坯,然后在空气气氛中升温至1140℃,并保温烧结3h,即制得高温X8R型陶瓷电容器介质材料。
具体实施例五:
步骤1,先合成钛酸铋钠钡后再合成钛酸钡和钛酸铋钠钡的共融物,分别称取5.49g Ba(OH)2·8H2O、11.07g Na2CO3、48.67g Bi2O3、34.76g TiO2,混合球磨、干燥、破碎、过40目标准筛网,于890℃煅烧2h合成钛酸铋钠钡,分别称取98.5g BaTiO3和1.5g步骤①合成的钛酸铋钠钡,混合球磨、干燥、破碎、过40目标准筛网,于1100℃煅烧3h合成钛酸钡和钛酸铋钠钡的共融物;
步骤2,合成铌锰和A的氧化物的共融物,分别称取87g Nb2O5、5g MnCO3、5gNiO、3gCo2O3,混合球磨、干燥、破碎、过40目标准筛网,于950℃条件下煅烧2.5h合成铌锰镍钴共融物;
步骤3,合成硅锂共融物,分别称取69.19g Li2CO3、30.81g SiO2,混合球磨、干燥、破碎、过40目标准筛网,于660℃煅烧2h合成硅锂共融物;
步骤4,合成硼钡共融物,分别称取69.07g Ba(OH)2·8H2O、30.93g H3BO3,混合球磨、干燥、破碎、过40目标准筛网,于650℃煅烧2h合成硼钡共融物;
步骤5,准确称取100g钛酸钡和钛酸铋钠钡的共融物,1.0g铌锰镍钴共融物、0.7g硅锂共融物、1.4g硼钡共融物及2.0g Nd2O3进行配料,以水为分散介质,采用2mm的锆球研磨6h,烘干、过80目标准筛网,再加入8%的石蜡做粘结剂共同烘焙造粒,并再次过80目标准筛网,将造粒后的粉料在8Mpa条件下压制成圆片生坯,然后在空气气氛中升温至1160℃,并保温烧结3h,即制得高温X8R型陶瓷电容器介质材料。
参照图1所示,高温X8R型陶瓷电容器,将具体实施例1-5所制得的高温X8R型陶瓷电容器介质材料两侧烧制银电极,制成圆片电容器,并检测各项电性能,检测结果如下表:
其中,Max|△C/C|(%)值的温度范围为-55℃~150℃
上述仅为本发明的一个具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。

Claims (9)

1.一种高温X8R型陶瓷电容器介质材料,其特征在于:其以100重量份的钛酸钡和钛酸铋钠钡的共融物为主基料,添加0.8~3.0份的铌锰和A的氧化物的共融物、0.2~1.0份的硅锂共融物、0.6~2.5份的硼钡共融物、0.5~2.0份的Re2O3
其中,元素A为钴(Co)、镍(Ni)、锌(Zn)、铋(Bi)等的一种或几种,元素Re为稀土元素镨(Pr)、钐(Sm)、钆(Gd)、钕(Nd)、镝(Dy)等的一种或几种。
2.根据权利要求1所述的高温X8R型陶瓷电容器介质材料,其特征在于,所述的钛酸钡和钛酸铋钠钡的共融物的化学式为:
[(1-x)BaTiO3-xBay(NaO.5Bi0.5)(1-y)TiO3],其中,x=0.005~0.03;y=0.02~0.1。
3.根据权利要求1或2所述的高温X8R型陶瓷电容器介质材料,其特征在于:所述铌锰和A的氧化物的共融物中,铌与锰的原子比为6-11,铌与元素A的原子比为4.5-8.5。
4.根据权利要求1或2所述的高温X8R型陶瓷电容器介质材料,其特征在于:所述硅锂共融物中,Li/Si原子比=2-4。
5.根据权利要求1或2所述的高温X8R型陶瓷电容器介质材料,其特征在于:所述硼钡共融物中,Ba/B原子比=0.25-0.5。
6.一种高温X8R型陶瓷电容器介质材料的制备方法,其特征在于,包括以下步骤:
步骤1,先合成钛酸铋钠钡后再合成钛酸钡和钛酸铋钠钡的共融物;
步骤2,合成铌锰和A的氧化物的共融物;
步骤3,合成硅锂共融物;
步骤4,合成硼钡共融物;
步骤5,根据原料配比分别称量步骤1-4制备的共融物,以水为分散介质,依次进行球磨、干燥、破碎并造粒,造粒后的粉料在2~10Mpa条件下压制成圆片生坯,然后在空气气氛中升温至1100~1190℃,并保温烧结1~4h,即制得高温X8R型陶瓷电容器介质材料。
7.根据权利要求6所述的高温X8R型陶瓷电容器介质材料的制备方法,其特征在于:所述步骤1中:
合成钛酸铋钠钡[Bay(NaO.5Bi0.5)(1-y)TiO3],按化学式[Bay(Na0.5Bi0.5)(1-y)TiO3],以Ba(OH)2·8H2O、Na2CO3、Bi2O3、TiO2原料,进行配料、球磨、干燥、破碎、过40目标准筛网,然后在850~950℃条件下煅烧1~4h合成钛酸铋钠钡。
8.根据权利要求6或7所述的高温X8R型陶瓷电容器介质材料的制备方法,其特征在于:所述步骤1中:
合成钛酸钡和钛酸铋钠钡的共融物[(1-x)BaTiO3-xBay(NaO.5Bi0.5)(1-y)TiO3],按化学式[(1-x)BaTiO3-xBay(Na0.5Bi0.5)(1-y)TiO3],把合成的钛酸铋钠钡Bay(NaO.5Bi0.5)(1-y)TiO3添加到BaTiO3中进行配料、球磨、干燥、破碎、过40目标准筛网,然后在1020~1150℃条件下煅烧2~6h合成钛酸钡和钛酸铋钠钡的共融物。
9.根据权利要求6所述的高温X8R型陶瓷电容器介质材料的制备方法,其特征在于:所述步骤5中,球磨工艺采用2~5mm的氧化锆球作磨介,研磨2~10h,然后烘干、过筛,再加入5~10重量份的石蜡做粘结剂共同烘焙造粒,并再次过筛。
CN201610738044.3A 2016-08-26 2016-08-26 一种高温x8r型陶瓷电容器介质材料及其制备方法 Active CN106348748B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610738044.3A CN106348748B (zh) 2016-08-26 2016-08-26 一种高温x8r型陶瓷电容器介质材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610738044.3A CN106348748B (zh) 2016-08-26 2016-08-26 一种高温x8r型陶瓷电容器介质材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106348748A true CN106348748A (zh) 2017-01-25
CN106348748B CN106348748B (zh) 2019-04-09

Family

ID=57855619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610738044.3A Active CN106348748B (zh) 2016-08-26 2016-08-26 一种高温x8r型陶瓷电容器介质材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106348748B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209290A (zh) * 2021-04-12 2021-08-06 华南理工大学 一种增强声动力抗肿瘤的铋/钛酸钡异质结及其制备方法
CN113754427A (zh) * 2021-08-10 2021-12-07 渭南师范学院 一种高介电常数x8r型钛酸钡基介电材料及其制备方法
CN113754426A (zh) * 2021-08-10 2021-12-07 渭南师范学院 一种巨介电常数钛酸钡基介电材料及其制备方法
CN113956034A (zh) * 2021-11-12 2022-01-21 中国电子科技集团公司第四十六研究所 一种采用低粒度粉体制备钛酸铋钠压电陶瓷的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811866A (zh) * 2010-03-30 2010-08-25 武汉理工大学 新型无铅x8r型电容器陶瓷材料及其制备方法
CN101908415A (zh) * 2010-08-03 2010-12-08 广东风华高新科技股份有限公司 X8r特性片式多层陶瓷电容器的制备方法
CN102260076A (zh) * 2011-04-30 2011-11-30 桂林电子科技大学 一种x8r型陶瓷电容器瓷料及其制备方法
CN102503407A (zh) * 2011-09-30 2012-06-20 天津大学 新型无铅x8r型多层陶瓷电容器介质及其制备方法
CN102718477A (zh) * 2012-05-14 2012-10-10 福建火炬电子科技股份有限公司 一种高介电常数x8r型mlcc介质材料及其制备方法
CN102992756A (zh) * 2012-12-11 2013-03-27 武汉理工大学 一种高介电常数x8r型电容器陶瓷材料及其制备方法
CN103482975A (zh) * 2013-09-11 2014-01-01 福建火炬电子科技股份有限公司 一种高介电常数x8r型mlcc介质材料及其制备方法
CN104744032A (zh) * 2015-03-23 2015-07-01 西北大学 一种x8r型细晶陶瓷电容器介质材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811866A (zh) * 2010-03-30 2010-08-25 武汉理工大学 新型无铅x8r型电容器陶瓷材料及其制备方法
CN101908415A (zh) * 2010-08-03 2010-12-08 广东风华高新科技股份有限公司 X8r特性片式多层陶瓷电容器的制备方法
CN102260076A (zh) * 2011-04-30 2011-11-30 桂林电子科技大学 一种x8r型陶瓷电容器瓷料及其制备方法
CN102503407A (zh) * 2011-09-30 2012-06-20 天津大学 新型无铅x8r型多层陶瓷电容器介质及其制备方法
CN102718477A (zh) * 2012-05-14 2012-10-10 福建火炬电子科技股份有限公司 一种高介电常数x8r型mlcc介质材料及其制备方法
CN102992756A (zh) * 2012-12-11 2013-03-27 武汉理工大学 一种高介电常数x8r型电容器陶瓷材料及其制备方法
CN103482975A (zh) * 2013-09-11 2014-01-01 福建火炬电子科技股份有限公司 一种高介电常数x8r型mlcc介质材料及其制备方法
CN104744032A (zh) * 2015-03-23 2015-07-01 西北大学 一种x8r型细晶陶瓷电容器介质材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209290A (zh) * 2021-04-12 2021-08-06 华南理工大学 一种增强声动力抗肿瘤的铋/钛酸钡异质结及其制备方法
CN113754427A (zh) * 2021-08-10 2021-12-07 渭南师范学院 一种高介电常数x8r型钛酸钡基介电材料及其制备方法
CN113754426A (zh) * 2021-08-10 2021-12-07 渭南师范学院 一种巨介电常数钛酸钡基介电材料及其制备方法
CN113956034A (zh) * 2021-11-12 2022-01-21 中国电子科技集团公司第四十六研究所 一种采用低粒度粉体制备钛酸铋钠压电陶瓷的方法

Also Published As

Publication number Publication date
CN106348748B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN109180178B (zh) 一种高储能密度钛酸锶钡基无铅弛豫铁电陶瓷及其制备方法
CN101006028B (zh) 介电陶瓷、制备介电陶瓷的方法和单片陶瓷电容器
CN108929112B (zh) 一种掺锡的锆钛酸铅镧厚膜陶瓷及其制备和应用
CN103408301B (zh) 一种超高压陶瓷电容器介质及其制备方法
CN106348748A (zh) 一种高温x8r型陶瓷电容器介质材料及其制备方法
CN102176374B (zh) 一种低温烧结的高压陶瓷电容器介质
CN103482975B (zh) 一种高介电常数x8r型mlcc介质材料及其制备方法
CN102674832B (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN113999004A (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN105732020A (zh) 一种巨介电、低损耗二氧化钛基复合陶瓷的制备方法
CN107512906A (zh) 一种抗还原x9r型陶瓷电容器介质材料及其制备方法
EP3059748A1 (en) All-solid-state capacitor
CN103408302B (zh) 一种高介高温度稳定陶瓷电容器介质及其制备方法
CN105645952B (zh) 一种小损耗超高压陶瓷电容器用介质材料
CN103351161B (zh) 一种低温烧结高压陶瓷电容器介质
CN114349497A (zh) 一种宽温稳定型储能陶瓷材料及其制备方法
CN102910901B (zh) 一种具有线性容温变化率的温度补偿型电容器介质及其制备方法
CN103113100B (zh) 一种高温度稳定陶瓷电容器介质
CN102568821B (zh) 一种高介电高压陶瓷电容器介质
CN111018516A (zh) 钛酸钡基高储能密度电子陶瓷及其制备方法
CN103524127B (zh) 一种高频晶界层陶瓷电容器介质及其制备方法
CN113511893A (zh) 一种bnt基三层结构的高储能密度陶瓷及其制备方法
CN112408977A (zh) 一种高品质的陶瓷介质材料及其制备方法
CN107746271B (zh) 低频低介电损耗的AgTa共掺二氧化钛基介电陶瓷材料及其制备方法
CN106587988A (zh) 一种高温度稳定陶瓷电容器介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant