CN105609552A - 高电子迁移率晶体管及其制造方法 - Google Patents

高电子迁移率晶体管及其制造方法 Download PDF

Info

Publication number
CN105609552A
CN105609552A CN201511031698.4A CN201511031698A CN105609552A CN 105609552 A CN105609552 A CN 105609552A CN 201511031698 A CN201511031698 A CN 201511031698A CN 105609552 A CN105609552 A CN 105609552A
Authority
CN
China
Prior art keywords
barrier layer
layer
grid
hemt
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201511031698.4A
Other languages
English (en)
Other versions
CN105609552B (zh
Inventor
陈家诚
姚建可
丁庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Junrong Huaxun Terahertz Technology Co ltd
Original Assignee
China Communication Microelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Communication Microelectronics Technology Co Ltd filed Critical China Communication Microelectronics Technology Co Ltd
Priority to CN201511031698.4A priority Critical patent/CN105609552B/zh
Priority to PCT/CN2016/074013 priority patent/WO2017113484A1/zh
Publication of CN105609552A publication Critical patent/CN105609552A/zh
Application granted granted Critical
Publication of CN105609552B publication Critical patent/CN105609552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供了一种高电子迁移率晶体管,包括:衬底,形成于衬底上的氮化镓缓冲层、形成于氮化镓缓冲层上的AlxGa(1-x)N势垒层、分别形成于AlxGa(1-x)N势垒层上的栅极、源极及漏极,以及钝化层。在AlxGa(1-x)N势垒层中,横向方向Al组分不同,从栅极端到漏极端Al组分逐渐减小。相对于现有技术,本发明的高电子迁移率晶体管具有横向Al组分不同的AlxGa(1-x)N势垒层,在栅极边缘靠近漏极端的AlxGa(1-x)N势垒层具有不同组分的特性。从栅极端到漏极端铝组分逐渐减小,从而能够减小电流崩塌效应。并且提高开启电压。本发明还提供了一种高电子迁移率晶体管的制造方法。

Description

高电子迁移率晶体管及其制造方法
【技术领域】
本发明涉及一种半导体器件领域,具体涉及一种具有横向组分不同的AlGaN势垒层的高电子迁移率晶体管(HighElectronMobilityTransistor,HEMT)及其制造方法。
【背景技术】
半导体材料氮化镓(GaN)由于其拥有较大的禁带宽度、较高的临界击穿电场以及较高的电子饱和速度,被认为是一种制作大功率、高速半导体器件的优良半导体材料。
氮化镓基的半导体材料在高频大功率领域主要的应用是高电子迁移率晶体管(HighElectronMobilityTransistor,HEMT)。作为直接带隙半导体材料,氮化镓(GaN)和氮化铝(AlN)的带隙可从3.4eV到6.2eV连续变化,形成掺杂、可调制的AlGaN/GaN的异质结结构;同时AlxGa(1-x)N的相对介电常数、禁带宽度也可以随着x连续可调。由于纤锌矿(wurtzite)结构的AlGaN和GaN晶体在(0001)方向不具备反转对称性,在此方向上存在自发极化效应,同时AlGaN和GaN的晶格常数不匹配导致的压电极化效应,禁带宽度不一样的AlGaN和GaN之间形成的异质结,由于这两种效应的叠加,使得在GaN一端形成高浓度的二维电子气。其中,电子气的浓度对器件性能有决定性影响,其浓度与氮化铝镓AlxGa(1-x)N中铝成分x值有密切关系。
对于HEMT器件,通过栅极(Gate)的电压,可以控制AlGaN/GaN界面的电子气浓度以及期间的开关。在漏源电压达到一定程度之后,器件的漏极电流相对于饱和电流会有下降的现象,这就是HEMT普遍存在的电流崩塌(CurrentCollapse)效应,电流崩塌效应会导致器件的性能退化。
目前AlGaN/GaN的HEMT器件中通过一定方法生长的AlGaN中的铝的成分一定。由于存在电流崩塌问题,同时由于AlGaN/GaN异质结的自发极化和压电极化效应,其开启电压为负,使其一般为增强型晶体管。
【发明内容】
鉴于以上内容,有必要提供一种可减小电流崩塌效应,并可提高开启电压的高电子迁移率晶体管及其制造方法。
一种高电子迁移率晶体管,包括:
衬底;
形成于所述衬底上的氮化镓缓冲层;
形成于所述氮化镓缓冲层上的AlxGa(1-x)N势垒层;
分别形成于所述AlxGa(1-x)N势垒层上的栅极、源极及漏极;以及
形成于源极与栅极和漏极与栅极之间的钝化层,其特征在于:
在所述AlxGa(1-x)N势垒层中,横向方向Al组分不同,从所述栅极端到所述漏极端Al组分逐渐减小。
一种高电子迁移率晶体管的制造方法,包括:
于一衬底上生长一成核层;
形成一氮化镓缓冲层;
定义一势垒层的区域,成长Al的组分不同的AlxGa(1-x)N势垒层;
去光阻,形成源极及漏极;
形成栅极,所述AlxGa(1-x)N势垒层中,栅极与漏极之间区域的Al的组分不同,并且,从栅极端到漏极端Al组分逐渐减小;
在源极与栅极和漏极与栅极之间形成钝化层。
相对于现有技术,本发明的高电子迁移率晶体管具有横向Al组分不同的AlxGa(1-x)N势垒层,在栅极边缘靠近漏极端的AlxGa(1-x)N势垒层具有不同组分的特性。从栅极端到漏极端铝组分逐渐减小,这种横向组分不同的势垒层结构能够减小电流崩塌效应。并且提高基于GaN基高电子迁移率晶体管的开启电压,有利于后续基于AlGaN/GaN的高电子迁移率晶体管的功放电路的设计。
【附图说明】
图1为本发明第一实施方式的高电子迁移率晶体管的剖面示意图。
图2为现有技术与本发明的高电子迁移率晶体管Id-Vg&Id-Vd特性曲线比较图。
图3为本发明其他实施方式的高电子迁移率晶体管的剖面示意图。
【具体实施方式】
下面结合附图和实施方式对本发明作进一步说明。
请参阅图1,本发明实施方式提供的高电子迁移率晶体管100包括衬底10、形成于所述衬底10上的成核层(图未示)、缓冲层20、势垒层30、源极40、漏极50、栅极60及钝化层70。
本实施方式中,所述衬底10的材料可以是蓝宝石(sapphire)、碳化硅(SiC)、硅(silicon)。所述成核层的材料可以是氮化铝(AlN)、氮化镓(GaN)或氮化铝镓(AlGaN),成核层厚度为100nm~200nm之间。
所述缓冲层20为氮化镓(GaN),其厚度范围为1.5um~3um。在本实施方式中,缓冲层20通过分子速外延(MBE)或者金属有机气相沉积(MOCVD)方法生长于成核层上。
所述势垒层30为氮化铝镓层,其厚度范围为10nm~40nm,所述氮化铝镓势垒层40的化学式为AlxGa(1-x)N,其中,Al的成分可调,x的值范围为0.15~0.35。在本实施方式中,所述势垒层30通过金属有机气相沉积(MOCVD)方法形成于缓冲层20上。AlxGa(1-x)N势垒层30在横向方向上Al的组分不同。
在其他实施方式中,还可以在势垒层30与缓冲层20之间形成一层厚度为1nm~2nm的AlN,作为界面的缓冲层。
所述源极40和漏极50为欧姆接触结构,分别形成在AlxGa(1-x)N势垒层30横向方向的两端。在本实施方式中,源极40和漏极50可以是钛、铝、镍或金(Ti、Al、Ni、Au)的金属堆叠层。
所述栅极60为肖特基接触结构,其形成在AlxGa(1-x)N势垒层30上。在本实施方式中,栅极60可以是镍或金(Ni、Au)的堆叠层。
在其他实施方式中,在形成源漏栅三端之前,还可以在AlxGa(1-x)N势垒层30上再淀积一层高介电常数材料层或者氮化镓层。
所述AlxGa(1-x)N势垒层30在横向方向上被分成两个部分,包括栅极60与源极40之间的第一势垒层31以及栅极60与漏极50之间的第二势垒层32。在第一势垒层31中Al的组分一定,第二势垒层32中Al的组分相对于第一势垒层31较小,并且从栅极60端到漏极50端铝组分逐渐减小。具体的,在第一势垒层31中,Al的组分为x=0.3,在第二势垒层32中,从左至右Al的组分从0.3到0.25逐渐减小,其中临近漏极50区域的Al的组分为x=0.25。在本实施方式中,在第二势垒层32中,具有五个不同组分阶梯。间隔为0.01/0.02μm。
请参阅图2,图2为现有的组分一定的AlxGa(1-x)N/GaN结构的HEMT与本发明的HEMT的Id-Vg&Id-Vd特性曲线比较图。从图中可以看出,本发明的组分不同的AlxGa(1-x)N/GaN结构的HEMT相对于现有技术的组分一定的AlxGa(1-x)N/GaN结构的HEMT有较大的开启电压;而且,在相同栅漏电压下,电流崩塌效应有所减小。
本发明的高电子迁移率晶体管100的制造方法包括以下几个步骤:
步骤一:提供一衬底10,在清洗干净的所述衬底10上生长一层成核层。所述衬底10的材料可以是蓝宝石(sapphire)、碳化硅(SiC)、硅(silicon)。所述成核层的材料可以是氮化铝(AlN)、氮化镓(GaN)或氮化铝镓(AlGaN),所述成核层厚度为100nm~200nm之间。
步骤二:利用分子速外延(MBE)方法或者金属有机气相沉积(MOCVD)方法生长一层氮化镓缓冲层20,所述缓冲层20的厚度范围为1.5um~3um。
步骤三:利用光阻定义出的势垒层30的区域,成长Al的组分不同的AlxGa(1-x)N势垒层30。具体的:生长AlxGa(1-x)N的方法可以通过MOCVD的方法,通过控制三甲基铝(TMAl)、三甲基镓(TMGa)以及氨气(ammonia)的流量,控制Al的组分。三甲基铝(TMAl)、三甲基镓(TMGa)的流量可以为:0.6~33摩尔/分钟;氨气(ammonia)的流量可以为0.08~0.32摩尔/分钟。AlxGa(1-x)N势垒层30的厚度为10nm~40nm的。Al的成分可调,x的值范围为:0.15~0.35。
步骤四:去光阻,形成源极40及漏极50,所述源极40与所述漏极50为欧姆接触。具体的,定义出所述源极40及漏极50区域,用RIE方法去除氮化铝镓,然后淀积金属层,在进行快速热退火(RTA),以便形成源极40及漏极50的欧姆接触,便于二维电子气(2DEG)在源极40及漏极50之间的传输。所述源极40与所述漏极50可以是钛、铝、镍或金(Ti、Al、Ni、Au)的金属堆叠层。
步骤五:形成栅极60,所述栅极60为肖特基接触结构。具体的,定义出栅极60区域,淀积栅极金属层,以便能够控制2DEG的传输。栅极金属层可以是镍或金(Ni、Au)的堆叠层。所述AlxGa(1-x)N势垒层30在栅极60与漏极50之间的Al的组分小于栅极60与源极40之间的Al的组分,并且,从栅极60端到漏极50端铝组分逐渐减小。
步骤六:在源极40、漏极50及栅极60形成之后,然后在源极40与栅极60和漏极50与栅极60之间形成钝化层70,所述钝化层70为一氮化硅(Si3N4)层,用于减小电流崩塌效应。
其他实施方式中,步骤三之前还包括形成一层厚度为1nm~2nm的界面缓冲层,所述界面缓冲层的材料为氮化铝(AlN)。
步骤五之后还包括淀积一高介电常数的材料层或者氮化镓层。
相对于现有技术,本发明的高电子迁移率晶体管100具有横向Al组分不同的AlxGa(1-x)N势垒层30,在栅极60边缘靠近漏极50端的AlxGa(1-x)N势垒层30具有不同组分的特性。从栅极60端到漏极50端铝组分逐渐减小,这种横向组分不同的势垒层结构能够减小电流崩塌效应。并且提高基于GaN基高电子迁移率晶体管100的开启电压,有利于后续基于AlGaN/GaN的高电子迁移率晶体管100的功放电路的设计。
请参阅图3,在其他实施方式中,高电子迁移率晶体管100的AlxGa(1-x)N势垒层30还可以是具有两段、三段、四段以及Al组分连续可调的结构。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

1.一种高电子迁移率晶体管,包括:
衬底;
形成于所述衬底上的氮化镓缓冲层;
形成于所述氮化镓缓冲层上的AlxGa(1-x)N势垒层;
分别形成于所述AlxGa(1-x)N势垒层上的栅极、源极及漏极;以及
形成于源极与栅极和漏极与栅极之间的钝化层,其特征在于:
在所述AlxGa(1-x)N势垒层中,横向方向Al组分不同,从所述栅极端到所述漏极端Al组分逐渐减小。
2.据权利要求1所述的高电子迁移率晶体管,其特征在于:所述AlxGa(1-x)N势垒层在横向方向上被分成栅极与源极之间的第一势垒层以及栅极与漏极之间的第二势垒层,在第一势垒层中Al的组分一定,第二势垒层中Al的组分相对于第一势垒层较小,并且从栅极端到漏极端铝组分逐渐减小。
3.据权利要求2所述的高电子迁移率晶体管,其特征在于:在第一势垒层中,Al的组分为x=0.3,在第二势垒层中,从栅极端到漏极端Al的组分从0.3到0.25逐渐减小。
4.据权利要求1所述的高电子迁移率晶体管,其特征在于:所述衬底的材料为蓝宝石、碳化硅或硅,所述衬底与缓冲成之间还具有一成核层,所述成核层的材料氮化铝、氮化镓或氮化铝镓,所述成核层厚度范围为100nm~200nm。
5.据权利要求1所述的高电子迁移率晶体管,其特征在于:所述缓冲层为氮化镓,其厚度范围为1.5um~3um,。
6.据权利要求1所述的高电子迁移率晶体管,其特征在于:所述AlxGa(1-x)N势垒层的厚度范围为10nm~40nm,其中,Al的成分可调,x的值范围为0.15~0.35。
7.据权利要求1所述的高电子迁移率晶体管,其特征在于:所述缓冲层与所述势垒层之间还具有一界面缓冲层,所述界面缓冲层的材料为氮化铝,所述氮化铝的厚度范围为1nm~2nm。
8.据权利要求1所述的高电子迁移率晶体管,其特征在于:所述氮化铝镓势垒层与栅极、源极及漏极之间还具有一高介电常数材料层或氮化镓层。
9.据权利要求1所述的高电子迁移率晶体管,其特征在于:所述源极/漏极欧姆接触,所述栅极肖特基接触。
10.一种高电子迁移率晶体管的制造方法,包括:
于一衬底上生长一成核层;
形成一氮化镓缓冲层;
定义一势垒层的区域,成长Al的组分不同的AlxGa(1-x)N势垒层;
去光阻,形成源极及漏极;
形成栅极,所述AlxGa(1-x)N势垒层中,栅极与漏极之间区域的Al的组分不同,并且,从栅极端到漏极端Al组分逐渐减小;
在源极与栅极和漏极与栅极之间形成钝化层。
CN201511031698.4A 2015-12-31 2015-12-31 高电子迁移率晶体管及其制造方法 Active CN105609552B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201511031698.4A CN105609552B (zh) 2015-12-31 2015-12-31 高电子迁移率晶体管及其制造方法
PCT/CN2016/074013 WO2017113484A1 (zh) 2015-12-31 2016-02-18 高电子迁移率晶体管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511031698.4A CN105609552B (zh) 2015-12-31 2015-12-31 高电子迁移率晶体管及其制造方法

Publications (2)

Publication Number Publication Date
CN105609552A true CN105609552A (zh) 2016-05-25
CN105609552B CN105609552B (zh) 2017-11-10

Family

ID=55989324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511031698.4A Active CN105609552B (zh) 2015-12-31 2015-12-31 高电子迁移率晶体管及其制造方法

Country Status (2)

Country Link
CN (1) CN105609552B (zh)
WO (1) WO2017113484A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112017959A (zh) * 2016-06-14 2020-12-01 黄知澍 镓解理面iii族/氮化物磊晶结构及其主动元件与其制作方法
CN112310209A (zh) * 2019-08-01 2021-02-02 广东美的白色家电技术创新中心有限公司 一种场效应晶体管及其制备方法
CN113937155A (zh) * 2021-09-29 2022-01-14 西安电子科技大学 一种组份渐变复合势垒层hemt器件及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649048A (zh) * 2018-07-10 2018-10-12 南方科技大学 一种单片集成半导体器件及其制备方法
CN110690283A (zh) * 2019-09-24 2020-01-14 中国电子科技集团公司第十三研究所 同质外延氮化镓晶体管器件结构
CN113505504B (zh) * 2021-06-16 2023-11-03 西安理工大学 一种提取GaN HEMT器件热源模型的方法
CN113889410A (zh) * 2021-08-24 2022-01-04 山东云海国创云计算装备产业创新中心有限公司 一种用于制作晶体管的芯片及其制作方法、晶体管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017854A (zh) * 2006-12-31 2007-08-15 电子科技大学 一种氮化镓基高电子迁移率晶体管
JP2014041965A (ja) * 2012-08-23 2014-03-06 Renesas Electronics Corp 半導体装置
CN104201202A (zh) * 2014-09-17 2014-12-10 电子科技大学 一种具有复合势垒层的氮化镓基异质结场效应管

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120153356A1 (en) * 2010-12-20 2012-06-21 Triquint Semiconductor, Inc. High electron mobility transistor with indium gallium nitride layer
US8896101B2 (en) * 2012-12-21 2014-11-25 Intel Corporation Nonplanar III-N transistors with compositionally graded semiconductor channels
CN104037220B (zh) * 2014-07-02 2017-01-25 西安电子科技大学 一种基于偶极子层浮栅结构的增强型AlGaN/GaN MISHEMT器件结构及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017854A (zh) * 2006-12-31 2007-08-15 电子科技大学 一种氮化镓基高电子迁移率晶体管
JP2014041965A (ja) * 2012-08-23 2014-03-06 Renesas Electronics Corp 半導体装置
CN104201202A (zh) * 2014-09-17 2014-12-10 电子科技大学 一种具有复合势垒层的氮化镓基异质结场效应管

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112017959A (zh) * 2016-06-14 2020-12-01 黄知澍 镓解理面iii族/氮化物磊晶结构及其主动元件与其制作方法
CN112310209A (zh) * 2019-08-01 2021-02-02 广东美的白色家电技术创新中心有限公司 一种场效应晶体管及其制备方法
CN113937155A (zh) * 2021-09-29 2022-01-14 西安电子科技大学 一种组份渐变复合势垒层hemt器件及其制备方法
CN113937155B (zh) * 2021-09-29 2024-01-19 西安电子科技大学 一种组份渐变复合势垒层hemt器件及其制备方法

Also Published As

Publication number Publication date
WO2017113484A1 (zh) 2017-07-06
CN105609552B (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
CN105609552A (zh) 高电子迁移率晶体管及其制造方法
CA3087469C (en) Group iii nitride enhancement-mode hemt based on composite barrier layer structure and manufacturing method thereof
US7544963B2 (en) Binary group III-nitride based high electron mobility transistors
JP5323527B2 (ja) GaN系電界効果トランジスタの製造方法
JP6035721B2 (ja) 半導体装置の製造方法
US8669592B2 (en) Compound semiconductor device and method for fabricating the same
US20180182879A1 (en) Aluminum-gallium-nitride compound/gallium-nitride high-electron-mobility transistor
WO2016141762A1 (zh) Iii族氮化物增强型hemt及其制备方法
JP7013710B2 (ja) 窒化物半導体トランジスタの製造方法
CN111406306B (zh) 半导体装置的制造方法、半导体装置
JP2012231003A (ja) 半導体装置
US10600901B2 (en) Compound semiconductor device and manufacturing method thereof
US9679762B2 (en) Access conductivity enhanced high electron mobility transistor
US11424321B2 (en) Semiconductor structure and preparation method thereof
WO2013109884A1 (en) Iiii -n- based double heterostructure field effect transistor and method of forming the same
JP2015527749A (ja) Inganチャネルのn極のganhemt特性
US11848205B2 (en) Semiconductor structure and manufacturing method therefor
JP5605353B2 (ja) Mis型半導体装置およびその製造方法
CN105448977A (zh) 高电子迁移率晶体管及其制造方法
JP5732228B2 (ja) 窒化物半導体装置の製造方法
CN213212169U (zh) 一种半导体器件的外延结构及半导体器件
JP6707837B2 (ja) 半導体結晶基板、半導体装置、半導体結晶基板の製造方法及び半導体装置の製造方法
JP5169515B2 (ja) 化合物半導体装置
CN212542443U (zh) 一种氮化镓晶体管结构及氮化镓基外延结构
TWI572036B (zh) Nitride crystal structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20170727

Address after: 518102 Guangdong Province, Baoan District Xixiang street Shenzhen City Tian Yi Lu Chen Tian Bao Industrial District 37 Building 2 floor East

Applicant after: SHENZHEN HUAXUN FANGZHOU MICROELECTRONIC SCIENCE & TECHNOLOGY Co.,Ltd.

Applicant after: SHENZHEN THZ SCIENCE AND TECHNOLOGY INNOVATION INSTITUTE

Address before: 518102 Guangdong Province, Baoan District Xixiang street Shenzhen City Tian Yi Lu Chen Tian Bao Industrial District 37 Building 2 floor East

Applicant before: SHENZHEN HUAXUN FANGZHOU MICROELECTRONIC SCIENCE & TECHNOLOGY Co.,Ltd.

CB03 Change of inventor or designer information

Inventor after: Ding Qing

Inventor after: Wu Guangsheng

Inventor after: Huang Yongjiang

Inventor after: Li Xiaocong

Inventor after: Chen Jiacheng

Inventor after: Yao Jianke

Inventor before: Chen Jiacheng

Inventor before: Yao Jianke

Inventor before: Ding Qing

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220606

Address after: 518102 room 404, building 37, chentian Industrial Zone, chentian community, Xixiang street, Bao'an District, Shenzhen, Guangdong Province

Patentee after: Shenzhen Huaxun ark Photoelectric Technology Co.,Ltd.

Address before: 518102 East, 2nd floor, building 37, chentian Industrial Zone, Baotian 1st Road, Xixiang street, Bao'an District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN HUAXUN FANGZHOU MICROELECTRONIC SCIENCE & TECHNOLOGY Co.,Ltd.

Patentee before: SHENZHEN THZ SCIENCE AND TECHNOLOGY INNOVATION INSTITUTE

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220802

Address after: 266000 room 610, building 1, No. 333 YINGSHANHONG Road, Binhai street, Huangdao District, Qingdao, Shandong Province

Patentee after: Qingdao Junrong Huaxun Terahertz Technology Co.,Ltd.

Address before: 518102 room 404, building 37, chentian Industrial Zone, chentian community, Xixiang street, Bao'an District, Shenzhen, Guangdong Province

Patentee before: Shenzhen Huaxun ark Photoelectric Technology Co.,Ltd.