CN105601266A - 气液界面法制备磷酸银二维有序纳米网薄膜及其方法 - Google Patents

气液界面法制备磷酸银二维有序纳米网薄膜及其方法 Download PDF

Info

Publication number
CN105601266A
CN105601266A CN201510947234.1A CN201510947234A CN105601266A CN 105601266 A CN105601266 A CN 105601266A CN 201510947234 A CN201510947234 A CN 201510947234A CN 105601266 A CN105601266 A CN 105601266A
Authority
CN
China
Prior art keywords
nano
film
sequential
polystyrene
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510947234.1A
Other languages
English (en)
Other versions
CN105601266B (zh
Inventor
金超
杨金虎
秦瑶
刘光磊
乔志国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201510947234.1A priority Critical patent/CN105601266B/zh
Publication of CN105601266A publication Critical patent/CN105601266A/zh
Application granted granted Critical
Publication of CN105601266B publication Critical patent/CN105601266B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1817Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63432Polystyrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及气液界面制备磷酸银二维有序纳米网薄膜及其方法,通过聚苯乙烯球在气-液界面形成有序单层自组装膜,转移硝酸银水溶液的液面上,通过还原性气体的缓慢释放,在聚苯乙烯球模板表面包覆银纳米微晶,其在大面积呈二维有序纳米网结构,再转移至过氧化氢反应液中,通过原位置换反应得到磷酸银-聚苯乙烯二维有序结构,最后在甲苯溶液浸泡去除聚苯乙烯模板。本发明制备的磷酸银二维有序纳米网薄膜中膜的厚度均匀,晶化度良好,长程有序性好,可以大面积制备,其光催化降解有机染料的催化性能优于同比条件下的磷酸银单晶材料,将其作为超级电容器电极发现其具有良好的循环性能,在光催化以及超级电容器领域都有很好的应用。

Description

气液界面法制备磷酸银二维有序纳米网薄膜及其方法
技术领域
本发明涉及结构可控的无机半导体材料薄膜的制备方法,尤其是涉及一种气液界面制备磷酸银二维有序纳米网薄膜及其方法。
背景技术
磷酸银纳米半导体材料具有优良光电性能,在光解水制氧、纳米抗菌、光降解有机染料以及超级电容器等领域得到了良好的应用“FacetEffectofSingle-CrystallineAg3PO4Sub-microcrystalsonPhotocatalyticProperties”[Bi,Y.P.;Ouyang,S.X.;Umezawa,N.J.Am.Chem.Soc,2011,133,6490–6492]。目前,在已报道的磷酸银基纳米材料中,可以发现由于磷酸银具有溶液相中迅速成核的特性,其形貌调控主要集中在零维与一维的复合结构“PhotocatalyticandPhotoelectricPropertiesofCubicAg3PO4Sub-microcrystalswithSharpCornersandEdges”[Bi,Y.P.;Hu,H.Y.;Ouyang,S.X.Chem.Commun.,2012,48,3748–3750],而二维长程有序的磷酸银纳米网薄膜类结构极为少见。磷酸银二维有序薄膜具有比表面大、表面能高、连贯性好、质子的传输效率高等优势,但是其在化学合成方面具有一定的挑战性。对于二维薄膜的制备,目前已有溅射法、气相沉积法、溶胶-凝胶法等成熟的方案,但是这些方法制备的薄膜在应用时受到厚度相对较大、薄膜涂覆不均匀、产品缺陷较多等诸多限制“Photo-catalyticEffectEnhancedbytheChemisorptionofPhenylethyl-mercaptan-assembledMonolayersonAu-clusters/TiO2-anataseThinFilm”[Kao,C.Y.;Liao,J.D.;Huang,W.I.Surface&CoatingsTechnology,2012,206,4887-4891]。因而制备厚度均匀可控、周期性好、廉价易得、条件简单的高产量的二维有序薄膜具有较高的挑战性。
中国专利CN104190451A公开了一种磷酸银薄膜的制备方法,属于半导体光催化与光电化学材料的制备方法。步骤:1)用酒精、丙酮试剂依次超声清洗玻璃或硅片基底;2)用溅射、热蒸发方法在基底上沉积一层Ag膜;3)在Ag膜层上滴满硝酸银AgNO3,旋涂、干燥;再滴上磷酸氢二钠Na2HPO4水溶液,旋涂、干燥;4)再将其置于马弗炉中,升温至300~550℃,保温烧结0.5~3h,得到磷酸银Ag3PO4薄膜。所述的硝酸银AgNO3水溶液的质量百分比浓度为0.017%-0.34%;的磷酸氢二钠Na2HPO4水溶液的质量百分比浓度为0.014%-0.28%;磷酸银Ag3PO4薄膜为结构,厚度为0.3~10μm。该专利通过溅射、热蒸发方法制备银膜,存在薄膜的厚度相对较大、薄膜涂覆不均匀、产品缺陷较多等缺陷;由此制备的Ag3PO4薄膜中磷酸银颗粒的分布较为杂乱无序。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种晶化度良好,长程有序性好,薄膜结构可控的气液界面制备磷酸银二维有序纳米网薄膜及其方法。
本发明的目的可以通过以下技术方案来实现:
气液界面制备磷酸银二维有序纳米网薄膜的方法,采用以下步骤:
(1)将含有聚苯乙烯球的乙醇-水混合溶液缓慢滴加至水面,聚苯乙烯球在表面张力的驱动下扩散组装成有序的单层膜;
(2)取保干器作为反应容器,其上层放置盛有硝酸银溶液的培养皿,以光滑洁净的玻璃片为基底将步骤(1)中获得的聚苯乙烯球单层组装膜转移至该培养皿中;在下层放置研细的二甲胺基甲硼烷粉末及硝酸水溶液,反应10-20h得到银-聚苯乙烯二维有序纳米网薄膜;
(3)将双氧水与磷酸二氢钠组成的混合反应液于干净的培养皿中,取光滑洁净的玻璃片将步骤(2)中制备的银-聚苯乙烯二维有序纳米网薄膜转移至上述培养皿的反应液中,反应2-30min得到磷酸银-聚苯乙烯二维纳米网薄膜;
(4)将负载有磷酸银-聚苯乙烯薄膜的基片浸泡在甲苯溶液中,反应1-3h,去除聚苯乙烯球二维模板,即为磷酸银二维有序纳米网薄膜。
步骤(1)中聚苯乙烯球的乙醇-水混合中乙醇和水的体积比为1:1;聚苯乙烯球浓度是50-80g/L;聚苯乙烯球的直径为300-400nm。
步骤(2)中硝酸银溶液的浓度为20-50mmol/L,硝酸水溶液的浓度为3-5mol/L,二甲胺基甲硼烷与硝酸的摩尔比为0.01-0.03。
步骤(3)中双氧水的体积分数为2-8%,磷酸二氢钠在混合反应液中的浓度为0.1-0.2mol/L。
气液界面法制备磷酸银二维有序纳米网薄膜的厚度为150-250nm;晶化度良好,长程有序性好。
与现有技术相比,本发明利用气液界面反应法制备磷酸银二维有序纳米网薄膜,其薄膜厚度仅有200-350纳米,而且膜的厚度相对均匀,晶化度良好,长程有序性好,可以大面积制备。开发的气液界面反应法,以中间产物二维有序银-聚苯乙烯薄膜为模板,成功制备了磷酸银二维有序纳米网薄膜。该发明中借助于胶体界面自主装制备的聚苯乙烯球为前体模板,使得制备的可反应银-聚苯乙烯模板具有高度有序性,最终在银-聚苯乙烯膜转化为磷酸银膜中发挥了重要作用。因而,本发明制备的磷酸银二维有序纳米网薄膜中膜的厚度均与,晶化度良好,长程有序性好。光电性能测试表明,该产品在光催化以及超级电容器领域都有很好的应用。
我们的发明。
附图说明
图1为聚苯乙烯球(A)、聚苯乙烯球自组装膜(B)、聚苯乙烯-磷酸银薄膜(C)、磷酸银二维有序纳米网薄膜(D-F)纳米中空球薄膜的SEM图。
图2为时间效应对磷酸银薄膜形成的影响图:2分钟(AB)、5分钟(CD)、20分钟(EF)、30分钟(GH)。
图3为过氧化氢的浓度对磷酸银薄膜形貌的影响:2%(AB)、4%(CD)、8%(EF)。
图4为磷酸银薄膜光催化降解罗丹明B性能图
图5为磷酸银薄膜作为超级电容器电极的充放电以及循环性能图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
气液界面制备磷酸银二维有序纳米网薄膜的方法,包括以下步骤:
(1)将含有聚苯乙烯球(图1A)的乙醇-水(V乙醇:V=1:1)混合溶液,缓慢滴加至水面,聚苯乙烯球在表面张力的驱动下扩散组装成有序的单层膜(图1B);
(2)取保干器作为反应容器,其上层放置盛有30毫摩尔/升硝酸银溶液的培养皿,以光滑洁净的玻璃片为基底将(1)中获得的聚苯乙烯球单层组装膜转移至该培养皿中;在下层放置5克研细的二甲胺基甲硼烷粉末以及3毫升浓度为5摩尔/升的硝酸水溶液。反应约12小时后,即可得到银-聚苯乙烯二维有序纳米网薄膜。根据图2所示,聚苯乙烯球的粒径约为350纳米,在聚苯乙烯单层自组装薄膜中,聚苯乙烯球呈高度有序排列,银-聚苯乙烯二维纳米网薄膜呈蜂窝状有序排列。
实施例2
气液界面制备磷酸银二维有序纳米网薄膜的方法,包括以下步骤:
(1)将含有聚苯乙烯球(图1A)的乙醇-水(V乙醇:V=1:1)混合溶液,缓慢滴加至水面,聚苯乙烯球在表面张力的驱动下扩散组装成有序的单层膜(图1B);
(2)取保干器作为反应容器,其上层放置盛有30毫摩尔/升硝酸银溶液的培养皿,以光滑洁净的玻璃片为基底将(1)中获得的聚苯乙烯球单层组装膜转移至该培养皿中;在下层放置5克研细的二甲胺基甲硼烷粉末以及3毫升浓度为5摩尔/升的硝酸水溶液。反应约12小时后,即可得到银-聚苯乙烯二维有序纳米网薄膜(图1C)。
(3)移取双氧水(4%)与磷酸二氢钠(0.2摩尔/升)组成的混合反应液于干净的培养皿中。取光滑洁净的玻璃片(1cm×1cm)将(2)中制备的银-聚苯乙烯二维有序纳米网薄膜转移至上述培养皿的反应液中,反应2-20分钟后,即可得到磷酸银-聚苯乙烯二维纳米网薄膜。
(4)将负载有磷酸银-聚苯乙烯薄膜的基片(3)浸泡在甲苯溶液中,反应2小时,去除聚苯乙烯球模板,即得到磷酸银二维有序纳米网薄膜(图1D-F),该薄膜由数个磷酸银小纳米粒子有序密堆积而成。根据图2所示,反应时间为2-10分钟较为适宜(A-F),磷酸银薄膜的连续程度高,薄膜较为完整,同时,随着反应时间的增加,薄膜的颗粒感增强而且磷酸银颗粒有变大的趋势。
实施例3
气液界面制备磷酸银二维有序纳米网薄膜的方法,包括以下步骤:
(1)将含有聚苯乙烯球(图1A)的乙醇-水(V乙醇:V=1:1)混合溶液,缓慢滴加至水面,聚苯乙烯球在表面张力的驱动下扩散组装成有序的单层膜(图1B);
(2)取保干器作为反应容器,其上层放置盛有30毫摩尔/升硝酸银溶液的培养皿,以光滑洁净的玻璃片为基底将(1)中获得的聚苯乙烯球单层组装膜转移至该培养皿中;在下层放置5克研细的二甲胺基甲硼烷粉末以及3毫升浓度为5摩尔/升的硝酸水溶液。反应约12小时后,即可得到银-聚苯乙烯二维有序纳米网薄膜(图1C)。
(3)移取双氧水(4%)与磷酸二氢钠(0.2摩尔/升)组成的混合反应液于干净的培养皿中。取光滑洁净的玻璃片(1cm×1cm)将(2)中制备的银-聚苯乙烯二维有序纳米网薄膜转移至上述培养皿的反应液中,反应2-20分钟后,即可得到磷酸银-聚苯乙烯二维纳米网薄膜。
(4)将负载有磷酸银-聚苯乙烯薄膜的基片(3)浸泡在甲苯溶液中,反应2小时,去除聚苯乙烯球模板,即得到磷酸银二维有序纳米网薄膜。根据图2所示,反应时间超过20分钟后(GH),部分薄膜的开始破裂,有序结构遭到破坏。
实施例4
气液界面制备磷酸银二维有序纳米网薄膜的方法,包括以下步骤:
(1)将含有聚苯乙烯球(图1A)的乙醇-水(V乙醇:V=1:1)混合溶液,缓慢滴加至水面,聚苯乙烯球在表面张力的驱动下扩散组装成有序的单层膜(图1B);
(2)取保干器作为反应容器,其上层放置盛有30毫摩尔/升硝酸银溶液的培养皿,以光滑洁净的玻璃片为基底将(1)中获得的聚苯乙烯球单层组装膜转移至该培养皿中;在下层放置5克研细的二甲胺基甲硼烷粉末以及3毫升浓度为5摩尔/升的硝酸水溶液。反应约12小时后,即可得到银-聚苯乙烯二维有序纳米网薄膜(图1C)。
(3)移取双氧水(2-8%)与磷酸二氢钠(0.2摩尔/升)组成的混合反应液于干净的培养皿中。取光滑洁净的玻璃片(1cm×1cm)将(2)中制备的银-聚苯乙烯二维有序纳米网薄膜转移至上述培养皿的反应液中,反应10分钟后,即可得到磷酸银-聚苯乙烯二维纳米网薄膜。
(4)将负载有磷酸银-聚苯乙烯薄膜的基片(3)浸泡在甲苯溶液中,反应2小时,去除聚苯乙烯球模板,即得到磷酸银二维有序纳米网薄膜。根据图3所示,过氧化氢反应液浓度在4%较为适宜(CD),浓度过高(AB)与过低(EF)均将导致薄膜的有序性破坏。
与现有技术相比,本发明采用的方法合成的磷酸银二维有序纳米网薄膜,具有晶化度良好,长程有序性好以及薄膜结构可控的优势,而且根据图4的光催化降解罗丹明B测试表明,其光催化降解有机染料的催化曲线斜率比同比条件下的磷酸银单晶材料更大,催化速率更快,说明其具有更好的光催化性能;根据图5超级电容器性能测试,其循环伏安特性曲线呈超级电容器特有的“矩形”(图5A);充放电曲线发现其充电时间高于放电时间,能够迅速放电(图5B);循环曲线发现该材料进行充放电十万次以后,电容衰减仅为2%左右(图5C),具有良好的循环性能,是作为超级电容器电极的良好材料。
实施例5
气液界面制备磷酸银二维有序纳米网薄膜的方法,采用以下步骤:
(1)将含有聚苯乙烯球的乙醇-水混合溶液缓慢滴加至水面,聚苯乙烯球的乙醇-水混合中乙醇和水的体积比为1:1;聚苯乙烯球浓度为50g/L;聚苯乙烯球的直径为300nm,聚苯乙烯球在表面张力的驱动下扩散组装成有序的单层膜;
(2)取保干器作为反应容器,其上层放置盛有浓度为20mmol/L的硝酸银溶液的培养皿,以光滑洁净的玻璃片为基底将步骤(1)中获得的聚苯乙烯球单层组装膜转移至该培养皿中;在下层放置研细的二甲胺基甲硼烷粉末及浓度为3mol/L硝酸水溶液,二甲胺基甲硼烷与硝酸的摩尔比为0.01,反应10h得到银-聚苯乙烯二维有序纳米网薄膜;
(3)将体积分数为2%双氧水与磷酸二氢钠组成的混合反应液于干净的培养皿中,磷酸二氢钠在混合反应液中的浓度为0.1mol/L,取光滑洁净的玻璃片将步骤(2)中制备的银-聚苯乙烯二维有序纳米网薄膜转移至上述培养皿的反应液中,反应2min得到磷酸银-聚苯乙烯二维纳米网薄膜;
(4)将负载有磷酸银-聚苯乙烯薄膜的基片浸泡在甲苯溶液中,反应1h,去除聚苯乙烯球二维模板,即为磷酸银二维有序纳米网薄膜,厚度为150nm;晶化度良好,长程有序性好。
实施例6
气液界面制备磷酸银二维有序纳米网薄膜的方法,采用以下步骤:
(1)将含有聚苯乙烯球的乙醇-水混合溶液缓慢滴加至水面,聚苯乙烯球的乙醇-水混合中乙醇和水的体积比为1:1;聚苯乙烯球浓度是80g/L;聚苯乙烯球的直径为400nm,聚苯乙烯球在表面张力的驱动下扩散组装成有序的单层膜;
(2)取保干器作为反应容器,其上层放置盛有浓度为50mmol/L的硝酸银溶液的培养皿,以光滑洁净的玻璃片为基底将步骤(1)中获得的聚苯乙烯球单层组装膜转移至该培养皿中;在下层放置研细的二甲胺基甲硼烷粉末及浓度为5mol/L的硝酸水溶液,二甲胺基甲硼烷与硝酸的摩尔比为0.03,反应20h得到银-聚苯乙烯二维有序纳米网薄膜;
(3)将体积分数为8%的双氧水与磷酸二氢钠组成的混合反应液于干净的培养皿中,磷酸二氢钠在混合反应液中的浓度为0.2mol/L,取光滑洁净的玻璃片将步骤(2)中制备的银-聚苯乙烯二维有序纳米网薄膜转移至上述培养皿的反应液中,反应30min得到磷酸银-聚苯乙烯二维纳米网薄膜;
(4)将负载有磷酸银-聚苯乙烯薄膜的基片浸泡在甲苯溶液中,反应1-3h,去除聚苯乙烯球二维模板,即为磷酸银二维有序纳米网薄膜,厚度为250nm;晶化度良好,长程有序性好。

Claims (9)

1.气液界面制备磷酸银二维有序纳米网薄膜的方法,其特征在于,该方法采用以下步骤:
(1)将含有聚苯乙烯球的乙醇-水混合溶液缓慢滴加至水面,聚苯乙烯球在表面张力的驱动下扩散组装成有序的单层膜;
(2)取保干器作为反应容器,其上层放置盛有硝酸银溶液的培养皿,以光滑洁净的玻璃片为基底将步骤(1)中获得的聚苯乙烯球单层组装膜转移至该培养皿中;在下层放置研细的二甲胺基甲硼烷粉末及硝酸水溶液,反应10-20h得到银-聚苯乙烯二维有序纳米网薄膜;
(3)将双氧水与磷酸二氢钠组成的混合反应液于干净的培养皿中,取光滑洁净的玻璃片将步骤(2)中制备的银-聚苯乙烯二维有序纳米网薄膜转移至上述培养皿的反应液中,反应2-30min得到磷酸银-聚苯乙烯二维纳米网薄膜;
(4)将负载有磷酸银-聚苯乙烯薄膜的基片浸泡在甲苯溶液中,反应1-3h,去除聚苯乙烯球二维模板,即为磷酸银二维有序纳米网薄膜。
2.根据权利要求1所述的气液界面制备磷酸银二维有序纳米网薄膜的方法,其特征在于,步骤(1)中所述的聚苯乙烯球的乙醇-水混合中乙醇和水的体积比为1:1;聚苯乙烯球浓度是50-80g/L。
3.根据权利要求1所述的气液界面制备磷酸银二维有序纳米网薄膜的方法,其特征在于,步骤(1)中所述的聚苯乙烯球的直径为300-400nm。
4.根据权利要求1所述的气液界面制备磷酸银二维有序纳米网薄膜的方法,其特征在于,步骤(2)中硝酸银溶液的浓度为20-50mmol/L。
5.根据权利要求1所述的气液界面制备磷酸银二维有序纳米网薄膜的方法,其特征在于,步骤(2)中硝酸水溶液的浓度为3-5mol/L。
6.根据权利要求1所述的气液界面制备磷酸银二维有序纳米网薄膜的方法,其特征在于,步骤(2)中二甲胺基甲硼烷与硝酸的摩尔比为0.01-0.03。
7.根据权利要求1所述的气液界面制备磷酸银二维有序纳米网薄膜的方法,其特征在于,步骤(3)中双氧水的体积分数为2-8%。
8.根据权利要求1所述的气液界面制备磷酸银二维有序纳米网薄膜的方法,其特征在于,步骤(3)中磷酸二氢钠在混合反应液中的浓度为0.1-0.2mol/L。
9.如权利要求1所述的气液界面法制备磷酸银二维有序纳米网薄膜,其特征在于,磷酸银二维有序纳米网薄膜的厚度为150-250nm;晶化度良好,长程有序性好。
CN201510947234.1A 2015-12-16 2015-12-16 气液界面法制备磷酸银二维有序纳米网薄膜及其方法 Expired - Fee Related CN105601266B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510947234.1A CN105601266B (zh) 2015-12-16 2015-12-16 气液界面法制备磷酸银二维有序纳米网薄膜及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510947234.1A CN105601266B (zh) 2015-12-16 2015-12-16 气液界面法制备磷酸银二维有序纳米网薄膜及其方法

Publications (2)

Publication Number Publication Date
CN105601266A true CN105601266A (zh) 2016-05-25
CN105601266B CN105601266B (zh) 2018-04-13

Family

ID=55981699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510947234.1A Expired - Fee Related CN105601266B (zh) 2015-12-16 2015-12-16 气液界面法制备磷酸银二维有序纳米网薄膜及其方法

Country Status (1)

Country Link
CN (1) CN105601266B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111421133A (zh) * 2020-03-30 2020-07-17 扬州大学 银纳米片团簇阵列及其制备方法
CN113200534A (zh) * 2021-05-19 2021-08-03 重庆交通大学 基于平面基膜的氧化石墨烯还原自组装薄膜制备方法
CN113333013A (zh) * 2021-06-22 2021-09-03 广西大学 一种Ag3PO4-CoFe2O4/g-C3N4复合高效光催化剂及其制备方法
CN113680358A (zh) * 2021-07-13 2021-11-23 湖南农业大学 磷酸银/碳化硼复合光催化剂及其制备方法和应用
CN116130608A (zh) * 2023-04-04 2023-05-16 山东科技大学 一种通过自组装技术制备氧化钛薄膜柔性电极的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244149A (zh) * 1996-12-10 2000-02-09 材料革新公司 提高由粉末、颗粒、薄板或箔材料压实制成的部件和制品的生坯强度的室温方法
CN101538008A (zh) * 2009-04-29 2009-09-23 北京大学 一种制备纳米网薄膜的方法
CN102644110A (zh) * 2012-05-18 2012-08-22 北京化工大学 一种金属光子晶体材料的制备方法
CN103232172A (zh) * 2013-04-16 2013-08-07 同济大学 大面积制备二氧化钛纳米中空球有序薄膜的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244149A (zh) * 1996-12-10 2000-02-09 材料革新公司 提高由粉末、颗粒、薄板或箔材料压实制成的部件和制品的生坯强度的室温方法
CN101538008A (zh) * 2009-04-29 2009-09-23 北京大学 一种制备纳米网薄膜的方法
CN102644110A (zh) * 2012-05-18 2012-08-22 北京化工大学 一种金属光子晶体材料的制备方法
CN103232172A (zh) * 2013-04-16 2013-08-07 同济大学 大面积制备二氧化钛纳米中空球有序薄膜的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111421133A (zh) * 2020-03-30 2020-07-17 扬州大学 银纳米片团簇阵列及其制备方法
CN111421133B (zh) * 2020-03-30 2022-01-21 扬州大学 银纳米片团簇阵列及其制备方法
CN113200534A (zh) * 2021-05-19 2021-08-03 重庆交通大学 基于平面基膜的氧化石墨烯还原自组装薄膜制备方法
CN113333013A (zh) * 2021-06-22 2021-09-03 广西大学 一种Ag3PO4-CoFe2O4/g-C3N4复合高效光催化剂及其制备方法
CN113680358A (zh) * 2021-07-13 2021-11-23 湖南农业大学 磷酸银/碳化硼复合光催化剂及其制备方法和应用
CN113680358B (zh) * 2021-07-13 2023-09-12 湖南农业大学 磷酸银/碳化硼复合光催化剂及其制备方法和应用
CN116130608A (zh) * 2023-04-04 2023-05-16 山东科技大学 一种通过自组装技术制备氧化钛薄膜柔性电极的方法

Also Published As

Publication number Publication date
CN105601266B (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
CN105601266A (zh) 气液界面法制备磷酸银二维有序纳米网薄膜及其方法
CN104681299B (zh) 四氧化三钴多孔纳米线阵列的超级电容器电极材料及其制备方法
Li et al. A perspective on mesoporous TiO2 materials
CN103730260B (zh) 染料敏化太阳能电池及其ZnO复合光阳极制备方法
CN101916670B (zh) 一种TiO2纳米花薄膜光阳极及其制备方法
CN106783217B (zh) 高效率制备氮掺杂石墨烯碳纳米管薄膜的方法
CN101944552B (zh) 一种太阳能电池光吸收层材料cigs薄膜的制备方法
CN109338391B (zh) 用于光电化学分解水制氢的基底的制备方法及其产品和应用
CN101774592A (zh) 一种高隔热透明SiO2气凝胶薄膜材料及其制备方法
CN101412533B (zh) 一种在水溶液中制备均匀氧化锌纳米管阵列的方法
CN110098065A (zh) 一种双硅片基固态超级电容及其制备方法
CN103730259A (zh) 一种双尺度孔隙结构的纳米晶二氧化钛薄膜及其制备方法
CN107376948A (zh) 一种二维硒化钼功能材料电解水制氢催化剂的制备方法
CN102527304B (zh) 多元异质不对称微粒的制备方法
Lopez et al. Synthesis of zinc oxide nanowires on seeded and unseeded gold substrates: Role of seed nucleation and precursor concentration
CN108878660A (zh) 一种Ag/ZnO核壳结构纳米棒阵列电极材料制备方法
CN105347345A (zh) 一种硅微纳米结构的制备方法
CN108394907B (zh) 一种硅钒复合氧化物及其制备方法
CN103972398B (zh) 一种有机无机杂化太阳能电池及其制备方法
CN114804088A (zh) 一种适用于电镜成像的氧化石墨烯制备方法
CN113363080B (zh) 一种NF@Co-MOF@NiMoO4复合材料及其制备方法与应用
CN101567269B (zh) 一种用于制备超级电容器RuO2电极材料的涂敷热分解工艺
CN105198004A (zh) 一种Fe3O4-SnO2纳米复合材料及其制备方法
US20150056109A1 (en) Solar fuel generator
CN109518213A (zh) 一种NiB助剂改性的钒酸铋纳米多孔薄膜电极及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180413

Termination date: 20201216