CN105553479B - 一种应用于近阈值sar adc的二进制电容阵列及其低功耗开关方法 - Google Patents

一种应用于近阈值sar adc的二进制电容阵列及其低功耗开关方法 Download PDF

Info

Publication number
CN105553479B
CN105553479B CN201610056385.2A CN201610056385A CN105553479B CN 105553479 B CN105553479 B CN 105553479B CN 201610056385 A CN201610056385 A CN 201610056385A CN 105553479 B CN105553479 B CN 105553479B
Authority
CN
China
Prior art keywords
capacitance
bottom crown
negative terminal
voltage
denoted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610056385.2A
Other languages
English (en)
Other versions
CN105553479A (zh
Inventor
吴建辉
吴爱东
杜媛
陈超
李红
张萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610056385.2A priority Critical patent/CN105553479B/zh
Publication of CN105553479A publication Critical patent/CN105553479A/zh
Application granted granted Critical
Publication of CN105553479B publication Critical patent/CN105553479B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors

Abstract

本发明公开了一种应用于近阈值SAR ADC的二进制电容阵列及其低功耗开关方法,通过对其核心模块DAC电容阵列的特殊构建并结合所提出的新的开关算法,能够大大降低SAR ADC转换过程中DAC部分的功耗。该算法只采用两个参考电平,适用于近阈值电压下的SAR ADC设计。通过灵活运用联合、分裂和浮置的电容开关技术,电容阵列的总面积与普通两电平电容开关技术所需要的电容阵列面积相比,减少50%。

Description

一种应用于近阈值SAR ADC的二进制电容阵列及其低功耗开 关方法
技术领域
本发明涉及一种应用于近阈值SAR ADC的二进制电容阵列及其低功耗开关方法,属于SAR ADC的电容型DAC技术。
背景技术
低电压低功耗模拟数字转换器是移动设备、手持医疗诊断设备和无线传感器等场合的重要组成部分。这些应用的体积和使用时间均受限于供电的电池。SAR ADC相比于其他的ADC的一个突出的优点是低功耗,特别是在低电压甚至近阈值电压下,功耗可以做得更低。电容型DAC是SAR ADC中一个最重要的模块,其在转换工程的功耗在整个SAR ADC功耗中占有很大的比例。近些年来,人们的很多研究都在着力于降低该部分的功耗。通过优化DAC的电容开关算法,可以大大降低DAC的功耗。在已有的研究中,三电平的开关算法具有很大的优势,由于第三参考电平(一般为)的引入,开关算法会更加灵活,开关能量利用率会更高。但是第三电平的引入,在一定程度上是将DAC的开关功耗转移到基准电压源上。而且,在近阈值SAR ADC设计时,第三电平非常难做,这样第三电平的引入显得得不偿失。所以,在近阈值SAR ADC设计时,尽量避免第三电平的引入,而且需要尽量降低电容开关的功耗。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种应用于近阈值SARADC的二进制电容阵列及其低功耗开关方法,在开关能量损耗、电容面积以及DAC的线性度等方面相对于现有的两电平开关技术具有很高的优势,相对于三电平开关技术也具有一定的优势。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种应用于近阈值SAR ADC的二进制电容阵列,对N比特的SAR ADC,整个电容阵列分为正负两端相等的两个电容阵列,每个电容阵列包括一个最高位电容CN-3、N-4个高位电容、一个最低位电容Cu和一个dummy电容CD,除最高位电容CN-3、最低位电容Cu和dummy电容CD外,其余每个高位电容均由两个相等的电容组成,并且这两个电容在数值上均等于该高位电容的次高位电容;具体为:
①最高位电容CN-3
最高位电容CN-3先分裂为两个电容C'N-4,1和C'N-4,2,C'N-4,1和C'N-4,2在数值上等于次高位电容CN-4,即C'N-4,1=C'N-4,2=CN-4;电容C'N-4,1和C'N-4,2再别分裂为两个电容C'N-5,1和C'N-5,2,C'N-5,1和C'N-5,2在数值上等于第三高位电容CN-5,即C'N-5,1=C'N-5,2=CN-5;因此,最高位电容CN-3的公式表达形式如下:
即:
②次高位电容CN-4到第N-3高位电容C1
高位电容Ci分裂为两个电容C'i-1,1和C'i-1,2,C'i-1,1和C'i-1,2在数值上等于次高位电容Ci-1,即C'i-1,1=C'i-1,2=Ci-1;因此,次高位电容CN-4到第N-3高位电容C1的公式表达形式如下:
Ci=C'i-1,1+C'i-1,2,N-4≥i≥1
举例说明:
次高位电容CN-4:CN-4=C'N-5,1+C'N-5,2,C'N-5,1=C'N-5,2=CN-5
第三高位电容CN-5:CN-5=C'N-6,1+C'N-6,2,C'N-6,1=C'N-6,2=CN-6
第四高位电容CN-6:CN-6=C'N-7,1+C'N-7,2,C'N-7,1=C'N-7,2=CN-7
……
第N-4高位电容C2:C2=C'1,1+C'1,2,C'1,1=C'1,2=C1
第N-3高位电容C1:C1=C'0,1+C'0,2,C'0,1=C'0,2=C0
④最低位电容Cu和一个dummy电容CD
最低位电容Cu和dummy电容CD均为单位电容,且Cu=CD=C0
每个电容阵列中,电容C'i-1,1的参考电平复位状态与电容C'i-1,2的参考电平复位状态的连接方式相反,即电容C'i-1,1的下极板连接参考电压Vref,电容C'i-1,2的下极板连接GND;两个电容阵列中,除最低位电容Cu和dummy电容CD外,其余电容的连接方式相同,正端的最低位电容Cu在参考电平复位状态时下极板连接参考电压Vref,正端的dummy电容CD在参考电平复位状态时下极板连接GND,负端的最低位电容Cu在参考电平复位状态时下极板连接GND,负端的dummy电容CD在参考电平复位状态时下极板连接参考电压Vref
对于一个输入信号,经过N比特的SAR ADC的二进制转换后,得到DNDN-1…D2D1的数字码,包括如下步骤:
步骤一:采样阶段
每个电容阵列中,电容C'i-1,1的参考电平复位状态与电容C'i-1,2的参考电平复位状态的连接方式相反,即电容C'i-1,1的下极板连接参考电压Vref,电容C'i-1,2的下极板连接GND;两个电容阵列中,除最低位电容Cu和dummy电容CD外,其余电容的连接方式相同,正端的最低位电容Cu在参考电平复位状态时下极板连接参考电压Vref,正端的dummy电容CD在参考电平复位状态时下极板连接GND,负端的最低位电容Cu在参考电平复位状态时下极板连接GND,负端的dummy电容CD在参考电平复位状态时下极板连接参考电压Vref
两个电容阵列中,电容的上极板参与电压采样:正端电容阵列中所有电容的上极板连接采样电压Vip,负端电容阵列中所有电容的上极板连接采样电压Vin
步骤二:转换阶段,确定DN、DN-1与DN-2
(21)首先确定DN、DN-1与DN-2位,需要用到三组次高位电容,分别记为第一组次高位电容、第二组次高位电容和第三组次高位电容,其中两组次高位电容组成最高位电容;对正端电压Vip和负端电压Vin直接进行一次比较,结果记为DN,对得到的DN进行分情况讨论:
情况一:若DN=1,则将正端的第一组次高位电容的分裂电容C'N-5,1下极板从Vref转到GND,将负端的第一组次高位电容的分裂电容C'N-5,2下极板从GND转到Vref,这样整个DAC的差分电压将减少记为Vdiff,1,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为A1
情况二:若DN=0,则将正端的第一组次高位电容的分裂电容C'N-5,2下极板从GND转到Vref,将负端的第一组次高位电容的分裂电容C'N-5,1下极板从Vref转到GND,这样整个DAC的差分电压将增加记为Vdiff,1,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为A1
(22)对得到的DN和A1进行分情况讨论:
情况三:若DN≠A1,则直接确定DN-1=A1,DN-2=A1;此时整个DAC的差分电压记为Vdiff,3,比较器的结果为A1,转入步骤三;
情况四:若DN=A1=1,将正端的第二组次高位电容的分裂电容C'N-5,1下极板从Vref转到GND,将负端的第二组次高位电容的分裂电容C'N-5,2下极板从GND转到Vref,这样整个DAC的差分电压将减少记为Vdiff,2,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为A2
情况五:若DN=A1=0,将正端的第二组次高位电容的分裂电容C'N-5,2下极板从GND转到Vref,将负端的第二组次高位电容的分裂电容C'N-5,1下极板从Vref转到GND,这样整个DAC的差分电压将增加记为Vdiff,2,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为A2
(23)对得到的A1和A2进行分情况讨论:
情况六:若A1≠A2,则直接确定DN-1=A2,DN-2=A1;此时整个DAC的差分电压记为Vdiff,3,比较器的结果为A2,转入步骤三;
情况七:若A1=A2=1,将正端的第三组次高位电容的分裂电容C'N-5,1下极板从Vref转到GND,将负端的第三组次高位电容的分裂电容C'N-5,2下极板从GND转到Vref,这样整个DAC的差分电压将减少记为Vdiff,3,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为A3;确定DN-1=A1=A2,DN-2=A3,比较器的结果为A3,转入步骤三;
情况八:若A1=A2=0,将正端的第三组次高位电容的分裂电容C'N-5,2下极板从GND转到Vref,将负端的第三组次高位电容的分裂电容C'N-5,1下极板从Vref转到GND,这样整个DAC的差分电压将增加记为Vdiff,3,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为A3;确定DN-1=A1=A2,DN-2=A3,比较器的结果为A3,转入步骤三;
步骤三:转换阶段,确定DN-3到D3
(31)根据比较器的结果,确定DN-3
若比较器的结果为1,将正端的第三高位电容(MSB-2)的分裂电容C'N-6,1下极板从Vref转到GND,将负端的第三高位电容的分裂电容C'N-6,2下极板从GND转到Vref,这样整个DAC的差分电压将减少记为Vdiff,4,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为DN-3
若比较器的结果为0,将正端的第三高位电容的分裂电容C'N-6,2下极板从GND转到Vref,将负端的第三高位电容的分裂电容C'N-6,1下极板从Vref转到GND,这样整个DAC的差分电压将增加记为Vdiff,4,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为DN-3
(32)采用步骤(31)的方法,根据DN-3,确定DN-4
若比较器的结果为1,将正端的第四高位电容(MSB-3)的分裂电容C'N-7,1下极板从Vref转到GND,将负端的第四高位电容的分裂电容C'N-7,2下极板从GND转到Vref,这样整个DAC的差分电压将减少记为Vdiff,5,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为DN-4
若比较器的结果为0,将正端的第四高位电容的分裂电容C'N-7,2下极板从GND转到Vref,将负端的第四高位电容的分裂电容C'N-7,1下极板从Vref转到GND,这样整个DAC的差分电压将增加记为Vdiff,5,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为DN-4
(33)采用步骤(31)和(32)的方法,根据比较器的结果修改第三组次高位电容次一级权重的分裂电容下极板的连接,确定DN-5到D3位;
步骤四:转换阶段,确定D2到D1
(41)若D3=1,将正端和负端的最低位电容Cu的下极板进行短接形成联合电容,由于之前的转换过程中,DAC的共模电压保持不变,所以短接后,正端和负端的最低位电容Cu的下极板都变为Vcm,即整个DAC的差分电压将减少记为Vdiff,N-2;再次对正端电压Vip和负端电压Vin进行一次比较,结果记为D2
若D3=0,将正端和负端的dummy电容CD的下极板进行短接形成联合电容,由于之前的转换过程中,DAC的共模电压保持不变,所以短接后,正端和负端的dummy电容CD的下极板都变为Vcm,即整个DAC的差分电压将增加记为Vdiff,N-2;再次对正端电压Vip和负端电压Vin进行一次比较,结果记为D2
(42)若D2=1,将联合电容断开,原正端的联合电容下极板由联合状态变为连接GND,原负端的联合电容下极板由联合状态变为浮置状态;这样整个DAC的差分电压将减少记为Vdiff,N-1;再次对正端电压Vip和负端电压Vin进行一次比较,结果记为D1
若D2=0,将联合电容断开,原正端的联合电容下极板由联合状态变为浮置状态,原负端的联合电容下极板由联合状态变为连接GND;这样整个DAC的差分电压将增加记为Vdiff,N-1;再次对正端电压Vip和负端电压Vin进行一次比较,结果记为D1
有益效果:本发明提供的应用于近阈值SAR ADC的二进制电容阵列的低功耗开关方法,相对于现有技术,具有如下优点:1、在不引入第三参考电平的情况下,使用联合电容、分裂电容与浮置电容技术,整个电容阵列的所需的电容大小与三电平开关技术相同,大大节省了电容面积;2、通过正负端的电容共同操作,整个DAC的输出共模电平变化在一个LSB以内,大大减小了比较器失配的变化,从而提高了SAR ADC的性能;3、整个DAC电容的减少,缓解了由于电容之间的失配导致的DAC线性度的恶化,提高SAR ADC的性能;4、本发明提出的应用于近阈值SAR ADC的低功耗开关算法,只采用两个参考电平,实现了三电平开关技术的优点,特别适合SAR ADC在低电压甚至近阈值电压下的设计。
附图说明
图1为本发明的提出的SAR ADC电容阵列结构图;
图2本发明应用于近阈值SAR ADC的低功耗电容开关操作流程图;
图3为本发明的5bit SAR ADC电容阵列结构图;
图4为本发明提出的应用于5bit SAR ADC的低功耗电容开关算法示意图;
图5为本发明提出的应用于5bit SAR ADC的低功耗电容开关算法的波形图;
图6为本发明提出的应用于10bit SAR ADC的低功耗电容开关算法的功耗分布图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
本发明提供一种应用于近阈值SAR ADC的低功耗电容开关算法,希望电容型DAC在转换过程中功耗尽可能小。图2为基于本发明的5bit SAR ADC电容阵列结构图,结合该电容阵列进一步说明所提出的低功耗开关算法的工作过程。
图1为一个N bit SAR ADC的电容阵列图。从图中可以看出,对N比特的SAR ADC,整个电容阵列分为正负两端相等的两个电容阵列,每个电容阵列包括一个最高位电容CN-3、N-4个高位电容、一个最低位电容Cu和一个dummy电容CD,除最高位电容CN-3、最低位电容Cu和dummy电容CD外,其余每个高位电容均由两个相等的电容组成,并且这两个电容在数值上均等于该高位电容的次高位电容;具体为:
①最高位电容CN-3
最高位电容CN-3先分裂为两个电容C'N-4,1和C'N-4,2,C'N-4,1和C'N-4,2在数值上等于次高位电容CN-4,即C'N-4,1=C'N-4,2=CN-4;电容C'N-4,1和C'N-4,2再别分裂为两个电容C'N-5,1和C'N-5,2,C'N-5,1和C'N-5,2在数值上等于第三高位电容CN-5,即C'N-5,1=C'N-5,2=CN-5;因此,最高位电容CN-3的公式表达形式如下:
即:
②次高位电容CN-4到第N-3高位电容C1
高位电容Ci分裂为两个电容C'i-1,1和C'i-1,2,C'i-1,1和C'i-1,2在数值上等于次高位电容Ci-1,即C'i-1,1=C'i-1,2=Ci-1;因此,次高位电容CN-4到第N-3高位电容C1的公式表达形式如下:
Ci=C'i-1,1+C'i-1,2,N-4≥i≥1
举例说明:
次高位电容CN-4:CN-4=C'N-5,1+C'N-5,2,C'N-5,1=C'N-5,2=CN-5
第三高位电容CN-5:CN-5=C'N-6,1+C'N-6,2,C'N-6,1=C'N-6,2=CN-6
第四高位电容CN-6:CN-6=C'N-7,1+C'N-7,2,C'N-7,1=C'N-7,2=CN-7
……
第N-4高位电容C2:C2=C'1,1+C'1,2,C'1,1=C'1,2=C1
第N-3高位电容C1:C1=C'0,1+C'0,2,C'0,1=C'0,2=C0
④最低位电容Cu和一个dummy电容CD
最低位电容Cu和dummy电容CD均为单位电容,且Cu=CD=C0
每个电容阵列中,电容C'i-1,1的参考电平复位状态与电容C'i-1,2的参考电平复位状态的连接方式相反,即电容C'i-1,1的下极板连接参考电压Vref,电容C'i-1,2的下极板连接GND;两个电容阵列中,除最低位电容Cu和dummy电容CD外,其余电容的连接方式相同,正端的最低位电容Cu在参考电平复位状态时下极板连接参考电压Vref,正端的dummy电容CD在参考电平复位状态时下极板连接GND,负端的最低位电容Cu在参考电平复位状态时下极板连接GND,负端的dummy电容CD在参考电平复位状态时下极板连接参考电压Vref
图2为应用于近阈值SAR ADC的低功耗电容开关操作流程图,图中给出的是Vip>Vin的一种情况,Vip<Vin条件下的流程图与之类似,这里省略。
图3为一个5bit SAR ADC的电容阵列图,电容阵列为一个3bit的DAC,最高位由两个权重为2的次高位电容组成权重为4的电容,整两个次高位电容又分裂为两个权重为1的单位电容;次高位是权重为2的电容,分裂为两个单位电容;最低位电容Cu和dummy电容CD的权重为1。
图4为本发明提出的应用于5bit SAR ADC的低功耗电容开关算法实际转换示意图(Vip>Vin)。从图中可以看出整个算法的一个流程:
步骤一:采样阶段。正负两端电容阵列的下极板的状态为权利1所述的参考电平复位状态。正负两端电容阵列的上极板参与电压采样:正端电容阵列上极板连接输入电压Vip,负端电容上极板连接输入电压Vin
步骤二:转换阶段(确定D5、D4与D3)。首先确定D5、D4与D3位,需要用到三组权重相等的电容,其中两组组合成最高位电容,另外一组作为次高位电容。对采样电压Vip和Vin直接进行第一次比较,得到最高位D5。如果D5为1,那么正端电容阵列的第一组次高位电容的分裂电容C0,1从Vref接到GND,负端电容阵列的第一组次高位电容的分裂电容C0,2从GND接到Vref。这样,整个DAC的差分电压Vdiff,1将减小如果D5为0,那么正端电容阵列的第一组次高位电容的分裂电容C0,2从GND接到Vref,负端电容阵列的第一组次高位电容的分裂电容C0,1从Vref接到GND。这样,整个DAC的差分电压Vdiff,1将增加此时,比较器进行第二次比较,结果记为A1
对于上面得到的D5和A1,其值会直接影响到D4和D3的确定。
第一种情况:如果D5与A1不相等,即D5=1,A1=0或者D5=0,A1=1,那么就可以直接确定D4=A1,D3=A1。整个DAC的差分电压记为Vdiff,3,转入步骤三。
第二种情况:如果D5与A1相等,即D5=0,A1=0或者D5=1,A1=1,那么对第二组次高位电容进行操作。如果A1为1,那么正端电容阵列的第二组次高位电容的分裂电容C0,1从Vref接到GND,负端电容阵列的第二组次高位电容的分裂电容C0,2从GND接到Vref,DAC的差分电压Vdiff,2将减小如果A1为0,那么正端电容阵列的第二组次高位电容的分裂电容C0,2从GND接到Vref,负端电容阵列的第二组次高位电容的分裂电容C0,1从Vref接到GND,DAC的差分电压Vdiff,2将增加此时比较器的比较结果记为A2
如果A2不等于A1,则可以确定D4=A2,D3=A1,此时DAC的差分电压记为Vdiff,3,转入步骤三。如果A2等于A1,那么对第三组次高位电容进行类似于前两组次高位电容的开关操作,比较器比较结果记为A3。此时,可以确定D4=A1=A2,D3=A3。此时DAC的差分电压记为Vdiff,3,转入步骤三。
步骤三:由于对于5bit的SAR ADC,D3已经在步骤二中确定,所以该步骤不执行任何操作,直接转入步骤四。
步骤四:转换阶段(确定D2与D1),对于最低位和次低位的确定,采用不同的开关操作。在步骤二结束时,比较器结果可能为A1、A2或者A3,通过该比较器结果决定下一位电容(最低位电容Cu或者dummy电容CD)的操作。如果该比较器结果为1,那么正负端的最低位电容Cu下极板短接形成联合电容,由于在之前的转换过程中,DAC的共模电压Vcm保持不变,所以短接后,正负端的最低位电容Cu的下极板都变为Vcm,即DAC的差分电压Vdiff,3减小如果该比较器结果为0,那么正负端的dummy电容CD下极板短接形成联合电容,由于在之前的转换过程中,DAC的共模电压Vcm保持不变,所以短接后,正负端的dummy电容CD的下极板都变为Vcm,即DAC的差分电压Vdiff,3增加此时比较器进行比较,得到次低位D2。如果D2等于1。联合电容断开,并且正端的电容(最低位电容Cu或者dummy电容CD)由联合状态变为连接GND,负端的电容(最低位电容Cu或者dummy电容CD)由联合状态变为浮置状态。这样,差分电压Vdiff,4减少如果D2等于0。联合电容断开,并且正端的电容(最低位电容Cu或者dummy电容CD)由联合状态变为浮置状态,负端的电容(最低位电容Cu或者dummy电容CD)由联合状态变为连接GND。这样,差分电压Vdiff,4增加比较器进行比较操作,得到最低位D1
图5为应用于5bit SAR ADC的低功耗电容开关算法的波形图(Vip>Vin),图中的三个波形图对应着三中转换情况:当输入信号差分电压小于则最高位电容不参与转换(MSB Skip);当输入信号电压大于等于且小于时,次高位电容不参与转换(MSB-1Skip);当输入信号大于等于时,是正常的转换(No Skip Detected)。以上提到的三中情况,也对应了步骤二中提到的三种转换状态。
图6为本发明提出的应用于10bit SAR ADC的低功耗电容开关算法的功耗分布图。由图6中可以看到,本发明所提出的算法功耗很低,只有67.58CVref 2
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种应用于近阈值SAR ADC的二进制电容阵列,其特征在于:对N比特的SARADC,整个电容阵列分为正负两端相等的两个电容阵列,每个电容阵列包括一个最高位电容CN-3、N-4个高位电容、一个最低位电容Cu和一个dummy电容CD,除最高位电容CN-3、最低位电容Cu和dummy电容CD外,其余每个高位电容均由两个相等的电容组成,并且这两个电容在数值上均等于该高位电容的次高位电容;具体为:
①最高位电容CN-3
最高位电容CN-3先分裂为两个电容C'N-4,1和C'N-4,2,C'N-4,1和C'N-4,2在数值上等于次高位电容CN-4,即C'N-4,1=C'N-4,2=CN-4;电容C'N-4,1再分裂为两个电容C'N-5,1和C'N-5,2,同时C'N-4,2也分裂为两个电容C'N-5,1和C'N-5,2,C'N-5,1和C'N-5,2在数值上等于第三高位电容CN-5,即C'N-5,1=C'N-5,2=CN-5;因此,最高位电容CN-3的公式表达形式如下:
即:
②次高位电容CN-4到第N-3高位电容C1
高位电容Ci分裂为两个电容C'i-1,1和C'i-1,2,C'i-1,1和C'i-1,2在数值上等于次高位电容Ci-1,即C'i-1,1=C'i-1,2=Ci-1;因此,次高位电容CN-4到第N-3高位电容C1的公式表达形式如下:
Ci=C'i-1,1+C'i-1,2,N-4≥i≥1
④最低位电容Cu和一个dummy电容CD
最低位电容Cu和dummy电容CD均为单位电容,且Cu=CD=C0
每个电容阵列中,电容C'i-1,1的参考电平复位状态与电容C'i-1,2的参考电平复位状态的连接方式相反,即电容C'i-1,1的下极板连接参考电压Vref,电容C'i-1,2的下极板连接GND;两个电容阵列中,除最低位电容Cu和dummy电容CD外,其余电容的连接方式相同,正端的最低位电容Cu在参考电平复位状态时下极板连接参考电压Vref,正端的dummy电容CD在参考电平复位状态时下极板连接GND,负端的最低位电容Cu在参考电平复位状态时下极板连接GND,负端的dummy电容CD在参考电平复位状态时下极板连接参考电压Vref
2.一种应用于近阈值SAR ADC的二进制电容阵列的低功耗开关方法,其特征在于:对于一个输入信号,经过N比特的SAR ADC的二进制转换后,得到DNDN-1…D2D1的数字码,包括如下步骤:
步骤一:采样阶段
每个电容阵列中,电容C'i-1,1的参考电平复位状态与电容C'i-1,2的参考电平复位状态的连接方式相反,即电容C'i-1,1的下极板连接参考电压Vref,电容C'i-1,2的下极板连接GND;两个电容阵列中,除最低位电容Cu和dummy电容CD外,其余电容的连接方式相同,正端的最低位电容Cu在参考电平复位状态时下极板连接参考电压Vref,正端的dummy电容CD在参考电平复位状态时下极板连接GND,负端的最低位电容Cu在参考电平复位状态时下极板连接GND,负端的dummy电容CD在参考电平复位状态时下极板连接参考电压Vref
两个电容阵列中,电容的上极板参与电压采样:正端电容阵列中所有电容的上极板连接采样电压Vip,负端电容阵列中所有电容的上极板连接采样电压Vin
步骤二:转换阶段,确定DN、DN-1与DN-2
(21)首先确定DN、DN-1与DN-2位,需要用到三组次高位电容,分别记为第一组次高位电容、第二组次高位电容和第三组次高位电容,其中两组次高位电容组成最高位电容;对正端电压Vip和负端电压Vin直接进行一次比较,结果记为DN,对得到的DN进行分情况讨论:
情况一:若DN=1,则将正端的第一组次高位电容的分裂电容C'N-5,1下极板从Vref转到GND,将负端的第一组次高位电容的分裂电容C'N-5,2下极板从GND转到Vref,这样整个DAC的差分电压将减少记为Vdiff,1,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为A1
情况二:若DN=0,则将正端的第一组次高位电容的分裂电容C'N-5,2下极板从GND转到Vref,将负端的第一组次高位电容的分裂电容C'N-5,1下极板从Vref转到GND,这样整个DAC的差分电压将增加记为Vdiff,1,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为A1
(22)对得到的DN和A1进行分情况讨论:
情况三:若DN≠A1,则直接确定DN-1=A1,DN-2=A1;此时整个DAC的差分电压记为Vdiff,3,比较器的结果为A1,转入步骤三;
情况四:若DN=A1=1,将正端的第二组次高位电容的分裂电容C'N-5,1下极板从Vref转到GND,将负端的第二组次高位电容的分裂电容C'N-5,2下极板从GND转到Vref,这样整个DAC的差分电压将减少记为Vdiff,2,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为A2
情况五:若DN=A1=0,将正端的第二组次高位电容的分裂电容C'N-5,2下极板从GND转到Vref,将负端的第二组次高位电容的分裂电容C'N-5,1下极板从Vref转到GND,这样整个DAC的差分电压将增加记为Vdiff,2,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为A2
(23)对得到的A1和A2进行分情况讨论:
情况六:若A1≠A2,则直接确定DN-1=A2,DN-2=A1;此时整个DAC的差分电压记为Vdiff,3,比较器的结果为A2,转入步骤三;
情况七:若A1=A2=1,将正端的第三组次高位电容的分裂电容C'N-5,1下极板从Vref转到GND,将负端的第三组次高位电容的分裂电容C'N-5,2下极板从GND转到Vref,这样整个DAC的差分电压将减少记为Vdiff,3,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为A3;确定DN-1=A1=A2,DN-2=A3,比较器的结果为A3,转入步骤三;
情况八:若A1=A2=0,将正端的第三组次高位电容的分裂电容C'N-5,2下极板从GND转到Vref,将负端的第三组次高位电容的分裂电容C'N-5,1下极板从Vref转到GND,这样整个DAC的差分电压将增加记为Vdiff,3,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为A3;确定DN-1=A1=A2,DN-2=A3,比较器的结果为A3,转入步骤三;
步骤三:转换阶段,确定DN-3到D3
(31)根据比较器的结果,确定DN-3
若比较器的结果为1,将正端的第三高位电容的分裂电容C'N-6,1下极板从Vref转到GND,将负端的第三高位电容的分裂电容C'N-6,2下极板从GND转到Vref,这样整个DAC的差分电压将减少记为Vdiff,4,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为DN-3
若比较器的结果为0,将正端的第三高位电容的分裂电容C'N-6,2下极板从GND转到Vref,将负端的第三高位电容的分裂电容C'N-6,1下极板从Vref转到GND,这样整个DAC的差分电压将增加记为Vdiff,4,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为DN-3
(32)采用步骤(31)的方法,根据DN-3,确定DN-4
若比较器的结果为1,将正端的第四高位电容的分裂电容C'N-7,1下极板从Vref转到GND,将负端的第四高位电容的分裂电容C'N-7,2下极板从GND转到Vref,这样整个DAC的差分电压将减少记为Vdiff,5,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为DN-4
若比较器的结果为0,将正端的第四高位电容的分裂电容C'N-7,2下极板从GND转到Vref,将负端的第四高位电容的分裂电容C'N-7,1下极板从Vref转到GND,这样整个DAC的差分电压将增加记为Vdiff,5,再次对正端电压Vip和负端电压Vin进行一次比较,结果记为DN-4
(33)采用步骤(31)和(32)的方法,根据比较器的结果修改第三组次高位电容次一级权重的分裂电容下极板的连接,确定DN-5到D3位;
步骤四:转换阶段,确定D2到D1
(41)若D3=1,将正端和负端的最低位电容Cu的下极板进行短接形成联合电容,由于之前的转换过程中,DAC的共模电压保持不变,所以短接后,正端和负端的最低位电容Cu的下极板都变为Vcm,即整个DAC的差分电压将减少记为Vdiff,N-2;再次对正端电压Vip和负端电压Vin进行一次比较,结果记为D2
若D3=0,将正端和负端的dummy电容CD的下极板进行短接形成联合电容,由于之前的转换过程中,DAC的共模电压保持不变,所以短接后,正端和负端的dummy电容CD的下极板都变为Vcm,即整个DAC的差分电压将增加记为Vdiff,N-2;再次对正端电压Vip和负端电压Vin进行一次比较,结果记为D2
(42)若D2=1,将联合电容断开,原正端的联合电容下极板由联合状态变为连接GND,原负端的联合电容下极板由联合状态变为浮置状态;这样整个DAC的差分电压将减少记为Vdiff,N-1;再次对正端电压Vip和负端电压Vin进行一次比较,结果记为D1
若D2=0,将联合电容断开,原正端的联合电容下极板由联合状态变为浮置状态,原负端的联合电容下极板由联合状态变为连接GND;这样整个DAC的差分电压将增加记为Vdiff,N-1;再次对正端电压Vip和负端电压Vin进行一次比较,结果记为D1
CN201610056385.2A 2016-01-27 2016-01-27 一种应用于近阈值sar adc的二进制电容阵列及其低功耗开关方法 Active CN105553479B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610056385.2A CN105553479B (zh) 2016-01-27 2016-01-27 一种应用于近阈值sar adc的二进制电容阵列及其低功耗开关方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610056385.2A CN105553479B (zh) 2016-01-27 2016-01-27 一种应用于近阈值sar adc的二进制电容阵列及其低功耗开关方法

Publications (2)

Publication Number Publication Date
CN105553479A CN105553479A (zh) 2016-05-04
CN105553479B true CN105553479B (zh) 2018-08-10

Family

ID=55832444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610056385.2A Active CN105553479B (zh) 2016-01-27 2016-01-27 一种应用于近阈值sar adc的二进制电容阵列及其低功耗开关方法

Country Status (1)

Country Link
CN (1) CN105553479B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301364B (zh) * 2016-08-25 2019-03-19 东南大学 一种逐次逼近型模数转换器结构及其低功耗开关方法
KR20180105027A (ko) * 2017-03-14 2018-09-27 에스케이하이닉스 주식회사 분할-커패시터 기반의 디지털-아날로그 변환기를 갖는 축차 근사형 아날로그-디지털 컨버터
CN108777580B (zh) * 2018-05-24 2020-02-21 西安电子科技大学 混合电容翻转技术控制sar adc电平开关方法
CN109039332B (zh) * 2018-06-14 2022-04-01 东南大学 一种逐次逼近型模数转换器及其低功耗开关算法
CN109039338B (zh) * 2018-07-06 2022-03-15 江南大学 差分电容阵列及其开关切换方法
CN110176931B (zh) * 2019-04-17 2021-04-20 西安电子科技大学 一种基于dummy电容单边电荷共享的开关时序电路及方法
CN110380730B (zh) * 2019-07-04 2023-02-24 东南大学 一种应用于低电压sar adc的电容阵列开关方法
US11411574B2 (en) * 2020-04-06 2022-08-09 M31 Technology Corporation Clock and data recovery circuit with proportional path and integral path, and multiplexer circuit for clock and data recovery circuit
CN112332846B (zh) * 2020-11-05 2022-11-08 东南大学 一种基于电荷回收的低电压sar adc开关切换方法
TWI763524B (zh) 2021-06-04 2022-05-01 瑞昱半導體股份有限公司 類比數位轉換器之操作方法
CN114726374B (zh) * 2022-04-22 2024-04-30 深圳市灵明光子科技有限公司 一种电容阵列结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840829A (zh) * 2012-11-26 2014-06-04 昆山启达微电子有限公司 逐次逼近型模数转换器
CN104124973A (zh) * 2014-08-11 2014-10-29 东南大学 一种逐次逼近型模数转换器及其转换方法
CN104485960A (zh) * 2015-01-06 2015-04-01 吴江圣博瑞信息科技有限公司 一种用于逐次逼近型模数转换器三电平开关的方法及电路
CN104734717A (zh) * 2015-01-06 2015-06-24 吴江圣博瑞信息科技有限公司 一种用于模数转换器的高精度三电平开关方法及电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840829A (zh) * 2012-11-26 2014-06-04 昆山启达微电子有限公司 逐次逼近型模数转换器
CN104124973A (zh) * 2014-08-11 2014-10-29 东南大学 一种逐次逼近型模数转换器及其转换方法
CN104485960A (zh) * 2015-01-06 2015-04-01 吴江圣博瑞信息科技有限公司 一种用于逐次逼近型模数转换器三电平开关的方法及电路
CN104734717A (zh) * 2015-01-06 2015-06-24 吴江圣博瑞信息科技有限公司 一种用于模数转换器的高精度三电平开关方法及电路

Also Published As

Publication number Publication date
CN105553479A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN105553479B (zh) 一种应用于近阈值sar adc的二进制电容阵列及其低功耗开关方法
Yuan et al. Low-energy and area-efficient tri-level switching scheme for SAR ADC
CN109039332B (zh) 一种逐次逼近型模数转换器及其低功耗开关算法
CN105391451A (zh) 一种逐次逼近型模数转换器及其模数转换时开关切换方法
CN108055037A (zh) 一种逐次逼近型模数转换器及其开关切换方法
CN111371457B (zh) 一种模数转换器及应用于sar adc的三电平开关方法
CN105049049B (zh) 一种提高逐次逼近模数转换器dnl/inl的电容交换方法
CN108306644B (zh) 基于10位超低功耗逐次逼近型模数转换器前端电路
WO2018053788A1 (zh) 一种dac电容阵列、sar型模数转换器及降低功耗的方法
CN104092466B (zh) 一种流水线逐次逼近模数转换器
US11418209B2 (en) Signal conversion circuit utilizing switched capacitors
CN110198169B (zh) 一种适用于sar adc的自适应预测型低功耗开关方法
CN104467856A (zh) 一种高能效电容阵列逐次逼近型模数转换器及其转换方法
CN102111156A (zh) 用于实现最小动态范围的逐次渐近型模数转换电路
CN108111171B (zh) 适用于差分结构逐次逼近型模数转换器单调式开关方法
CN111641413B (zh) 一种高能效sar adc的电容阵列开关方法
Kuo et al. A high energy-efficiency SAR ADC based on partial floating capacitor switching technique
CN106972860B (zh) 一种逐次逼近型模数转换器及其开关方法
CN104485960A (zh) 一种用于逐次逼近型模数转换器三电平开关的方法及电路
CN207782773U (zh) 一种逐次逼近型模数转换器
CN111934687B (zh) 一种高能效模数转换器及其控制方法
CN109347480A (zh) 一种电容拆分结构的逐次逼近型模数转换器及其开关方法
WO2019084085A1 (en) METHOD AND APPARATUS ACTIVATING AN EXTENDED INTEGRATED COMMON MODE RANGE IN SAR CANs WITHOUT AN ADDITIONAL ACTIVE CIRCUIT ARRANGEMENT
CN110995269B (zh) 一种适用于低电压sar adc设计的节能开关切换电路及其方法
CN103152048B (zh) 一种差分输入逐次逼近型模数转换方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant