CN105544013B - 一种锆含量不同的碳化硅纤维及其制备方法 - Google Patents

一种锆含量不同的碳化硅纤维及其制备方法 Download PDF

Info

Publication number
CN105544013B
CN105544013B CN201610067275.6A CN201610067275A CN105544013B CN 105544013 B CN105544013 B CN 105544013B CN 201610067275 A CN201610067275 A CN 201610067275A CN 105544013 B CN105544013 B CN 105544013B
Authority
CN
China
Prior art keywords
zirconium
silicon carbide
preparation
polycarbosilane
carbide fibre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610067275.6A
Other languages
English (en)
Other versions
CN105544013A (zh
Inventor
刘玉付
杨勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610067275.6A priority Critical patent/CN105544013B/zh
Publication of CN105544013A publication Critical patent/CN105544013A/zh
Application granted granted Critical
Publication of CN105544013B publication Critical patent/CN105544013B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明公开了一种锆含量不同的碳化硅纤维及其制备方法。所述碳化硅纤维的含锆量在1%~15wt%,制备方法为:以聚碳硅烷和正丁醇锆为原料,然后在溶剂溶解及惰性气体保护下,于反应温度230~300℃、保温时间2~7h的条件下合成锆含量为1%~15wt%的SiC陶瓷先驱体聚锆碳硅烷;接着将先驱体聚锆碳硅烷经熔融纺丝过程制得了锆含量不同的连续聚锆碳硅烷原丝;原丝经过空气不熔化处理及高温烧成制得锆含量从1%~15wt%的连续碳化硅纤维。本发明制得的纤维实现了异质元素锆的含量由低到高(1wt%~15wt%)的添加,纤维直径为9~15μm,平均抗拉强度1.8~3.2GPa,具有优异的力学性能和高温抗氧化性。

Description

一种锆含量不同的碳化硅纤维及其制备方法
技术领域
本发明属于材料技术领域,特别涉及一种锆含量不同的碳化硅纤维及其制备方法。
背景技术
碳化硅(SiC)纤维以其耐高温、抗氧化、耐腐蚀、防老化以及力学性能等优良等特性成为陶瓷基复合材料中纤维增强相的理想材料。然而常用的以高分子聚碳硅烷为先驱体制备的碳化硅纤维在1000℃以上强度就开始下降。其原因在于在SiC陶瓷纤维升温过程中,当温度达到1200℃以上,纤维中的SiCxOy相发生分解释放SiO、CO等气体导致力学性能下降,当温度在1400℃以上,原有的β-SiC微晶不断从连续相获得新的补充,使晶粒急剧长大,直径达到7nm以上,造成SiC陶瓷纤维力学性能下降,当温度超过1800℃后,β-SiC晶粒尺寸可超过1μm,并开始从纤维表面析出,造成SiC陶瓷纤维粉末化,使SiC陶瓷纤维的力学性能急剧降低。因此为了提高纤维的耐高温性能,通常采用如下两种方式:(1)在不熔化处理时使用电子束辐射交联法或气相化学交联法,降低纤维中的氧含量;(2)在纤维中引入异质元素,制备含异质元素SiC陶瓷及纤维,因为异质元素的存在可以有效地抑制高温条件下纤维中β-SiC晶粒的析晶,同时能愈合纤维中的裂纹,起到烧结助剂作用,使陶瓷纤维的综合性能,特别是抗高温氧化性得到明显提高。
根据早期的含锆碳化硅纤维的论文,比如T.Ishikawa等人的论文(Journal ofMaterials Science,33(1998),PP.161-166.),其公开了用Mark III型PCS与乙酰丙酮锆在300℃惰性气体保护下合成了聚锆碳硅烷先驱体,并利用凝胶渗透色谱法、傅里叶变换红外光谱分析、热重-差热分析、X射线衍射分析等测试手段研究了聚锆碳硅烷先驱体转化为Si-Zr-C-O纤维的转变过程,纤维强度3.0GPa,并具有很好的耐高温性,纤维中锆含量<5wt%。
还有根据T.Ishikawa等人的论文(Nature,416(2002),PP.64-67)的报道,其公开了采用先驱体转化法,以聚碳硅烷(PCS)和锆酸四丁酯(Zr(OC4H9)4)为原料,按照质量比1:1混合经先驱体合成反应及熔融纺丝后,通过熟化处理(70℃,100h)和氩气气氛中1400℃烧结1h,制得氧化锆/碳化硅径向梯度分布纤维,但纤维强度只有2.5GPa。
国内曹淑伟的论文(硅酸盐学报,37(2009),PP.62-66)研究了用聚二甲基硅烷的热解产物聚硅碳硅烷与乙酰丙酮锆在一定条件下进行反应,制得了含锆的聚锆碳硅烷先驱体。先驱体经纺丝,固化,烧结等过程可以制得含锆的碳化硅纤维。所得碳化硅纤维中的含锆量约为2wt%,室温抗拉强度达2.0GPa以上,纤维在空气中,经1000℃处理20h后,强度保留率为71.2%,经100h处理后,强度保留率为50%,表现出了较好的高温抗氧化性。但以用聚二甲基硅烷的裂解产物聚硅碳硅烷作为先驱体合成的原料制备过程复杂。
现有公开报导的含锆碳化硅纤维文献的突出问题是,碳化硅纤维先驱体中添加异质元素的合成工艺复杂、成本高、异质元素的添加量受限。
发明内容
本发明的目的是提供一种锆含量不同的碳化硅纤维及其制备方法,以解决现有技术中存在的碳化硅纤维先驱体中添加异质元素的合成工艺复杂、成本高、异质元素的添加量受限等问题。
为实现上述目的,本发明采用以下技术方案:
一种锆含量不同的碳化硅纤维的制备方法,包括下述步骤:
(1)将聚碳硅烷和正丁醇锆溶解于反应溶剂,加入至反应器;搅拌,使反应物完全溶解,并均匀混合,得到反应溶液;
(2)将步骤(1)得到的反应溶液升温至150~160℃,并保温1~2h,将反应溶液中的反应溶剂利用冷凝接收装置收集到接收瓶中;
(3)将步骤(2)得到的反应溶液升温至170~180℃,并保温1~2h,蒸出剩余的反应溶剂;
(4)将步骤(3)得到的物质升温至230~300℃,并保温2~7h,使聚碳硅烷熔体和正丁醇锆完全反应,保温结束后自然冷却至室温,得到锆含量为1~15wt%的聚锆碳硅烷先驱体;
(5)将步骤(4)得到的不同锆含量的聚锆碳硅烷先驱体进行熔融纺丝,得到含锆原丝纤维;
(6)将步骤(5)得到的含锆原丝纤维置于鼓风干燥箱中作空气不熔化处理,处理条件为:温度180~220℃,处理时间4~6h,得到不熔不融纤维;
(7)将步骤(6)得到的不熔不融纤维于真空条件下1000~1300℃进行烧结,并保温0.5h,得到锆含量为1%~15wt%的SiC纤维。
优选的,步骤(1)中,所述聚碳硅烷的分子量为200~600,软化点160~200℃。
优选的,步骤(1)中,所述反应溶剂为二甲苯。
优选的,步骤(1)中,聚碳硅烷和正丁醇锆的质量比为35:1~1:1。
优选的,步骤(1)中,聚碳硅烷和溶剂的质量比为1:3~1:5。
优选的,步骤(1)中,聚碳硅烷、正丁醇锆及反应溶剂的搅拌条件是:在惰性气体保护及机械搅拌条件下升温至100℃,保温0.5~1h。
优选的,步骤(2)中,升温速率为5℃/min;步骤(3)中,升温速率为4℃/min;步骤(4)中,升温速率为2℃/min。
一种由上述的方法制备成的锆含量1wt%~15wt%的碳化硅纤维。
本发明的有益效果是:
本发明采用先驱体转化法,以分子量200~600、软化点160~200℃的聚碳硅烷与正丁醇锆的交联反应,实现了锆含量由1%~15wt%的添加,制备工艺简单,成本低,无需高温高压条件即可完成。且数据表明含锆4%~7wt%的SiC纤维的高温抗氧化性能最为优异。此纤维经1250℃空气处理后强度保留率为71%,1000℃空气处理100h后强度保留率为74%,高于含锆1%~3wt%SiC纤维的65%和63%以及含锆10%~15wt%SiC纤维的68%和71%。
附图说明
图1是锆含量为1%~15wt%的SiC纤维拉伸强度与热处理温度的关系;
图2是锆含量为1%~15wt%的SiC纤维氧含量与热处理温度的关系;
其中,图2中的(1)、(2)、(3)分别代表含锆量10~15wt%的SiC纤维;含锆量4~7wt%的SiC纤维;含锆量1~3wt%的SiC纤维。
具体实施方式
下面结合具体实施例对本发明作更进一步的说明。
实施例1
以分子量200~600、软化点160~200℃的聚碳硅烷和正丁醇锆为原料,按照质量比35:1取样,以二甲苯为溶剂,且聚碳硅烷和二甲苯的质量比为1:5,加入到接有加热装置的三颈烧瓶中,在氩气保护及磁子搅拌作用下升温至100℃,保温1h,使三者完全溶解。按照5℃/min的速率升温至160℃,并保温2h,蒸出溶剂二甲苯;按照4℃/min的速率继续升温至180℃,并保温1h,蒸出剩余二甲苯;按照2℃/min的速率升温至终反应温度300℃,保温2h,使聚碳硅烷熔体和正丁醇锆完全反应,待自然冷却至室温后得到含锆1~3wt%聚锆碳硅烷先驱体。将先驱体经过熔融纺丝得到原丝纤维;原丝纤维经200℃空气不熔化处理4h得到不溶不熔纤维;再在真空条件下于1000℃进行烧结保温0.5h,得到含锆1~3wt%SiC纤维。纤维强度2.36GPa。
实施例2
以分子量200~600、软化点160~200℃的聚碳硅烷和正丁醇锆为原料,按照质量比35:1取样,以二甲苯为溶剂,且聚碳硅烷和二甲苯的质量比为1:5,加入到接有加热装置的三颈烧瓶中,在氩气保护及磁子搅拌作用下升温至100℃,保温1h,使三者完全溶解。按照5℃/min的速率升温至160℃,并保温2h,蒸出溶剂二甲苯;按照4℃/min的速率继续升温至180℃,并保温1h,蒸出剩余二甲苯;按照2℃/min的速率升温至终反应温度300℃,保温2h,使聚碳硅烷熔体和正丁醇锆完全反应,待自然冷却至室温后得到含锆1~3wt%聚锆碳硅烷先驱体。将先驱体经过熔融纺丝得到原丝纤维;原丝纤维经200℃空气不熔化处理4h得到不溶不熔纤维;再在真空条件下1200℃进行烧结保温0.5h,得到含锆1~3wt%SiC纤维。纤维强度2.02GPa。
实施例3
以分子量200~600、软化点160~200℃的聚碳硅烷和正丁醇锆为原料,按照质量比35:1取样,以二甲苯为溶剂,且聚碳硅烷和二甲苯的质量比为1:5,加入到接有加热装置的三颈烧瓶中,在氩气保护及磁子搅拌作用下升温至100℃,保温1h,使三者完全溶解。按照5℃/min的速率升温至160℃,并保温2h,蒸出溶剂二甲苯;按照4℃/min的速率继续升温至180℃,并保温1h,蒸出剩余二甲苯;按照2℃/min的速率升温至终反应温度300℃,保温2h,使聚碳硅烷熔体和正丁醇锆完全反应,待自然冷却至室温后得到含锆1~3wt%聚锆碳硅烷先驱体。将先驱体经过熔融纺丝得到原丝纤维;原丝纤维经200℃空气不熔化处理4h得到不溶不熔纤维;再在真空条件下于1300℃进行烧结保温0.5h,得到含锆1~3wt%SiC纤维。纤维强度2.24GPa。
实施例4
以分子量200~600、软化点160~200℃的聚碳硅烷和正丁醇锆为原料,按照质量比4:1取样,以二甲苯为溶剂,且聚碳硅烷和二甲苯的质量比为1:4,加入到接有加热装置的三颈烧瓶中,在氩气保护及磁子搅拌作用下升温至100℃,保温1h,使三者完全溶解。按照5℃/min的速率升温至160℃,并保温2h,蒸出溶剂二甲苯;按照4℃/min的速率继续升温至180℃,并保温1h,蒸出剩余二甲苯;按照2℃/min的速率升温至终反应温度250℃,保温2h,使聚碳硅烷熔体和正丁醇锆完全反应,待自然冷却至室温后得到含锆4~7wt%聚锆碳硅烷先驱体。将先驱体经过熔融纺丝得到原丝纤维,聚锆碳硅烷原丝纤维经200℃空气不熔化处理6h得到不溶不熔纤维;再在真空条件下于1000℃进行烧结保温0.5h,得到含锆4~7wt%SiC纤维。纤维强度2.65GP。
实施例5
以分子量200~600、软化点160~200℃的聚碳硅烷和正丁醇锆为原料,按照质量比1:1取样,以二甲苯为溶剂,且聚碳硅烷和二甲苯的质量比为1:3,加入到接有加热装置的三颈烧瓶中,在氩气保护及磁子搅拌作用下升温至100℃保温1h,使三者完全溶解。按照5℃/min的速率升温至160℃,并保温2h,蒸出溶剂二甲苯,按照4℃/min的速率继续升温至180℃,并保温1h,蒸出剩余二甲苯;按照2℃/min的速率升温至终反应温度250℃,保温7h,待自然冷却后得到含锆10~15wt%聚锆碳硅烷先驱体。将先驱体经过熔融纺丝得到原丝纤维,聚锆碳硅烷原丝纤维经200℃空气不熔化处理6h得到不溶不熔纤维,再在真空条件下于1000℃进行烧结保温0.5h,得到含锆10~15wt%SiC纤维。纤维强度2.58GPa。
实施例6
将锆含量1~3wt%的SiC纤维于1250℃空气处理0.5h,测量纤维的强度与成分。剩余强度为1.55GPa,强度保留率65%;
实施例7
将锆含量4~7wt%的SiC纤维于1250℃空气处理0.5h,测量纤维的强度与成分。剩余强度为1.88GPa,强度保留率71%;
实施例8
将锆含量10~15wt%的SiC纤维于1250℃空气处理0.5h,测量纤维的强度与成分。剩余强度为1.78GPa,强度保留率68%;
实施例9
将锆含量1~3wt%的SiC纤维于1000℃空气处理100h,测量纤维的强度与成分。剩余强度为1.51GPa,强度保留率63%;
实施例10
将锆含量4~7wt%的SiC纤维于1000℃空气处理100h,测量纤维的强度与成分。剩余强度为1.96GPa,强度保留率74%;
实施例11
将锆含量10~15wt%的SiC纤维于1000℃空气处理100h,测量纤维的强度与成分。剩余强度为1.85GPa,强度保留率71%;
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种锆含量不同的碳化硅纤维的制备方法,其特征在于:包括下述步骤:
(1)将聚碳硅烷和正丁醇锆溶解于反应溶剂,加入至反应器;搅拌,使反应物完全溶解,并均匀混合,得到反应溶液;
(2)将步骤(1)得到的反应溶液升温至150~160℃,并保温1~2h,将反应溶液中的反应溶剂利用冷凝接收装置收集到接收瓶中;
(3)将步骤(2)得到的反应溶液升温至170~180℃,并保温1~2h,蒸出剩余的反应溶剂;
(4)将步骤(3)得到的物质升温至230~300℃,并保温2~7h,使聚碳硅烷熔体和正丁醇锆完全反应,保温结束后自然冷却至室温,得到锆含量为1~15wt%的聚锆碳硅烷先驱体;
(5)将步骤(4)得到的不同锆含量的聚锆碳硅烷先驱体进行熔融纺丝,得到含锆原丝纤维;
(6)将步骤(5)得到的含锆原丝纤维置于鼓风干燥箱中作空气不熔化处理,处理条件为:温度180~220℃,处理时间4~6h,得到不熔不融纤维;
(7)将步骤(6)得到的不熔不融纤维于真空条件下1000~1300℃进行烧结,并保温0.5h,得到锆含量为1%~15wt%的SiC纤维。
2.根据权利要求1所述的锆含量不同的碳化硅纤维的制备方法,其特征在于:步骤(1)中,所述聚碳硅烷的分子量为200~600,软化点160~200℃。
3.根据权利要求1所述的锆含量不同的碳化硅纤维的制备方法,其特征在于:步骤(1)中,所述反应溶剂为二甲苯。
4.根据权利要求1所述的锆含量不同的碳化硅纤维的制备方法,其特征在于:步骤(1)中,聚碳硅烷和正丁醇锆的质量比为35:1~1:1。
5.根据权利要求1或3所述的锆含量不同的碳化硅纤维的制备方法,其特征在于:步骤(1)中,聚碳硅烷和溶剂的质量比为1:3~1:5。
6.根据权利要求1所述的锆含量不同的碳化硅纤维的制备方法,其特征在于:步骤(1)中,聚碳硅烷、正丁醇锆及反应溶剂的搅拌条件是:在惰性气体保护及机械搅拌条件下升温至100℃,保温0.5~1h。
7.根据权利要求1所述的锆含量不同的碳化硅纤维的制备方法,其特征在于:步骤(2)中,升温速率为5℃/min;步骤(3)中,升温速率为4℃/min;步骤(4)中,升温速率为2℃/min。
8.一种由权利要求1-7任一所述的方法制备成的锆含量4%~7wt%的碳化硅纤维。
CN201610067275.6A 2016-01-29 2016-01-29 一种锆含量不同的碳化硅纤维及其制备方法 Active CN105544013B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610067275.6A CN105544013B (zh) 2016-01-29 2016-01-29 一种锆含量不同的碳化硅纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610067275.6A CN105544013B (zh) 2016-01-29 2016-01-29 一种锆含量不同的碳化硅纤维及其制备方法

Publications (2)

Publication Number Publication Date
CN105544013A CN105544013A (zh) 2016-05-04
CN105544013B true CN105544013B (zh) 2017-11-24

Family

ID=55823561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610067275.6A Active CN105544013B (zh) 2016-01-29 2016-01-29 一种锆含量不同的碳化硅纤维及其制备方法

Country Status (1)

Country Link
CN (1) CN105544013B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108193325B (zh) * 2017-12-27 2020-07-24 江西嘉捷信达新材料科技有限公司 含锆耐高温碳化硅纤维及其制备方法
CN108070088A (zh) * 2017-12-29 2018-05-25 南昌嘉捷天剑新材料有限公司 含锆聚碳硅烷的制备方法
CN108218435B (zh) * 2018-01-16 2020-09-11 贵州师范大学 一种皮芯结构碳化硅陶瓷纤维的制备方法
CN110436935B (zh) * 2019-08-06 2022-03-04 江西嘉捷信达新材料科技有限公司 超细二氧化锆/SiC复合长纤维及其制备方法和应用
CN113388920B (zh) * 2021-05-25 2022-11-25 湖南泽睿新材料有限公司 一种含异质元素碳化硅纤维的制备方法
CN114479088A (zh) * 2022-01-26 2022-05-13 福建立亚化学有限公司 一种含锆聚碳硅烷陶瓷先驱体的制备方法及其装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100486930C (zh) * 2007-03-21 2009-05-13 中国人民解放军国防科学技术大学 一种含锆聚碳硅烷陶瓷先驱体的制备方法及装置
CN101787588B (zh) * 2010-01-21 2011-12-14 中国人民解放军国防科学技术大学 一种由pcs纤维制备连续碳化硅纤维的方法
CN101949073B (zh) * 2010-08-11 2011-08-31 中国人民解放军国防科学技术大学 一种超细氧化锆/碳化硅径向梯度分布纤维的制备方法

Also Published As

Publication number Publication date
CN105544013A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN105544013B (zh) 一种锆含量不同的碳化硅纤维及其制备方法
CN108277555B (zh) 以可热固化聚碳硅烷制备低氧含量碳化硅纤维的制备方法
CN110629324B (zh) 一种含硼碳化硅纤维及其制备方法
CN106521710A (zh) 一种含钛硼碳化硅基陶瓷纤维的制备方法
US4650773A (en) Continuous inorganic fiber consisting of Si, N and O and a method of producing the same
CN101492285B (zh) 一种含铍纤维的制备方法
CN107473748A (zh) 一种含铍碳化硅陶瓷纤维的制备方法
CN109265687A (zh) 一种含异质元素聚碳硅烷的制备方法
Talabi et al. Structural evolution during the catalytic graphitization of a thermosetting refractory binder and oxidation resistance of the derived carbons
CN100579935C (zh) 一种聚合物裂解-反应热压制备纳米SiC颗粒增强MoSi2基复合材料的方法
Long et al. Single-source-precursor synthesis of SiBNC-Zr ceramic nanocomposites fibers
CN101913877A (zh) 一种硅硼氮烷陶瓷纤维先驱体的制备方法
CN107555997A (zh) 一种含铍聚碳硅烷陶瓷先驱体的制备方法
TW315362B (zh)
Xie et al. Synthesis and characterization of molybdenum‐modified polycarbosilane for SiC (Mo) ceramics
CN107226910A (zh) 一种以8‑羟基喹啉铝为铝源制备聚铝碳硅烷先驱体的方法及其应用
Mutsuddy Use of organometallic polymer for making ceramic parts by plastic forming techniques
JP2608061B2 (ja) 高純度高強度窒化ケイ素連続無機繊維及びその製造方法
CN108219148A (zh) 高分子量聚碳硅烷及其制备方法
Ren et al. Preparation and structure of SiOCN fibres derived from cyclic silazane/poly-acrylic acid hybrid precursor
CN107383376A (zh) 一种以硬脂酸铝为铝源制备聚铝碳硅烷先驱体的方法及其应用
Raman et al. Synthesis of silicon carbide through the sol—gel process from rayon fibers
CN109111574A (zh) Si-Al-C-O纤维的制备方法
US4824918A (en) Method of producing silicon carbide preceramic vinyl-containing polymers
Clade et al. A new type of precursor for fibers in the system Si–C

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant