CN105536810B - 一种石墨烯复合磁性光催化剂Mn1‑xZnxFe2O4/BiVO4/RGO的制备方法 - Google Patents

一种石墨烯复合磁性光催化剂Mn1‑xZnxFe2O4/BiVO4/RGO的制备方法 Download PDF

Info

Publication number
CN105536810B
CN105536810B CN201510954121.4A CN201510954121A CN105536810B CN 105536810 B CN105536810 B CN 105536810B CN 201510954121 A CN201510954121 A CN 201510954121A CN 105536810 B CN105536810 B CN 105536810B
Authority
CN
China
Prior art keywords
bivo
rgo
solution
magnetic
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510954121.4A
Other languages
English (en)
Other versions
CN105536810A (zh
Inventor
刘成伦
李辉
徐龙君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201510954121.4A priority Critical patent/CN105536810B/zh
Publication of CN105536810A publication Critical patent/CN105536810A/zh
Application granted granted Critical
Publication of CN105536810B publication Critical patent/CN105536810B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种石墨烯复合磁性光催化剂Mn1‑xZnxFe2O4/BiVO4/RGO的制备方法,属于无机光催化材料领域。将片层状石墨烯(RGO)和磁性Mn1‑xZnxFe2O4颗粒负载在单斜BiVO4上形成的异质结复合光催化剂,具有强的导电能力,阻抗值(103Ω.cm2)明显小于BiVO4的阻抗值(351Ω.cm2)或Mn1‑xZnxFe2O4/BiVO4的阻抗值(206Ω.cm2);本复合催化剂用于可见光催化降解罗丹明B,1.5小时的降解率高达96%,比饱和磁化强度为8.21emu.g‑1,强的磁性便于采用外加磁场回收,回收率不低于89%,回收得到的催化剂对RhB的降解率仍为85%;本法制备的石墨烯复合磁性材料的可见光催化活性高、稳定性强及回收率较大,应用于光降解有机污染物可显著提高去除效率和速度,具有良好的应用前景。

Description

一种石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO的制备 方法
技术领域
本发明涉及一种石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO的制备方法,属于无机环境友好光催化材料的技术领域。
技术背景
半导体光催化技术可直接利用可见光降解有机污染物,在环境污染控制和新能源开发方面具有良好的应用前景,成为人们关注的热点。单斜BiVO4是一种n型半导体,其带隙宽度为2.4eV,能够响应太阳光,且具有高的稳定性,在光催化材料领域已倍受重视。但是BiVO4吸收可见光的能力较弱,且光生电子与空穴因复合速度大而致使其有效迁移速度小,严重限制了BiVO4光催化剂的实际应用进程。此外,悬浮态BiVO4颗粒不易分离回收也是制约其工业化应用的一个重要因素。因此,制备具有可见光响应性高、循环利用率大的BiVO4系列光催化剂是光催化材料领域的研究重点之一。
磁分离技术在水污染控制领域有很大的应用前景。已有较多报道关于BiVO4/Fe3O4, MnO2/Fe3O4,ZnFe2O4/BiVO4和TiO2/Mn-Zn ferrite磁性复合光催化剂的成功制备。通过施加外加磁场,磁性光催化剂容易从水体里分离、回收。然而,这些磁性光催化剂在可见光下的催化活性或效能尚待提高,为了克服这一缺点,用窄带隙的半导体材料与BiVO4复合是一个有效的途径。选取较低的带隙、较大的表面积、较好的机械性能和高的稳定性的成分与光催化剂复合,有助于提高复合光催化剂的光催化性能。石墨烯正拥有优越的电子传导能力、较大的比表面积以及良好的化学稳定性,因此石墨烯与光催化剂BiVO4复合有利于光生电子和空穴的分离和转移,显著减小电子-空穴复合的几率,提高光催化剂的活性。已有文献报道, RGO使得BiVO4的带隙结构调整为p-n异质结。所以,BiVO4与石墨烯的复合材料可显现优异的光催化性能。
本法以Mn1-xZnxFe2O4为磁性基材,以RGO为载流子传递的桥梁,制备的石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO,不仅具有较高的光催化活性,而且通过施加外磁场容易地被回收利用,回收后的光催化剂仍具有较高的催化活性。
现有磁性钒酸铋光催化剂的制备方法,如中国专利CN103480384A(对比文件1),公开了负载磁性基体SrFe12O19制备SrFe12O19/BiVO4的方法,所制得的磁性钒酸铋光催化剂主要存在以下不足:(1)光催化降解亚甲基蓝的降解效率低,在5h内仅为93%,且亚甲基蓝的自降解程度明显大于罗丹明B。(2)稳定性较差,经回收五次循环使用,所制备的复合催化剂对亚甲基蓝的降解率在5h内只有60%。现有报道石墨烯复合磁性光催化剂的制备方法,如中国专利CN104258862A(对比文件2),公开了以水热一共沉淀法制备Fe3O4/TiO2/RGO,在 N2保护下高温煅烧以使氧化石墨烯还原为石墨烯及预先制备的Fe3O4颗粒和TiO2纳米管负载于石墨烯上。该方法主要存在以下不足:(1)采用水热一共沉淀法和N2保护的高温焙烧法,工艺复杂,过程耗时,产品中杂质含量较高,且各组分的复合强度较低。(2)所制备的催化剂对亚甲基蓝的吸附量较大,难以区分亚甲基蓝的去除是以吸附还是光降解作用为主。(3)未考察所制备的石墨烯复合磁性光催化剂的循环稳定性。
发明内容
本发明的目的是针对现有BiVO4光催化剂的效率不高及回收率低的问题,合成一种石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO,其方法简单、成本低,制得的复合磁性光催化剂可见光响应性强,回收率较大,回收后的催化剂仍具有较高的光催化性能,表明其具有良好的稳定性。该复合磁性光催化剂可望用于降解废水中芳香族杂环类染料等有机污染物。
本发明的石墨烯复合磁性光催化剂的制备方法如下:
(1)BiVO4前驱体溶液的制备
称取分析纯的Bi(NO3)3·5H2O溶于浓度为2mol/L的HNO3,超声振荡,得到溶液A;按摩尔比Bi(NO3)3·5H2O∶C4H6O6=10∶2~4,称取分析纯的C4H6O6(酒石酸)溶于80℃热水中,得到溶液B;按摩尔比Bi(NO3)3·5H2O∶NH4VO3=1∶1,称取分析纯的NH4VO3溶于80℃热水中,得到溶液C;将溶液B缓慢加入到溶液C中,然后将溶液A加入到B和C的混合溶液,冷却至室温,用氨水调节pH=7.5,得到钒酸铋(BiVO4)前驱体溶液。
(2)Mn1-xZnxFe2O4/BiVO4复合物的制备
按质量比Mn1-xZnxFe2O4∶BiVO4=15∶100,称取本实验室自制的磁性Mn1-xZnxFe2O4加入前述制得的BiVO4前驱体溶液中,在80℃下水浴搅拌反应0.5h,然后将反应溶液置于80℃恒温箱干燥24h,取出固体碾磨后,置入450℃马弗炉中焙烧3h,即制得磁性Mn1-xZnxFe2O4/BiVO4复合物;同样方法在不加入Mn1-xZnxFe2O4的情况下制备粒径为2μm~5μm的球状BiVO4单斜晶体颗粒。
(3)石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO的制备
用高锰酸钾氧化石墨粉制得氧化石墨烯(GO)后,按质量比Mn1-xZnxFe2O4/BiVO4∶GO= 100∶1~5,将已制备的GO超声分散在去离子水中得到GO溶液,向GO溶液中加入上述所制备的Mn1-xZnxFe2O4/BiVO4;按NH3·H2O的体积(ml)∶GO的质量(mg)为1∶24~36、NH3·H2O和N2H4·H2O的体积比为1∶1~3,加入NH3·H2O和N2H4·H2O;在80℃水浴中反应使GO还原成石墨烯(RGO),过滤,洗涤,干燥12h,即制备出石墨烯异质结复合磁性光催化剂 Mn1-xZnxFe2O4/BiVO4/RGO。
本发明采用上述技术方案,主要有以下效果:
(1)步骤简单,所用设备少,生产成本低。
(2)制备出的石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO是以锰锌铁氧体作为磁性基体,以石墨烯作为载流子传递的桥梁,在可见光区域的响应强,其特征吸收波长为582nm,带隙能仅为2.14eV(此值明显小于纯BiVO4的带隙能2.38eV以及Mn1-xZnxFe2O4/BiVO4的带隙能2.30eV)。
(3)制备的Mn1-xZnxFe2O4/BiVO4/RGO石墨烯复合磁性光催化剂可见光照射1.5h,罗丹明 B的降解率达到96%,明显高于纯的BiVO4以及Mn1-xZnxFe2O4/BiVO4的光催化效能(照射3h,罗丹明B的降解率均为97%)。
(4)制备的Mn1-xZnxFe2O4/BiVO4/RGO石墨烯复合磁性光催化剂在外加磁场作用下,五次循环回收率高达89%,且第五次回收后的样品催化剂可见光照射1.5h,罗丹明B的降解率还能达到85%。
(5)制备的石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO的导电能力强,电荷转移电阻(Rct)小,其阻抗(103Ω·cm2)小于纯BiVO4的阻抗值(351Ω·cm2)和Mn1- xZnxFe2O4/BiVO4的阻抗值(206Ω·cm2),有效抑制了光生电子与空穴的复合。
附图说明
图1制备样品的XRD谱:(a)Mn1-xZnxFe2O4(b)BiVO4(c)Mn1-xZnxFe2O4/BiVO4 (d)Mn1- xZnxFe2O4/BiVO4/RGO(e)GO;
图2制备样品的SEM:(a)BiVO4(b)Mn1-xZnxFe2O4(c)Mn1-xZnxFe2O4/BiVO4 (d)Mn1- xZnxFe2O4/BiVO4/RGO;
图3制备样品的Raman光谱:待测样分别为RGO、BiVO4、Mn1-xZnxFe2O4/BiVO4和 Mn1- xZnxFe2O4/BiVO4/RGO;
图4制备样品的磁滞曲线:(a)Mn1-xZnxFe2O4(b)Mn1-xZnxFe2O4/BiVO4/RGO (c)五次使用后回收的Mn1-xZnxFe2O4/BiVO4/RGO;
图5制备样品催化RhB的光降解效率:催化剂分别是BiVO4、Mn1-xZnxFe2O4/BiVO4和Mn1-xZnxFe2O4/BiVO4/RGO;
图6制备样品的交流阻抗曲线:(a)BiVO4(b)Mn1-xZnxFe2O4/BiVO4(c)Mn1-xZnxFe2O4/BiVO4/RGO。
具体实施方式
下面结合具体实施方式,进一步说明本发明。
实施例1
一种石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO的制备方法,具体步骤如下:
(1)BiVO4前驱体溶液的制备
称取10mmol分析纯的Bi(NO3)3·5H2O溶于50mL浓度为2mol/L的HNO3,超声振荡,得到溶液A;按摩尔比Bi(NO3)3·5H2O∶C4H6O6=10∶3,称取3mmol分析纯的C4H6O6(酒石酸) 溶于50mL80℃热水中,得到溶液B;按摩尔比Bi(NO3)3·5H2O∶NH4VO3=1∶1,称取10mmol 分析纯的NH4VO3溶于50mL80℃热水中,得到溶液C;将溶液B缓慢加入到溶液C中,然后将溶液A加入到B和C的混合溶液中,冷却至室温,用氨水调节pH=7.5,得到钒酸铋 (BiVO4)前驱体溶液。
(2)Mn1-xZnxFe2O4/BiVO4复合物的制备
按质量比Mn1-xZnxFe2O4∶BiVO4=15∶100,称取本实验室自制的磁性Mn1- xZnxFe2O40.486g,加入前述制得的BiVO4前驱体溶液中,在80℃水浴搅拌反应0.5h,然后将反应溶液置于80℃恒温箱干燥24h,取出固体碾磨后,置入450℃马弗炉中焙烧3h,即制得磁性Mn1-xZnxFe2O4/BiVO4复合物;同样方法在不加入Mn1-xZnxFe2O4的情况下制备粒径为 2μm~5μm的球状BiVO4单斜晶体颗粒。
(3)石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO的制备
用高锰酸钾氧化石墨粉制得氧化石墨烯(GO)后,按质量比Mn1-xZnxFe2O4/BiVO4∶GO= 100∶3,取已制备的36mg GO超声分散在50ml去离子水中得到GO溶液,向GO溶液中加入上述制备的1.2g Mn1-xZnxFe2O4/BiVO4;按NH3·H2O的体积(ml)∶GO的质量(mg)为1∶36、 NH3·H2O和N2H4·H2O的体积比为1∶2,加入1mlNH3·H2O和2mlN2H4·H2O;在80℃水浴中反应使GO还原成石墨烯(RGO),过滤,洗涤,干燥12h,即制备出石墨烯异质结复合磁性光催化剂Mn1- xZnxFe2O4/BiVO4/RGO。
实施例2
一种石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO的制备方法,具体步骤如下:
(1)同实施例1的步骤(1),其中按摩尔比Bi(NO3)3·5H2O∶C4H6O6=10∶2,称取2mmolC4H6O6
(2)同实施例1的步骤(2)。
(3)同实施例1的步骤(3),其中用高锰酸钾氧化石墨粉制得氧化石墨烯(GO)后,按质量比Mn1-xZnxFe2O4/BiVO4∶GO=100∶1,取已制备的12mgGO超声分散在50ml去离子水中得到GO溶液,向GO溶液中加入上述所制备的1.2g Mn1-xZnxFe2O4/BiVO4;按NH3·H2O的体积(ml)∶GO的质量(mg)为1∶24、NH3·H2O和N2H4·H2O的体积比为1∶1,加入0.5mlNH3·H2O 和0.5mlN2H4·H2O;在80℃水浴中反应使GO还原成石墨烯(RGO),过滤,洗涤,干燥12h,即制备出石墨烯异质结复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO。
实施例3
一种石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO的制备方法,具体步骤如下:
(1)同实施例1的步骤(1),其中按摩尔比Bi(NO3)3·5H2O∶C4H6O6=10∶4,称取4mmolC4H6O6
(2)同实施例1的步骤(2)。
(3)同实施例1的步骤(3),其中用高锰酸钾氧化石墨粉制得氧化石墨烯(GO)后,按质量比Mn1-xZnxFe2O4/BiVO4∶GO=100∶5,取已制备的60mg GO超声分散在50ml去离子水中得到GO溶液,向GO溶液中加入1.2g Mn1-xZnxFe2O4/BiVO4;按NH3·H2O的体积(ml)∶GO 的质量(mg)为1∶30、NH3·H2O和N2H4·H2O的体积比为1∶3,加入2mlNH3·H2O和6mlN2H4·H2O;在80℃水浴中反应使GO还原成石墨烯(RGO),过滤,洗涤,干燥12h,即制备出石墨烯异质结复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO。
实验结果
实施例1制备出的样品的X射线衍射谱图(XRD)如图1所示。通过比对标准物质PDF卡片,发现制备的BiVO4特征峰与单斜BiVO4标准卡片(JCPDS file 14-0688)信息吻合,且衍射峰强而尖锐,表明所制备的BiVO4为单斜晶型,晶面指数分别为(110),(011),(121),(040), (200),(002),(211),(150),(132)和(042)。所制备Mn1-xZnxFe2O4的特征衍射峰与尖晶石结构 Mn1-xZnxFe2O4(JCPDS file 74-2400)的各晶面参数吻合,表明所制备的Mn1- xZnxFe2O4为尖晶石结构,且Mn1-xZnxFe2O4/BiVO4复合物的XRD图谱反映,Mn1-xZnxFe2O4的引入并未改变BiVO4的晶型。在Mn1-xZnxFe2O4/BiVO4/RGO复合物XRD图谱中,氧化石墨烯(GO)的特征衍射峰完全消失,表明在热还原过程中氧化石墨烯(GO)已完全转化为石墨烯(RGO),即所制备的产品为Mn1-xZnxFe2O4/BiVO4/RGO。
实施例1制备出的样品SEM如图2所示:(a)BiVO4(b)Mn1-xZnxFe2O4(c)Mn1-xZnxFe2O4/BiVO4(d)Mn1-xZnxFe2O4/BiVO4/RGO。由图2a可以看出,所制备纯BiVO4为球状颗粒,图 2b显示所制备的Mn1-xZnxFe2O4为六方晶体结构。图2c中较大的球状物为BiVO4包覆 Mn1-xZnxFe2O4的核壳结构,表明引入Mn1-xZnxFe2O4使得复合物有一定程度的团聚现象。图 2d显示,引入RGO使Mn1-xZnxFe2O4/BiVO4/RGO复合物的颗粒尺寸减小,表明RGO有助于抑制颗粒团聚,在减小Mn1-xZnxFe2O4/BiVO4粒子团聚作用的同时抑制了RGO的重堆积,并弱化了较高活性表面积的损失。
实施例1制备出的样品的拉曼光谱图(Raman)如图3所示。位于120,210,324,366and 826cm-1处的Raman带是BiVO4典型的振动谱带,样品RGO和Mn1-xZnxFe2O4/BiVO4/RGO中均出现RGO特征D带(~1350cm-1)和G带(1596cm-1),表明所制备样品形成的石墨烯 sp2骨架保存在复合物中。引入Mn1-xZnxFe2O4后,BiVO4位于324cm-1和366cm-1处的Raman 谱图转化为一个宽带,可能与BiVO4的局部结构微变有关。
实施例1制备出样品磁滞曲线如图4所示:(a)Mn1-xZnxFe2O4 (b)Mn1-xZnxFe2O4/BiVO4/RGO(c)五次循环使用后回收的Mn1-xZnxFe2O4/BiVO4/RGO。由图4可知,三个样品的饱和磁化强度(Ms)值分别为84.03,8.21and 6.82emu.g-1。对比发现, Mn1-xZnxFe2O4/BiVO4/RGO的Ms较Mn1-xZnxFe2O4的小,这是由于单位质量的样品中磁性组分含量的减少。五次循环使用后,Mn1-xZnxFe2O4/BiVO4/RGO的饱和磁化强度并没有明显的减小,表明回收催化剂的磁性能稳定。更为重要的是,所制备样品的顺磁性高,矫顽力和剩余磁化强度接近零,表明所制备的光催化材料属于超顺磁性结构的软磁性材料,有利于通过施加外加磁场的方式加以回收。
实施例1制备出的样品BiVO4、Mn1-xZnxFe2O4/BiVO4、Mn1-xZnxFe2O4/BiVO4/RGO光催化降解罗丹明B的测试结果如图5所示。纯的BiVO4和Mn1-xZnxFe2O4/BiVO4,可见光照射 3h,罗丹明B溶液的降解率基本相近,约为97%,而在Mn1-xZnxFe2O4/BiVO4/RGO催化作用下,同样条件照射1.5h,罗丹明B的降解率高达96%。表明负载Mn1-xZnxFe2O4未降低BiVO4的光催化活性,且石墨烯的引入明显提高了光催化剂的活性。因为石墨烯具有二维π-π共轭结构,它既是一个优良的电子接受体又是一个优良的电子运载体,可以促进光生电子与空穴的有效分离而显著抑制二者的复合。
实施例1制备出的BiVO4、Mn1-xZnxFe2O4/BiVO4、Mn1-xZnxFe2O4/BiVO4/RGO的交流阻抗Nyquist曲线如图6所示。由图看出Mn1-xZnxFe2O4/BiVO4/RGO对应的半圆弧最小,表明少量石墨烯的引入使光催化剂表面电子转移阻抗明显减小,电子-空穴复合的速率明显的降低。经换算得到Mn1-xZnxFe2O4/BiVO4/RGO电荷转移阻抗值为103Ω·cm2,小于纯BiVO4的阻抗值(351Ω·cm2)和Mn1-xZnxFe2O4/BiVO4的阻抗值(206Ω·cm2)。这是由于石墨烯是一个具有特殊结构的零禁带宽度的半导体,在石墨烯中电子的行为近似为无质量的费米粒子,从而表现出特别强的传输电子能力。

Claims (2)

1.一种石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO的制备方法,其特征在于包括如下步骤:
(1)BiVO4前驱体溶液的制备:称取分析纯的Bi(NO3)3·5H2O溶于浓度为2mol/L的HNO3,超声振荡,得到溶液A,按摩尔比Bi(NO3)3·5H2O∶C4H6O6=10∶2~4,称取分析纯的C4H6O6溶于80℃热水中,得到溶液B,按摩尔比Bi(NO3)3·5H2O∶NH4VO3=1∶1,称取分析纯的NH4VO3溶于80℃热水中,得到溶液C,将溶液B缓慢加入溶液C中,然后将溶液A加入到B和C的混合溶液,冷却至室温,用氨水调节pH=7.5,得到BiVO4前驱体溶液;
(2)Mn1-xZnxFe2O4/BiVO4复合物的制备:按质量比Mn1-xZnxFe2O4∶BiVO4=15∶100,称取本实验室自制的磁性Mn1-xZnxFe2O4加入前述制得的BiVO4前驱体溶液中,在80℃下水浴搅拌反应0.5h,然后将反应溶液置于80℃恒温箱干燥24h,取出固体碾磨后,置于450℃马弗炉中焙烧3h,即制得磁性Mn1-xZnxFe2O4/BiVO4复合物,同样方法在不加入Mn1-xZnxFe2O4的情况下制备粒径为2μm~5μm的球状BiVO4单斜晶体颗粒;
(3)石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO的制备:用高锰酸钾氧化石墨粉制得氧化石墨烯(GO)后,按质量比Mn1-xZnxFe2O4/BiVO4∶GO=100∶1~5,将已制备的GO超声分散在去离子水中得到GO溶液,向GO溶液中加入上述制备的Mn1-xZnxFe2O4/BiVO4,按NH3·H2O的体积(ml)∶GO的质量(mg)为1∶24~36、NH3· H2O和N2H4· H2O的体积比为1∶1~3,加入NH3· H2O和N2H4· H2O,在80℃水浴中反应使GO还原成石墨烯(RGO),过滤,洗涤,干燥12h,即制备出石墨烯异质结复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO。
2.根据权利要求1所述的石墨烯复合磁性光催化剂Mn1-xZnxFe2O4/BiVO4/RGO的制备方法,其特征在于,磁性Mn1-xZnxFe2O4/BiVO4/RGO异质结光催化剂是以Mn1-xZnxFe2O4为基材,以层状石墨烯(RGO)为载流子传输桥梁。
CN201510954121.4A 2015-12-11 2015-12-11 一种石墨烯复合磁性光催化剂Mn1‑xZnxFe2O4/BiVO4/RGO的制备方法 Expired - Fee Related CN105536810B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510954121.4A CN105536810B (zh) 2015-12-11 2015-12-11 一种石墨烯复合磁性光催化剂Mn1‑xZnxFe2O4/BiVO4/RGO的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510954121.4A CN105536810B (zh) 2015-12-11 2015-12-11 一种石墨烯复合磁性光催化剂Mn1‑xZnxFe2O4/BiVO4/RGO的制备方法

Publications (2)

Publication Number Publication Date
CN105536810A CN105536810A (zh) 2016-05-04
CN105536810B true CN105536810B (zh) 2018-04-06

Family

ID=55816646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510954121.4A Expired - Fee Related CN105536810B (zh) 2015-12-11 2015-12-11 一种石墨烯复合磁性光催化剂Mn1‑xZnxFe2O4/BiVO4/RGO的制备方法

Country Status (1)

Country Link
CN (1) CN105536810B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106046222B (zh) * 2016-05-31 2018-02-06 湖南理工学院 一种还原氧化石墨烯/BiVO4为光引发剂的原子转移自由基聚合反应制备聚合物的方法
CN107099818B (zh) * 2017-04-27 2018-08-21 西北师范大学 铁氧磁体/钒酸铋复合材料的制备及应用
CN107734950B (zh) * 2017-10-30 2019-07-19 西北工业大学 铁酸锌@二氧化锰@石墨烯复合吸波材料及其制备方法
CN108686683B (zh) * 2018-05-22 2021-02-09 重庆大学 一种石墨烯/氯氧化铋/钴改性锶铁氧体复合光催化剂的制备方法
CN109794232A (zh) * 2019-01-24 2019-05-24 重庆大学 一种锌掺杂钒酸铋球状可见光催化剂的制备方法
KR102197694B1 (ko) * 2019-04-30 2021-01-04 영남대학교 산학협력단 그래핀 상의 3차원 자성 감마 이산화망간/아연철산화물 나노혼성체의 제조 및 유해 유기폐기물 분해 촉매로의 활용
CN110354865A (zh) * 2019-08-08 2019-10-22 重庆大学 一种钒酸铋/二氧化锰磁性复合光催化-氧化剂的制备方法
CN110668556B (zh) * 2019-10-09 2022-04-15 哈尔滨工业大学 一种可见光催化耦合生物电化学湿地系统及其应用
CN113559841B (zh) * 2021-08-12 2023-10-31 台州学院 纳米CuO/GO/BiVO4多相异质结光催化剂、其制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102861586A (zh) * 2012-09-23 2013-01-09 盐城工学院 一种可磁控回收的可见光复合光催化剂的制备方法
EP2647430A1 (en) * 2012-04-05 2013-10-09 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Method for preparing a catalyst mediating H2 evolution, said catalyst and uses thereof
CN103480384A (zh) * 2013-09-18 2014-01-01 重庆大学 一种锶铁氧体负载的钒酸铋复合光催化剂的制备方法
CN103771406A (zh) * 2014-01-22 2014-05-07 中国工程物理研究院化工材料研究所 石墨烯/四氧化三锰纳米复合材料及其制备方法
CN104437536A (zh) * 2014-11-13 2015-03-25 重庆大学 一种锰锌铁氧体/氧化铋磁性光催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2647430A1 (en) * 2012-04-05 2013-10-09 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Method for preparing a catalyst mediating H2 evolution, said catalyst and uses thereof
CN102861586A (zh) * 2012-09-23 2013-01-09 盐城工学院 一种可磁控回收的可见光复合光催化剂的制备方法
CN103480384A (zh) * 2013-09-18 2014-01-01 重庆大学 一种锶铁氧体负载的钒酸铋复合光催化剂的制备方法
CN103771406A (zh) * 2014-01-22 2014-05-07 中国工程物理研究院化工材料研究所 石墨烯/四氧化三锰纳米复合材料及其制备方法
CN104437536A (zh) * 2014-11-13 2015-03-25 重庆大学 一种锰锌铁氧体/氧化铋磁性光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Preparation and characterizations of BiVO4/reduced graphene oxide nanocomposites with higher visible light reduction activities";Aolan Wang等;《Preparation and characterizations of BiVO4/reduced graphene oxide nanocomposites with higher visible light reduction activities》;20150116;第445卷;第330页摘要,第336页第1栏 Conclusions *

Also Published As

Publication number Publication date
CN105536810A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN105536810B (zh) 一种石墨烯复合磁性光催化剂Mn1‑xZnxFe2O4/BiVO4/RGO的制备方法
Jiang et al. A novel direct Z-scheme heterojunction BiFeO3/ZnFe2O4 photocatalyst for enhanced photocatalyst degradation activity under visible light irradiation
CN107376968B (zh) 三氧化钨/氮化碳/氧化铋双z型光催化剂及其制备方法和应用
CN106824213B (zh) 一种钴氧化物掺杂的碱式碳酸铋/氯氧化铋光催化剂及其制备方法
CN109107601A (zh) 一种石墨相氮化碳纳米片基复合光催化材料及其制备方法和应用
Lavand et al. Synthesis, characterization, and visible light photocatalytic activity of nanosized carbon doped zinc oxide
CN105289661B (zh) 一种氯氧化铋复合磁性光催化剂的制备方法
Zhu et al. Investigation of an enhanced Z-scheme magnetic recyclable BiVO4/GO/CoFe2O4 photocatalyst with visible-light-driven for highly efficient degradation of antibiotics
CN106925304B (zh) Bi24O31Br10/ZnO复合可见光催化剂及其制备方法
CN105289693A (zh) 一种Zn0.5Co0.5Fe2O4/g-C3N4复合光催化剂的制备方法
CN110090652A (zh) 一种制备氯四氧化三铋/锶铁氧体复合磁性光催化材料的方法
CN104511293A (zh) 一种氯氧化铋-钛酸铁铋复合光催化剂及其制备方法
CN102580736A (zh) 一种石墨烯/钒酸银纳米复合可见光催化剂及其制备方法
Yang et al. Investigation of photocatalytic properties based on Fe and Ce Co-doped ZnO via hydrothermal method and first principles
CN106807411B (zh) 一种铁酸镧掺杂溴化银复合光催化剂的制备方法
Duan et al. High photocatalytic activity of 2D sheet structure ZnO/Bi2WO6 Z-scheme heterojunction under simulated sunlight
Yang et al. Research progress on the construction of oxygen vacancy defects and application in photocatalytic oxidation of elemental mercury
Kumar et al. La3+ substituted BiFeO3-a proficient nano ferrite photo-catalyst under the application of visible light
Tang et al. Facile ultrasonic synthesis of novel zinc sulfide/carbon nanotube coaxial nanocables for enhanced photodegradation of methyl orange
Zhang et al. Mn2+‐doped Zn2GeO4 for photocatalysis hydrogen generation
Sepahvand et al. Preparation and characterization of fullerene (C60)-modified BiVO4/Fe3O4 nanocomposite by hydrothermal method and study of its visible light photocatalytic and catalytic activity
Cheng et al. Preparation of K+ doped ZnO nanorods with enhanced photocatalytic performance under visible light
CN103877985A (zh) 一种可见光响应的磁性光催化材料及制备方法
Yang et al. Core–shell CoTiO3@ MnO2 heterostructure for the photothermal degradation of tetracycline
Rana Tuning the morphological, optical, electrical, and structural properties of NiFe2O4@ CdO nanocomposites and their photocatalytic application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180406

Termination date: 20181211