CN105496552B - 柔性微波导管 - Google Patents

柔性微波导管 Download PDF

Info

Publication number
CN105496552B
CN105496552B CN201610052796.4A CN201610052796A CN105496552B CN 105496552 B CN105496552 B CN 105496552B CN 201610052796 A CN201610052796 A CN 201610052796A CN 105496552 B CN105496552 B CN 105496552B
Authority
CN
China
Prior art keywords
irradiation unit
oversheath
flexible
outer conductor
microwave catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610052796.4A
Other languages
English (en)
Other versions
CN105496552A (zh
Inventor
J·D·布兰南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nellcor Puritan Bennett LLC
Original Assignee
Nellcor Puritan Bennett LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nellcor Puritan Bennett LLC filed Critical Nellcor Puritan Bennett LLC
Publication of CN105496552A publication Critical patent/CN105496552A/zh
Application granted granted Critical
Publication of CN105496552B publication Critical patent/CN105496552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves
    • A61N5/022Apparatus adapted for a specific treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00323Cables or rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00077Electrical conductivity high, i.e. electrically conducting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00172Connectors and adapters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • A61B2018/00226Balloons extending from a surface, i.e. Blisters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • A61B2018/00232Balloons having an irregular shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • A61B2018/0025Multiple balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/00267Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00273Anchoring means for temporary attachment of a device to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00273Anchoring means for temporary attachment of a device to tissue
    • A61B2018/00279Anchoring means for temporary attachment of a device to tissue deployable
    • A61B2018/00285Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00434Neural system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • A61B2018/00511Kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1823Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/183Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
    • A61B2018/1846Helical antennas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1884Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with non-uniform emissions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1892Details of electrical isolations of the antenna
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis

Abstract

本发明涉及柔性微波导管,包括:导管集线器;从导管集线器延伸的外护套,所述外护套被构造成防止微波能量释放穿过其中;以及布置在外护套内的同轴馈线,所述同轴馈线具有内导体、围绕内导体被同轴布置的内介电体、和围绕内介电体被同轴布置的外导体,其中,同轴馈线限定位于同轴馈线的远侧部分处的辐射部,辐射部被构造成发射微波能量;以及其中,同轴馈线能够在外护套内沿着外护套的纵向轴线能够滑动,以使得在同轴馈线相对于外护套向远侧运动时辐射部有选择地从外护套展开。本文中所公开的柔性微波导管的实施例可以被用于在呼吸系统中实施手术。

Description

柔性微波导管
本分案申请是基于中国发明专利申请号201280024844.9(国际申请号PCT/US2012/032818)、发明名称“用于天然或人造管腔的柔性微波导管”、申请日2012年4月9日的专利申请的分案申请。
技术领域
本发明总体上涉及柔性微波导管。
背景技术
基于能量的组织治疗是公知的。各种类型的能量(例如,电的、超声的、微波的、低温的、热的、激光的,等等)被施加给组织以获得所需的结果。已公开的微波导管使微波能量能在体内的天然管腔中被有效率地传输到如下部位:所述部位通过体内的天然或人造管腔,和/或身体结构(比如内脏器官或身体结构)可接近。
这样的一类天然管腔包括关于肠胃系统的管腔(例如,嘴部、咽部、食道、胃部、胰腺结构、大肠小肠、胆管、直肠和肛门)。另一类天然管腔包括关于听觉系统的管腔(例如,耳道和咽鼓管)。另一类天然管腔包括关于呼吸系统的管腔(例如,鼻前庭、鼻腔、鼻窦、气管、主支气管和叶支气管)。另一类天然管腔包括关于泌尿系统的管腔(例如,尿道、膀胱、输尿管、前列腺和肾脏)。另一类天然管腔包括关于女性生殖系统的管腔(例如,阴道、子宫颈、子宫、输卵管和卵巢)。另一类天然管腔包括关于男性生殖系统的管腔(例如,尿道、射精管、输精管和睾丸)。其他的天然管腔可能需要通过其他手段进入,比如通过常见的脉管内手术获得进入与脉管系统(主动脉、动脉、静脉和心室)相关的管腔的通路。另外,与脉管系统相关的管腔可以提供一种通往所有内脏器官/身体结构的路径和/或通路(例如,通往心脏、肺、肾、肝、胃、肠、结肠、脾、胆囊和阑尾)。
据信,肾脏的交感神经活动引起并维持血压的升高。长期的血压增高或高血压是心脏疾病和全球数百万死者与病患的主要原因。通常,一个人长期地收缩压超过140mmHg且舒张压超过90mmHg就被归类为患有高血压。肾脏的去神经已经被证明能降低血压。肾神经在肾动脉周围成束,通过股动脉容易进入肾动脉。以肾神经为对象能获得除血压降低之外的其他有益结果,这可能成为诸如代谢综合征、心力衰竭、睡眠呼吸暂停综合症、肾功能不全和糖尿病肾病这些手术的主要动因。
发明内容
在本发明的一个方案中,提供一种柔性微波导管。所公开的柔性微波导管包括柔性同轴线缆,所述柔性同轴线缆具有内导体、围绕内导体同轴设置的内介电体、和围绕内介电体同轴设置的外导体。所公开的柔性微波导管包括至少一个馈入点,所述至少一个馈入点限定柔性同轴线缆的微波辐射部。提供网状结构,所述网状结构具有收缩构型和膨胀构型,并被布置为围绕柔性同轴线缆的微波辐射部,其中,网状结构从柔性微波导管径向向外膨胀,从而将所述至少一个馈入点定位在网状结构的径向中心处。在某些方案中,柔性微波导管的网状结构还包括减少来自微波辐射部的去神经能量沿轴向传播的导电材料。
在某些方案中,网状结构包括弹性球囊,所述弹性球囊在其内表面上设有导电图案。在某些方案中,处于膨胀构型的弹性球囊将所述至少一个馈入点定位在网状结构的径向中心处。在某些方案中,导电图案限定在弹性球囊内表面上的窗口,其中,窗口的特征在于缺少导电图案。在某些方案中,网状结构和所述至少一个馈入点形成周向均衡的谐振结构。在某些方案中,网状结构还包括:远侧导电端盖网,近侧导电端盖网,以及形成在远侧导电端盖网和近侧导电端盖网之间的管状网体,其中,远侧导电端盖网和近侧导电端盖网减少了来自微波辐射部的微波能量沿轴向的传播。在某些方案中,管状网体限定沿着大约2cm到大约3cm的纵向跨距360度地辐射能量的窗口。
在本发明的另一个方案中,提供一种柔性微波导管,包括:柔性同轴线缆,所述柔性同轴线缆具有内导体、围绕内导体同轴设置的内介电体、以及围绕内介电体同轴设置的外导体。至少一个馈入间隙限定柔性同轴线缆的微波辐射部。居中定位结构被设置在柔性同轴线缆的微波辐射部附近,居中定位结构具有收缩构型和膨胀构型,其中,居中定位结构从柔性微波导管径向向外延伸,从而将至少一个馈入点定位在居中定位结构的径向中心处。
在某些方案中,柔性微波导管的居中定位结构包括支架形可膨胀元件,所述支架形可膨胀元件在从柔性微波导管的外护套的范围被朝远侧推进后膨胀成管状。在某些方案中,支架形可膨胀元件限定多个沿纵向跨距360度地辐射能量的窗口。在某些方案中,居中定位结构包括多个居中定位装置,所述多个居中定位装置中的至少一个被设置在所述至少一个馈入间隙中的每个的远侧,并且所述多个居中定位装置中的至少一个被设置在所述至少一个馈入间隙中的每个的近侧。在某些方案中,多个居中定位装置减少了来自所述至少一个馈入间隙中的每个的微波能量沿轴向的传播。在某些方案中,所述至少一个馈入间隙包括第一馈入间隙和第二馈入间隙,并且居中定位结构还包括可操作地与第一馈入间隙关联的第一居中定位装置;以及可操作地与第二馈入间隙关联的第二居中定位装置,其中在膨胀构型下,第一馈入间隙处于第一居中定位装置的径向中心处,并且第二馈入间隙处于第二居中定位装置的径向中心处。在某些方案中,第一居中定位装置和第二居中定位装置都限定了在其中的窗口,所述窗口从其中辐射微波能量。
在某些方案中,居中定位结构包括可扩张球囊外壳,以及形成在可扩张球囊外壳上的多个瓣,其中,在膨胀构型下,在多个瓣的相邻瓣之间形成通道。在某些方案中,居中定位结构包括围绕柔性微波导管的圆周均匀间隔的多个翅片,其中,在收缩构型下多个翅片被限制在柔性微波导管的外护套内,并且在膨胀构型下多个翅片从柔性微波导管径向向外延伸。在某些方案中,多个翅片被确定尺寸成通过流体流经流体流动管腔所产生流体/液力作用力将柔性微波导管在流体流动管腔中自我居中定位。
在某些方案中,居中定位结构包括居中定位篮。居中定位篮包括:用于接合柔性微波导管的第一接收器;用于接合柔性微波导管的第二接收器;以及在第一接收器和第二接收器之间延伸的多个带,多个带的每一个都向外弯曲,并形成第一接收器和第二接收器之间的弓形路径。在收缩构型下多个带被径向向内压缩,从而将居中定位篮拉长。在膨胀构型下,多个带被解除压缩并径向向外延伸。在某些方案中,第一接收器固定地接合柔性微波导管,并且第二接收器可滑动地接合柔性微波导管。
在某些方案中,居中定位结构包括至少两个居中定位篮。所述至少两个居中定位篮的每个都包括:用于接合柔性微波导管的第一接收器;用于接合柔性微波导管的第二接收器;以及在第一接收器和第二接收器之间延伸的多个带,多个带的每一个向外弯曲,并且形成第一接收器和第二接收器之间的弓形路径。在收缩构型下多个带被径向向内压缩,从而将居中定位篮拉长,在膨胀构型下,多个带被解除压缩并径向向外延伸。在某些方案中,第一接收器固定地接合柔性微波导管,第二接收器可滑动地接合柔性微波导管。在某些方案中,所述至少一个馈入间隙中的一个被定位在所述至少两个居中定位篮的第一篮和第二篮之间。
在某些方案中,居中定位结构包括围绕柔性微波导管的圆周均匀间隔的多个桨叶。多个桨叶中的每个都被铰接地附接到柔性微波导管,其中,在收缩构型下多个桨叶邻近并平行于柔性微波导管,在膨胀构型下多个桨叶展开垂直于柔性微波导管并从柔性微波导管径向向外延伸。
在某些方案中,居中定位结构包括连接到柔性微波导管外表面并围绕柔性微波导管外表面以螺旋形式延伸的多个螺旋肋,其中,在收缩构型下多个螺旋肋被压缩在柔性同轴线缆和柔性微波导管的外护套的内表面之间,在膨胀构型下多个螺旋肋从柔性同轴线缆径向延伸。
在本发明的另一个方案中,提供一种用于联接柔性同轴线缆、流体冷却系统、和导管外护套的联接器。所述联接器包括流体联接器主体,所述流体联接器主体包括:流体入口,所述流体入口形成在流体联接器主体中,并被配置成可操作地联接冷却流体源并从冷却流体源接收流体;流体出口,所述流体出口形成在流体联接器主体中,并被配置成可操作地联接到流体排放口;旁通球,所述旁通球形成用于可滑动联接同轴线缆的孔;以及外护套联接器,所述外护套联接器形成用于联接导管外护套的孔,并形成与导管外护套的液密密封。联接器包括流体密封系统,所述流体密封系统被收纳在流体联接器主体内,包括:远侧密封隔膜,所述远侧密封隔膜被配置成形成围绕入流管腔的外表面的液密密封和与流体联接器主体的内表面的液密密封,从而限定与流体出口流体连通的出流增压室,出流增压室被形成在流体联接器主体的远侧内表面、入流管腔的外表面、远侧密封隔膜的远侧部和外护套联接器之间。联接器包括近侧密封隔膜,所述近侧密封隔膜被配置成形成围绕同轴线缆的外表面的液密密封和与流体联接器主体的内表面的液密密封,从而形成与流体入口流体连通的入流增压室,入流增压室被形成在流体联接器主体的近侧内表面、远侧密封隔膜的近侧部、近侧密封隔膜的近侧部之间。
在某些方案中,导管围绕内管腔同轴形成;内管腔围绕同轴线缆同轴形成,以及入流增压室与形成在同轴线缆的外表面和入流管腔的内表面之间的流体通道流体连通。在某些方案中,导管围绕内管腔同轴形成;内管腔围绕同轴线缆同轴形成,以及出流增压室与形成在入流管腔的外表面和外护套的内表面之间的流体通道流体连通。
在某些方案中,导管围绕内管腔同轴形成;内管腔围绕同轴线缆同轴形成;入流增压室与形成在同轴线缆的外表面和入流管腔的内表面之间的流体通道流体连通,以及出流增压室与形成在入流管腔的外表面和外护套的内表面之间的流体通道流体连通。在某些方案中,流体联接器主体可滑动地接合同轴线缆。
在本发明的另一个方案中,提供一种微波能量传输装置。所述微波能量传输装置包括同轴馈线,所述同轴馈线具有内导体、围绕内导体被同轴布置的内介电绝缘体、和围绕内介电绝缘体被同轴布置的外导体。所述微波能量传输装置包括被可操作地联接到同轴馈线远端的辐射部。辐射部包含:辐射部内导体,所述辐射部内导体被可操作地联接到同轴馈线内导体的远端并从同轴馈线内导体的远端延伸;屏蔽外导体,所述屏蔽外导体被围绕辐射部内导体螺旋缠绕,并被可操作地联接到同轴馈线外导体;以及被定位在辐射部内导体和屏蔽外导体之间的屏蔽介电体。屏蔽外导体的宽度根据其沿同轴馈线内导体的纵向位置而变化。帽被可操作地联接到辐射部内导体和屏蔽外导体的远端,并提供辐射部内导体和屏蔽外导体之间的电连接。
在某些方案中,所述微波能量传输装置包括被设置在所述微波能量传输装置的远端处的温度传感器。在某些方案中,辐射部所产生的辐射图案与屏蔽外导体的可变宽度或屏蔽外导体的可变螺旋角中的至少一个相关。
在某些方案中,所述微波能量传输装置包括由被形成在屏蔽外导体的相邻绕圈之间的空隙限定的馈入间隙。在某些方案中,由沿横截面的馈入间隙的周长和屏蔽外导体的周长的比值所限定的馈入间隙比从屏蔽外导体的近端到屏蔽外导体的远端线性地变化。在某些方案中,所述馈入间隙比从所述屏蔽外导体的近端到所述屏蔽外导体的远端非线性地变化。在某些方案中,馈入间隙比在辐射部近端处的0%和辐射部远端处的大约50%之间变化。在某些方案中,馈入间隙比在辐射部近端上的0%和辐射部远端上的大约100%之间变化。
在某些方案中,微波能量传输装置产生沿辐射部的纵向长度延伸的螺旋形电磁场。在某些方案中,螺旋形电磁场与被形成在屏蔽外导体的单独绕圈之间的空隙相关。在某些方案中,屏蔽外导体包括至少两个螺旋圈。在某些方案中,帽提供辐射部内导体和屏蔽外导体之间的电连接。
在本发明的另一个方案中,提供一种微波能量传输装置,包括: 同轴馈线,所述同轴馈线具有内导体、围绕内导体同轴布置的内介电绝缘体、和围绕内介电绝缘体同轴布置的外导体。微波能量传输装置包括辐射部,所述辐射部被可操作地联接到同轴馈线的远端,辐射部包含:辐射部内导体,所述辐射部内导体被可操作地联接到同轴馈线内导体的远端并从同轴馈线内导体的远端延伸;屏蔽外导体,所述屏蔽外导体被围绕辐射部内导体螺旋缠绕,并被可操作地联接到同轴馈线外导体;以及被定位在辐射部内导体和屏蔽外导体之间的屏蔽介电体。屏蔽外导体的螺旋角根据其沿同轴馈线内导体的纵向位置而变化。帽被可操作地联接到辐射部内导体和屏蔽外导体中的至少一个的远端。
在某些方案中,所述微波能量传输装置包括由被形成在屏蔽外导体的相邻绕圈之间的空隙所限定的馈入间隙。在某些方案中,由沿横截面的馈入间隙的周长和屏蔽外导体的周长的比值所限定的馈入间隙比从屏蔽外导体的近端到屏蔽外导体的远端线性地变化。在某些方案中,所述馈入间隙比从所述屏蔽外导体的近端到所述屏蔽外导体的远端非线性地变化。在某些方案中,馈入间隙比在辐射部近端处的0%和辐射部远端处的大约50%之间变化。在某些方案中,微波能量传输装置产生沿辐射部的纵向长度延伸的螺旋形电磁场。在某些方案中,螺旋形电磁场与被形成在屏蔽外导体的单独绕圈之间的空隙相关。在某些方案中,帽提供辐射部内导体和屏蔽外导体之间的电连接。
在本发明的另一个方案中,提供一种微波能量传输装置,包括同轴馈线,所述同轴馈线具有内导体、围绕内导体同轴布置的内介电绝缘体、和围绕内介电绝缘体同轴布置的外导体。所公开的微波能量传输装置包括辐射部,所述辐射部被可操作地联接到同轴馈线的远端。辐射部包含:辐射部内导体,所述辐射部内导体被可操作地联接到同轴馈线内导体的远端并从同轴馈线内导体的远端延伸;屏蔽外导体,所述屏蔽外导体被围绕辐射部内导体螺旋缠绕,并被可操作地联接到同轴馈线外导体;以及被定位在辐射部内导体和屏蔽外导体之间的屏蔽介电体。屏蔽外导体的螺旋角的螺距根据其沿同轴馈线内导体的纵向位置而变化。帽被可操作地联接到辐射部内导体和屏蔽外导体中的至少一个的远端。
在某些方案中,所述微波能量传输装置包括由被形成在屏蔽外导体的相邻绕圈之间的空隙所限定的馈入间隙。在某些方案中,由沿横截面的馈入间隙的周长和屏蔽外导体的周长的比值所限定的馈入间隙比从屏蔽外导体的近端到屏蔽外导体的远端线性地变化。在某些方案中,所述馈入间隙比从所述屏蔽外导体的近端到所述屏蔽外导体的远端非线性地变化。在某些方案中,馈入间隙比在辐射部近端处的0%和辐射部远端处的大约50%之间变化。在某些方案中,微波能量传输装置产生沿辐射部的纵向长度延伸的螺旋形电磁场。在某些方案中,螺旋形电磁场与被形成在屏蔽外导体的单独绕圈之间的空隙相关。在某些方案中,帽提供辐射部内导体和屏蔽外导体之间的电连接。
在本发明的另一个方案中,提供一种用于在身体管腔中形成谐振结构的方法。所述方法包括:利用患者的身体管腔推进柔性微波导管,所述柔性微波导管包括在该柔性微波导管的远端上的辐射部,辐射部被配置成接收一个微波频率下的微波能量信号,以及至少一个居中定位装置邻近所述辐射部并被配置成从该柔性微波导管径向向外展开。所述辐射部被定位邻近目标组织。至少一个居中定位装置在身体管腔中从柔性微波导管径向向外展开,从而将所述辐射部定位在该身体管腔的径向中心处。周向均衡的谐振结构通过所述辐射部被形成在身体管腔中,所述微波频率下的微波能量信号从该辐射部发出,并使所述身体管腔以所述微波频率谐振。
在某些方案中,所述周向均衡的谐振结构沿大约2cm到大约3cm 的纵向跨距360度地辐射能量。在某些方案中,身体管腔是肾动脉。在某些方案中,所述目标组织是肾神经,且所述周向均衡的谐振结构产生使该目标组织去神经的电磁场。
在某些方案中,所述方法还包括利用所述身体管腔提供持续的流体流动的步骤,以及冷却至少部分所述身体管腔的步骤。在某些方案中,所述方法还包括持续发送微波能量信号,直到大量的能量被发送从而有效地损伤所述目标组织同时不伤及所述身体管腔的关键结构为止。
在某些方案中,所述方法还包括监视持续流体流动的温度的步骤,以及如果所监视的温度超过温度阈值则终止微波能量传输的步骤。
在某些方案中,所述身体管腔选自肠胃管腔、听觉管腔、呼吸系统管腔、泌尿系统管腔、女性生殖系统管腔、男性生殖系统管腔、脉管系统管腔、以及内脏器官中的至少一种。
在某些方案中,所述方法还包括扩张所述身体管腔以形成一种与所述微波频率相关的结构。
在某些方案中,所述方法还包括基于所述身体管腔的解剖结构选择所述微波频率以使所述身体管腔谐振。
在某些方案中,所述方法还包括监视所述身体管腔中的温度,并且当所述温度超过阈值温度时终止微波能量信号的传输。
在某些方案中,所述辐射部包括在所述柔性微波导管中形成开放回路的馈入间隙。在某些方案中,所述辐射部包括第一馈入间隙和第二馈入间隙,其中所述第一和第二馈入间隙的每一个都在柔性微波导管内形成开放回路。
在本发明的另一个方案中,提出一种用于在身体管腔中形成谐振结构的方法。所提出的方法包括利用患者的身体管腔推进柔性微波导管。所述柔性微波导管包括在该柔性微波导管的远端上并被配置成接收一个微波频率下的微波能量信号的辐射部、邻近所述辐射部的导电网、以及被配置成将所述导电网围绕所述辐射部展开的可收缩护套。所述方法包括将所述辐射部定位成邻近目标组织,收缩可收缩护套,在所述身体管腔中从柔性微波导管径向向外地展开所述导电网,从而将所述辐射部定位在所述身体管腔的径向中心处,通过所述辐射部在所述身体管腔中形成一种周向均衡的谐振结构,以及以所述微波频率传送微波能量信号从而使得所述身体管腔以所述微波频率谐振。
在某些方案中,所述方法包括在所述导电网上形成窗口(其特征在于没有材料),以及加热与所述窗口相关的身体管腔区域。在某些方案中,所述身体管腔是肾动脉,所述目标组织是肾神经,加热与所述窗口相关的身体管腔区域至少部分地使肾脏去神经。
在某些方案中,所述方法包括冷却至少部分肾动脉的步骤。
在某些方案中,所述方法包括提供流体冷却结构以增强能量传输并减少至少部分柔性微波导管的加热的步骤。所述身体管腔可以选自肠胃管腔、听觉管腔、呼吸系统管腔、泌尿系统管腔、女性生殖系统管腔、男性生殖系统管腔、脉管系统管腔、以及内脏器官中的至少一种。在某些方案中,所述周向均衡的谐振结构沿大约2cm到大约3cm 的纵向跨距360度地辐射能量。
在本发明的另一个方案中,提供一种用于实施微波消融术波导的方法。所述方法包括以下步骤:选择由活体生物组织形成且能传输流体的管腔,将细长内导体纵向引入所述管腔,将细长内导体的远端定位在所述管腔中邻近目标解剖结构的位置,将细长内导体的至少一部分沿着管腔的纵轴线居中定位,利用微波消融能量对所述细长内导体供给能量,以及通过所述管腔电屏蔽所述细长内导体以减少微波消融能量朝目标解剖结构的近侧的传播。在某些方案中,所述管腔根据在其中所传输的流体的介电特性来选择。
在某些方案中,所述居中定位的步骤包括提供一种便于所述被传输的流体流动通过其中的居中定位构件。在某些方案中,所述方法还包括改变被传输流体的介电特性的步骤。在某些方案中,所述方法还包括在被传输流体中引入流体调理剂的步骤。在某些方案中,所述流体调理剂依据被感应到的电参数被引入被传输流体。所述被感应到的电参数可以选自由VSWR、功率因数、阻抗、电容、电感、和电阻构成的组。在某些方案中,所述流体调理剂依据被感应到的生物学参数被引入被传输流体。所述被感应到的生物学参数可以选自由组织温度、血压、心率、呼吸率、组织阻抗、血氧、神经反应构成的组。在某些方案中,所述流体调理剂可以以持续的流量被引入被传输流体。在某些方案中,所述流体调理剂以可变的流量被引入被传输流体。所述流体调理剂以一个根据被感应到的电参数和/或被感应到的生物学参数所选定的流量被引入被传输流体。
在本发明的另一个方案中,提供一种使用具有辐射图案的微波消融器械的方法。所述方法包括选择由活体生物组织形成且能传输流体的管腔,将微波消融图案纵向引入所述管腔,将微波消融器械的辐射图案定位在邻近目标解剖结构的位置,利用微波消融能量对所述微波消融器械供给能量,以及通过所述管腔电屏蔽所述微波消融器械以减少微波消融能量沿管腔朝目标解剖结构的近侧的传播。
在某些方案中,所述管腔根据管腔中所传输的流体的介电特性来选择。在某些方案中,所述方法还包括改变被传输流体的介电特性。在某些方案中,所述方法还包括在被传输流体中引入流体调理剂。在某些方案中,所述流体调理剂依据被感应到的电参数被引入被传输流体。在某些方案中,所述被感应到的电参数可以选自由VSWR、功率因数、阻抗、电容、电感、和电阻构成的组。在某些方案中,所述流体调理剂依据被感应到的生物学参数被引入被传输流体。在某些方案中,所述被感应到的生物参数可以选自由组织温度、血压、心率、呼吸率、组织阻抗、血氧、神经反应构成的组。
在本发明的另一个方案中,提供一种用于实施微波消融术波导的方法。所述方法包括:选择能传输流体且由活体生物组织所形成的管腔;将细长内导体引入管腔;将至少一部分的细长内导体定位在管腔中,使得细长内导体的纵轴线被定位成基本平行于管腔的纵轴线并与管腔的纵轴线间隔所需的距离,并且靠近目标解剖结构;和沿细长内导体传输微波能量,使得管腔屏蔽内导体并允许预定量的微波能量传播经过目标解剖结构。在某些方案中,管腔根据管腔中所传输的流体的介电特性来选择。在某些方案中,所述方法包括改变被传输流体的介电特性。在某些方案中,所述方法包括在被传输流体中引入流体调理剂。在某些方案中,流体调理剂依据被感应到的电参数被引入被传输流体。被感应到的电参数选自由VSWR、功率因数、阻抗、电容、电感、和电阻构成的组。在某些方案中,流体调理剂依据被感应到的生物学参数被引入被传输流体。在某些方案中,被感应到的生物学参数选自由组织温度、血压、心率、呼吸率、组织阻抗、血氧、神经反应构成的组。
在本发明的另一个方案中,提供一种使用微波消融术器械的方法。所述方法包括:选择能传输流体且由活体生物组织所形成的管腔;将微波天线引入管腔,所述微波天线具有外导体,所述外导体具有能产生预定辐射图案的结构;将微波天线定位在靠近目标解剖结构的位置处;以及利用微波能量对微波天线供给能量,从而在微波能量以预定辐射图案从微波天线发射时,管腔控制被允许传播通过管腔的微波能量的数量。在某些方案中,管腔根据管腔中所传输的流体的介电特性来选择。在某些方案中,所述方法包括改变被传输流体的介电特性。在某些方案中,所述方法包括在被传输流体中引入流体调理剂。在某些方案中,流体调理剂依据被感应到的电参数被引入被传输流体。在某些方案中,被感应到的电参数选自由VSWR、功率因数、阻抗、电容、电感、和电阻构成的组。在某些方案中,流体调理剂依据被感应到的生物学参数被引入被传输流体。在某些方案中,被感应到的生物参数选自由组织温度、血压、心率、呼吸率、组织阻抗、血氧、神经反应构成的组。
附图说明
被纳入说明书并作为说明书组成部分的附图示出了本发明的各种实施例。连同前面所给出的发明内容和后面所给出的具体实施方式,所述附图阐明了本发明的系统、设备和方法的原理。
图1是根据本发明某些实施例的经脉管系统进入肾动脉的柔性微波导管的部分剖视图;
图2是具有根据本发明某些实施例的柔性微波导管的微波能量传输系统的系统图;
图3是是根据本发明某些实施例的经脉管系统进入肾动脉的柔性微波导管的部分剖视图;
图4A是肾动脉解剖结构的横向剖视图;
图4B是根据本发明某些实施例的柔性同轴线缆的实施例的横向剖视图;
图4C是根据本发明某些实施例的在天然身体管腔中的微波波导结构的实施例的横向剖视图;
图5是根据本发明某些实施例的微波波导结构的实施例的纵向剖视图;
图6A是根据本发明某些实施例的导管集线器的框图;
图6B是根据本发明某些实施例的柔性微波导管的实施例的横向剖视图;
图7是根据本发明某些实施例的微波能量传输系统的实施例的系统图,它具有柔性微波导管,至少部分辐射部收纳在柔性微波导管的外护套中;
图8A-8C示出了根据本发明某些实施例的导管集线联接器的纵向剖面的实施例;
图9A是根据本发明某些实施例的柔性微波导管导丝系统的实施例的侧视图;
图9B-9C是图9A的导丝系统的纵向剖视图;
图10A-10B分别是根据本发明某些实施例在肾动脉中被居中定位的柔性微波导管的实施例的纵向和横向剖面;
图11A-11B分别是在肾动脉中处于偏心位置的柔性微波导管的纵向和横向剖面;
图12A-12B分别是在肾动脉中处于偏心位置的柔性微波导管的纵向和横向剖面;
图13示出了在试验性手术期间在肾动脉内侧和外侧所测得的温度与所测得功率之间的关系;
图14A-14F示出了用于组装本发明的某些实施例的制造工艺的步骤;
图15A是根据本发明的用于将循环流体从入流流体通道返回到出流流体通道的辐射部帽的实施例的纵向剖视图;
图15B是图15A的帽的带局部剖视的透视图;
图16A-16B是根据本发明某些实施例的与辐射部相关的支架形可膨胀元件的实施例的纵向剖视图;
图16C是根据本发明某些实施例的与辐射部相关的支架形可膨胀元件的实施例的侧视图;
图17A是根据本发明某些实施例的限定用于有选择地给组织传输去神经能量的多个窗口的导电网结构的实施例的透视图;
图17B是从图17A的导电网结构接收了被选择性传输的去神经能量后的部分肾动脉的透视图;
图18A是根据本发明某些实施例的限定用于有选择地给组织传输去神经能量的窗口的导电网结构的实施例的透视图;
图18B-18G是示出了根据本发明某些实施例的使用图18A的导电网结构的外科手术步骤的透视图;
图19A是根据本发明某些实施例的限定用于有选择地给组织传输去神经能量的多个窗口的导电网结构的实施例的透视图;
图19B是从图19A的导电网结构接收了被选择性传输的去神经能量后的部分肾动脉的透视图;
图20是根据本发明某些实施例的辐射部的实施例的侧视图,它具有多个导电网结构,每个导电网结构限定用于有选择地给组织传输去神经能量的窗口;
图21是根据本发明某些实施例的辐射部的实施例的侧视图,它具有限定多个辐射部的多个导电网结构;
图22A是根据本发明某些实施例的辐射部的实施例的侧视图,它具有远侧网篮结构和近侧网状结构;
图22B是根据本发明某些实施例的辐射部的实施例的侧视图,它具有近侧网状结构和通过系绳可操作地联接到帽的远侧网篮结构;
图23是根据本发明某些实施例的具有阶梯直径的台阶式柔性微波导管的实施例的透视图;
图24是根据本发明某些实施例的包含可扩张居中定位球囊的柔性微波导管的实施例的辐射部的侧视图;
图25A是根据本发明某些实施例的具有在可扩张球囊内的远侧辐射部的微波能量传输系统的实施例的纵向剖视图;
图25B是图25A的微波能量传输系统的远侧辐射部的实施例的横向剖视图;
图26A是根据本发明某些实施例的具有用于将辐射部在身体管腔中居中定位的多个叶的可扩张球囊的实施例的透视图;
图26B是图26A的可扩张球囊的横向剖视图;
图26C是图26A的可扩张球囊的外壳的透视图;
图27A-27B分别是根据本发明某些实施例的被收纳在柔性微波导管的外护套中的居中定位装置的纵向和横向剖视图;
图27C是根据本发明某些实施例的从柔性微波导管的外护套展开的居中定位装置的实施例的纵向剖视图;
图27D是图27A-27C的居中定位装置处于展开位置的透视图;
图28是根据本发明某些实施例的四叉居中定位装置的实施例的透视图;
图29是根据本发明某些实施例的能将柔性微波导管的远侧部分的辐射部居中定位的居中定位篮的实施例的透视图;
图30是根据本发明某些实施例的能将柔性微波导管的辐射部居中定位的在辐射部近侧的居中定位篮的实施例的透视图;
图31是根据本发明某些实施例的能将辐射部居中定位的居中定位篮的实施例的透视图;
图32A是根据本发明某些实施例的近侧居中定位篮和可操作地联接到柔性微波导管的远端的远侧居中定位篮的实施例的透视图;
图32B是根据本发明某些实施例的近侧居中定位篮和可操作地联接到柔性微波导管的远端的远侧居中定位篮的实施例的透视图;
图33是根据本发明某些实施例的以辐射部为中心被定位的双条带式居中定位装置的实施例的透视图;
图34是根据本发明某些实施例的包含多个用于将辐射部居中定位的叶瓣的苜蓿叶式居中定位装置的实施例的透视图;
图35是根据本发明某些实施例的包含苜蓿叶式居中定位装置和居中定位篮的柔性微波导管的远端的实施例的透视图;
图36A和36B是根据本发明某些实施例的可展开桨叶式居中定位装置的实施例的透视图;
图37A和37B是根据本发明某些实施例的可展开双桨叶式居中定位装置的实施例的透视图;
图38A和38B是根据本发明某些实施例的可展开桨叶式居中定位装置的实施例的透视图;
图39A和39B是根据本发明某些实施例的可展开双桨叶式居中定位装置的实施例的透视图;
图40A和40B是根据本发明某些实施例的带有多个叉齿的可展开居中定位装置的实施例的透视图;
图41A和41B是根据本发明某些实施例的螺旋居中定位装置的实施例的透视图;
图42是部分外护套被移除且具有处于完全收缩位置的可配置部分的微波能量辐射装置的图7实施例的远侧部分的侧视图;
图43是部分外护套被移除且具有处于部分展开位置的可配置部分的微波能量辐射装置的图7实施例的远侧部分的侧视图;
图44是部分外护套被移除且具有处于完全展开位置的可配置部分的微波能量辐射装置的图7实施例的远侧部分的侧视图;
图45是根据本发明某些实施例的具有非线性缠绕图案的微波能量辐射装置的实施例的侧向透视图;
图46是被取下的图45实施例的外导体的顶部透视图;
图47是根据本发明另一个实施例的具有非线性缠绕图案的微波能量辐射装置的实施例的侧向透视图;
图48是被取下的图47实施例的外覆盖物的顶部透视图;
图49是示出了图44、45和47的微波能量辐射装置的辐射部与非辐射部的比值的曲线图;
图50是根据本发明的漏隙波导的实施例的电路图;
图51示出了根据本发明的具有变化槽宽度的漏隙波导的实施例;
图52是根据本发明的十个槽的波导的实施例的电路图,其示出了每个槽的可用能量以及从每个槽发射出的可用能量的百分比;
图53是根据本发明的十个槽的波导的实施例的侧视图,其中每个槽发射出基本相似数量的能量;
图54是根据本发明实施例的具有十个螺旋缠绕的螺旋波导的实施例的侧视图;
图55是根据本发明实施例的五个槽的波导的透视图;
图56是根据本发明实施例的具有五个螺旋缠绕的螺旋波导的透视图;
图57是并列比较根据本发明实施例的五个槽的波导和带五个螺旋缠绕的螺旋波导;
图58A是根据本发明某些实施例的处于收缩状态下的具有形成于其中的螺旋窗口的球囊居中定位装置的实施例的透视图;
图58B是处于完全扩张状态下且经脉管系统被定位在肾动脉中的图58A的球囊居中定位装置的局部剖面透视图;以及
图58C是接收了来自图58A-58C的球囊导管的被选择性输送的去神经能量后的部分肾动脉的透视图。
具体实施方式
本发明的具体实施方式将在后面参考附图进行描述;但是所描述的实施方式仅是可以以各种形式被实施的本发明的示例。公知的和/ 或重复的功能和结构就不做详细描述,以避免使本发明纠缠于不必要或多余的细节。因此,在这里被用于描述具体实施例的术语、在这里所公开的特定结构和功能细节、以及在这里的特定用途都不被解释为限制,而仅仅是权利要求的基础和教导本领域技术人员的代表性基础,从而以本质上任何被恰当细述的结构来灵活地采用本发明。在说明书和附图中相同参考数字代表实现相同、相似或等同功能的元素。
在本文中,“近侧”是常规含义,指更靠近使用者的器械端,而“远侧”指更远离使用者的一端。在本文中,参考方位的术语(例如“顶部”、“底部”、“上”、“下”、“左”、“右”、“几点钟位置”等等)被用于参考附图及其中示出的对应轴线和结构进行说明。应当理解,根据本发明的实施例可以以不受限制的任意方位被实施。
如之前所述,柔性微波导管被用于利用天然或人造管腔实施手术。本文中所讨论的一种具体的手术是利用脉管系统进入肾脏的去神经手术。本文中公开了多个实施例,其中能量和天线特征被设计为对目标神经结构(比如但不限于围绕肾动脉的交感神经束)施加微波去神经能量,但是所述装置和方法可以被用于其他手术和或其他身体管腔、器官或身体结构。这种具体的手术仅仅被用于展示根据本发明的某些实施例的总体理念和使用。例如,本文中所公开的柔性微波导管的实施例可以被用于在呼吸系统中实施手术,例如治疗上呼吸道和肺部中的肿瘤,以及治疗哮喘、慢性阻塞性肺部疾病(COPD)、肺气肿等。
如图1所示,所公开的柔性微波导管30通过动脉导管110被经皮引入股动脉FA,并且被定位在右肾动脉RRA内靠近右肾神经束 RRN。所述柔性微波导管30包括辐射部100,所述辐射部100有利地与右肾动脉RRA和/或左肾动脉LRA(以下称为肾动脉RA)生理结构相配合,以分别给右肾神经束RRN和/或左肾神经束LRN(以下称为神经束RN)传输去神经能量,同时使对动脉血管和相关解剖结构的附带损伤最小化。在下面的讨论中,肾神经RN和肾动脉RA被用于展示根据本发明的实施例,但是应当明白所公开的实施例可以配合右肾动脉RRA或左肾动脉LRA使用,以分别给右肾神经束RRN和左肾神经束LRN传输去神经能量。
上升的交感神经活动导致并维持血压上升。肾神经束RN包括在肾动脉RA周围成束的肾交感神经(传出神经和传入神经)。因此,肾动脉RA便于通过股动脉FA和/或腹主动脉A接近肾神经束RN。柔性微波导管30将微波能量发射器的辐射部100放置在紧靠肾神经束 RN的位置。在肾动脉RA中定位好之后,辐射部100将能量从肾动脉RA内朝着围绕肾动脉RA的各肾神经束RN聚集,从而使肾脏去神经,最终降低血压。
如下面详细所述,多种实施例包括允许电外科能量施加到肾动脉 RA(或其他管腔或身体结构)内的一个或多个位置但不影响血管壁的整体完整性的结构。在某些实施例中,能量传输结构不机械地接触血管壁,因此减少了机械损伤导致的穿孔或狭窄引起的并发症。在某些实施例中,能量传输结构将能量引向身体管腔/身体结构的一个或多个层的特定部分,从而保持身体管腔/身体结构的总体活力。在某些实施例中,血液或流体流与血管一起使血管壁的内层被冷却,因此降低了不需要的加热和对血管壁的附带损伤,同时使能量传输到靠近肾神经的外层。
本文中所描述的系统、装置和方法提供微波能量的空间能量控制。空间能量控制包括三个方面,即,能量传输的再现性、所传输能量的精确控制、和能量的有效传输。影响空间能量控制的因素包括热管理、介电管理、阻尼、和电流控制。这些因素通过与周围解剖结构配合运行的系统、装置和方法被控制,有效地将周围组织结合为微波装置的一部分。
微波能量系统和装置的表现与采用低频RF信号的系统和装置的表现截然不同。例如,采用低频RF信号的RF系统的运行和功能性需要一种包含导电材料闭环连接的电回路,例如完整电回路。该回路的表现直接取决于导电材料闭合连接的电特性。最明显表现和例子是在RF回路中导电材料闭环连接的中断(例如开放回路)导致系统无法运行。
另一方面,微波系统通过波导发射微波能量信号。波导最常见的例子是由被电介质同轴定位在外导体内的内导体所构成的同轴线缆。不同于RF回路,在同轴外导体上产生开放回路(例如,槽)不会导致系统无法运行。相反,波导继续传输微波信号,且所述槽辐射一部分波导所传递的能量。
因此,在本文中所描述的系统、装置和方法的某些实施例将部分解剖结构纳入到微波能量传输系统的方案中。更具体地,实质上同心的天然身体管腔和其他身体结构的圆柱形结构能被用于与本文中所描述的装置所使用的波导一起运行并成为其一部分,从而传递微波能量。
天然管腔结构和/或身体结构被用作辐射结构的一部分能增强能量传输技术,比如将微波能量引起的热治疗聚集到目标生理结构。例如,如之前所述,本文中所描述的结构能以肺支气管内的光滑肌层作为目标,以及能以肾神经动脉外膜层内的肾神经作为目标。另外,将本文中所述的装置用于管腔结构中能形成针对管腔特定段的方向性辐射图案。
在某些实施例中,本文中所述的装置还利用存在于天然身体管腔中的流体来实施对放射状解剖结构的介电加载。所述流体的特性作为设计组成被纳入所述微波辐射器的设计方案中。例如,体液可以形成解剖结构波导的介电层和/或导电层,而所述体液的特性被用于设计方案中,例如涉及阻抗匹配、能量效率、波长阻尼、和辐射图案控制与定形。
所述流体的介电特性可以通过在流体中引入(和/或消除)一种或多种元素被外部控制和/或调节。例如,含水量高的流体具有能在辐射结构周围形成微波场的高介电常数。因此,血液的介电特性可以通过改变血浆组分和调整水、蛋白质、无机盐、和有机物的比例来调节。类似地,血液的介电特性可以通过改变葡萄糖水平来调节,通过这种方式改变流体的介电特性能可以实现本文中所述装置的性能的改变,因为体液能被用作本文中所述的解剖结构波导的介电层。
本文中所述的系统、装置和方法还利用天然身体管腔中的流体(例如天然的或外部引入的)进行所述解剖结构波导的一个或多个层和/ 或本文中所述装置的一个或多个组件的热管理。通过在所述装置加热轮廓内的非目标解剖结构的流体冷却,流体减轻了热损伤。另外,所述流体流可以通过调整所述(多个)装置(例如,增加或减少阻塞从而减少或增加流体流)、调整天然的流量(例如通过在其他身体部位限制流体流动来引导流体流到特定的身体部位)和/或调整身体官能 (例如提高心率从而增加流过身体的血液流量)来进行控制。流体温度也可以通过提供外部或内部的散热器被控制。
将在本文中所描述的装置的居中定位增加了对目标解剖结构的能量传输的可预测性和再现性。本文中所描述的居中定位装置包括非能动居中定位装置(例如,利用管腔中流体的天然流动来居中定位)或者主动地和/或积极地将辐射部定位在管腔中的能动装置。
在根据本发明的部分实施例中,带有柔性微波导管30的微波能量传输系统12被提供并在图2中示出。微波系统12包含微波发生器22、传输线14、流体冷却系统40、导管集线器18、以及柔性微波导管30。某些实施例可能包含用于将柔性微波导管30的辐射部100引导和/或定位到所需位置的导丝47。
根据本发明,柔性微波导管30包括可操作地联接到微波发生器 22(例如通过导管集线器18和传输线14)的柔性同轴线缆32或馈线。柔性微波导管30包含被定位在其最远端上的辐射部100。在某些实施例中,如在下面所讨论和副图中所示,所述辐射部100可从柔性微波导管30的外护套35展开,并包含在其最远端上的被暴露的帽33。
微波能量信号的一个或多个参数可能与目标组织相关。在某些实施例中,微波发生器22所产生的微波能量信号的频率与身体管腔的直径相关。例如肾动脉的直径可能要求第一频率的微波信号,食道的直径可能要求第二频率的微波信号,阴道腔的直径可能要求第三频率的微波信号。由于沿身体管腔(例如呼吸道)的变化直径,某些应用(比如为呼吸系统提供治疗)可能要求所述频率随所述辐射部在身体管腔中的位置而变化。
导管集线器18被设置在柔性微波导管30的近端,并被配置成实现去神经能量源(例如微波发生器22)与传输线14的可操作联接。导管集线器18提供柔性微波导管30和冷却流体系统40之间的冷却流体交换。流体冷却系统40为入流管42提供冷却剂源,并接收经连接到流体接收终点(例如,容器、蓄液池、或排放管)的出流管43从导管集线器18排出的冷却剂。
图3示出了根据本发明的被定位在肾动脉RA中的柔性微波导管 30。在某些实施例中,所述柔性微波导管30被操控穿过最开始被定位在股动脉和/或主动脉中的长护套31。长护套31的远端被定位在肾动脉RA的近端。柔性微波导管30被引导穿过长护套31然后进入肾动脉RA,例如从长护套31的远端伸出并被定位在肾动脉RA内。在某些实施例中,导丝47可以被用于引导和/或定位所述长护套31或本文中所述的柔性微波导管30。
柔性微波导管30的辐射部100被定位在肾动脉RA内,并接收来自微波发生器22的微波能量信号(见图2)。至少部分微波能量信号被有选择地传输到至少部分肾动脉RA。本文所描述和附图中所示的部分实施例有利地在微波能量的施加中利用了肾动脉的生理结构,由此引起了目标组织的改变。关于肾脏去神经手术,用于治疗高血压的目标组织包含肾神经RRN,LRN的至少一部分。
天然身体管腔(例如肾动脉RA)的解剖结构在图4A中示出。管腔的最内侧层和/或核心形成管腔的流体通道(例如管腔所形成的空心体)。动脉中所含的流体1通常是一种体液(例如血液),但是非体液(例如,盐水、空气或其他合适的流体)可以被采用和/或引入。其他天然身体管腔可以包含其他体液(例如血液、粘液、尿液、胆汁、空气以及它们的任意组合),或者所述管腔可以包含外部引入的流体 (例如,空气、盐水和水)。或它们的任意组合。
所述身体管腔(例如肾动脉RA)的第一层是由大约50%的弹性蛋白和大约50%的软骨所形成的内膜层2。其他天然管腔可以包含类似的弹性蛋白和/或软骨层,比如粘液层、粘膜层或角质层。所述身体管腔(例如肾动脉RA)的第二层是光滑肌层3。其他包含光滑肌层的天然管腔例如有食道、胃、肠、支气管、子宫、尿道以及膀胱。所述身体管腔(例如肾动脉RA)的第三层是外膜层4(又称为外膜)。外膜层4是覆盖大部分器官、血管和其他身体结构的最外侧的结缔组织。和许多身体管腔一样,最外侧的外膜层4被最外侧的脂肪层5覆盖。
虽然每种身体管腔和身体结构在官能上不同,但是身体管腔和许多身体结构的总体结构具有结构相似性。例如,食道壁的第一层是粘膜(例如黏膜),第二层是包含食管腺的粘膜下层,第三层是肌层(例如光滑肌肉),最外层是被脂肪覆盖的外膜层。天然身体管腔和身体结构的不同不会改变本文中所述系统、装置和方法的一般操作,仅需要在其一个或多个运行参数上做微小的变化。
图4B示出了包含内导体20、介电层22和外导体24的柔性同轴线缆32的同轴结构。将图4A中形成天然身体管腔的结构与图4B中形成柔性同轴线缆32的结构进行类比,外导体24类似于外膜层4和/ 或最外侧的脂肪层5,介电层22类似于空心体中的流体1。
图4C示出了身体管腔(例如肾动脉RA)中微波波导结构RA/32 的构成,其中所述微波结构RA/32包含内导体20(例如定位于空心体 1中的导体)、介电体(例如空心体1/22中的流体)以及外导体(例如由最外侧脂肪层5/24所形成)。因此,当被施加微波能量信号时,所述解剖结构成为微波波导结构的一部分,其中介电常数和功耗因数与所述天然身体管腔和/或身体结构的生理结构和成分相关。
在任意波导结构中的能量损耗包括介电损耗(例如经过介电材料的损耗)和导体损耗(例如在构成该波导的导体内的损耗)。因此,介电损耗是在形成介电体(例如空心体中的流体1)的解剖结构中的损耗,导体损耗是在形成所述内导体20和所述外导体4/24和5/24的所述波导结构和/或解剖结构中的损耗。
在某些实施例中,利用构成肾动脉解剖结构的所述层形成谐振微波波导产生了低效的波导,解剖结构中的损耗通过该波导能将目标组织加热到受损的温度水平。例如,肾神经LRN,RRN(例如肾传出神经和肾传入神经)位于被脂肪层5包裹的外膜层4内。外膜层4和脂肪层5所表现出的特性类似于导电材料的特性和类似于介电材料的特性。因此,由外膜层4和脂肪层中的电磁场所产生的微波电流传播到每个层的表面上(导电特性)并且传播经过每个层(介电特性)。所以外膜层4和脂肪层5中的损耗包含导电损耗和介电损耗。
在某些实施例中,如图5所示,外膜层4可以被视作类似于一种被形成在同轴线缆外导体24的内表面上(例如被形成在脂肪层5的内表面上)的有损介电薄膜(LDF)。因此高能量吸收率以外膜层4为对象,并损伤外膜层中所含的和/或外膜层附近的神经。由于经肾动脉 RA的血液流量,在身体结构(例如肾动脉RA)中可能引起组织损伤的微波热能可被调节,从而保存了内膜层2和光滑的肌层3,并维持有活力的动脉结构。
图6A示出了根据本发明某些实施例的导管集线器18的框图。所述导管集线器可以包含五个端口,并且可以被设置在如图6B所示的多管腔管630的近端。导管集线器18可以包含有利于将五个管腔与对应的发生器、冷却剂源和回流管等等的元件可操作地相联的连接器。导管集线器18被设置在柔性微波导管30的近端,并被配置为实现与所述柔性微波导管30相连的多个系统的可操作联接。导管集线器18 可以连接到传输线14,并接收由去神经能量源(例如微波发生器22) 所产生的去神经能量。导管集线器18可以连接到流体冷却系统40,并可以提供所述柔性微波导管30和所述流体冷却系统40之间的冷却流体交换。所述流体冷却系统40提供到入流管42的冷却剂源,并通过出流管43接收从导管集线器18排出的冷却剂,还将排出的冷却剂积聚到接收终点(容器、蓄液池或排放管)。导管集线器18可以连接到用于引导并定位柔性微波导管30的导丝47。导管集线器18还可以连接到将柔性微波导管30上的一个或多个传感器1534(见图15A) 可操作地联接到被收纳在微波发生器22内的控制系统或传感器监视系统的一根或多根传感器引线34a。
如图6B所示,根据本发明的柔性微波导管30包含多管腔管630,多管腔管630在该多管腔管的近端处(见图2)具有多端口导管集线器18。所述多管腔管630具有大体上细长的圆柱形外表面,多个管道、通道和/或管腔被纵向地设置在所述圆柱形外表面中。多管腔管630可以通过任意合适的制造方式形成,比如但不限于,挤压。多管腔管630 可以包含具有大致圆形截面的中心管腔(例如柔性同轴线缆管腔 32a),所述中心管腔轴向延伸穿过该管,并且尺寸适合于接收柔性同轴馈线32(见图2)。适合于分别容纳例如导丝47和传感器导体34a (见图8A)的具有大致圆形截面的第一对管腔(例如导丝穿过管腔30b 和传感器引线管腔30c)可以被定位在所述中心管腔的相反侧(例如 12点钟方向和6点钟方向)。具有大致弓形截面的第二对管腔(例如入流流体通道44a和出流流体通道44b)可以被定位在所述中心管腔的相反侧,在第一对管腔之间(例如分别在9点钟方向和3点钟方向),从而分别容纳冷却剂入流和冷却剂出流。
柔性微波导管30的外护套35可以包含织物和/或绕圈,以增加强度、防止扭结和/或在保持足够刚度的同时提供柔性。外护套35可以包含一根或多根操控丝(未示出)以有利于操控并控制柔性微波导管 30到达所需位置。外护套35可以包含在外管腔的外表面35c上的介电涂层,比如聚对二甲苯,以减少血液凝结。
如图7所示,在某些实施例中柔性同轴线缆32和至少部分的辐射部被收纳在柔性微波导管30的外护套35中。导管集线器18包含收纳在导管集线器18中并联接到辐射部100的致动器15。致动器15被配置成从外护套35朝远侧展开辐射部100和帽33,如下面所讨论那样。
导管集线器18包含在图8A-8B以及8C中分别示出的联接器45 或可调流体联接器845。联接器45和可调流体联接器845提供到在柔性微波导管30中形成的一个或多个管腔30a-30c,44a和44b的连接。图8A示出了提供到柔性同轴线缆管腔30a、导丝通过管腔30b以及传感器引线管腔30c的连接的联接器45的剖面。图8B示出了提供到柔性同轴线缆管腔30a和入流与出流流体通道44a,44b的连接的联接器 45的剖面。图8C示出了提供到柔性同轴线缆管腔30a和入流与出流流体通道44a,44b的可调连接的可调联接器845。导管集线器18和联接器45以及可调联接器845可以包括所需要的任意数目的管腔、通道和电导线及其组合,以有利于到柔性微波导管30的各种连接。
在图8A中,导丝47经形成在联接器主体45a和近侧应力减缓器 45c之间的开口(未示出)被引入所述导丝通过管腔30b,一根或多根传感器引线34a经形成在联接器主体45a和近侧应力减缓器45c之间的另一个开口被引入所述传感器引线管腔30c。
在图8B中,入流管42连接到入流端口42a并给入流增压室42b 提供冷却流体。入流增压室42b中的冷却流体经入流流体通道44a朝远侧流动,给柔性微波导管30的远端提供冷却。入流流体通道44a 与柔性微波导管30远端的出流流体通道44b流体连通(见图 15A-15B),从而冷却流体经出流流体通道44b朝近侧流动到出流端口43a的出流增压室43b。出流管43连接出流端口43a,并使冷却流体返回流体冷却系统40。入流端口43a和出流端口43b被形成在所述联接器45中在联接器主体45a和近侧应力减缓器45c之间,但是在所述联接器45的任何部分中可以形成到柔性微波导管30的一个或多个管腔(例如柔性同轴线缆管腔30a、导丝通过管腔30b、传感器引线管腔30c、入流流体通道44a和出流流体通道44b)的连接。
在某些实施例中,导管集线器18包含可调流体联接器845,如图 8C所示。可调流体联接器845包含流体联接器主体845a,在流体联接器主体845a内形成入流增压室842b和出流增压室843b。入流增压室842b与入流管842流体连通,出流增压室843b与出流管843流体连通。
可调流体联接器845还可能包含支撑柔性微波导管30(例如到柔性同轴线缆32的装配和连接)和传输线14的远侧和/或近侧应力减缓器(未明确示出)。额外的应力减缓器可以被提供以支撑入流管41a、出流管41b以及连接到在本文中所描述的联接器45和可调流体联接器 845的其他元件。
可调流体联接器845被配置成可调节地联接同轴线缆(例如传输线14或柔性同轴线缆32)、流体冷却系统30和柔性微波导管30的外护套35。流体联接器主体845a收纳流体密封系统819,并形成远端上的外护套联接器845b。流体密封系统819包含远侧密封隔膜819a、近侧密封隔膜819b以及在流体联接器主体845a的近端上的旁通球 819c。远侧密封隔膜819a和近侧密封隔膜819b每个可以包含一个或多个O形环。
当在本文中讨论展开时,可以采用两种方法。第一种方法,柔性微波导管30的远端被放置在目标组织的近侧,辐射部100朝着远侧离开柔性微波导管30的外护套35(至少参见图42-44)。第二种方法,柔性微波导管30的远端被放置在目标组织附近,朝着近侧回拉外护套 35,从而使辐射部100展开(至少参见图18B-18G)。
远侧密封隔膜819a被设置在流体流动管腔37和流体联接器主体 845a的内表面之间,因此形成了流体联接器主体845a的远侧内表面、流体流动管腔37的外表面、远侧密封隔膜819a和外护套联接器845b 之间的出流增压室843b。出流增压室843b接收经柔性微波导管30循环的流体,并将循环流体提供至出流端口843a。
近侧密封隔膜819b被设置在流体联接器主体845a和柔性同轴线缆32之间,由此形成了在流体联接器主体845a的内表面、柔性同轴线缆832的外表面、远侧密封隔膜819a和近侧密封隔膜819b之间的入流增压室842b。入流增压室842b接收来自入流端口842a的冷却流体。从入流端口842a被提供给入流增压室842b的冷却流体在被形成在柔性同轴线缆32的外表面和流体流动管腔37的内表面之间的入流流体通道44a中流过柔性微波导管30。
旁通球819c提供流体联接器主体845a和柔性同轴线缆32之间的辅助密封。旁通球819c被配置成捕获流过近侧密封隔膜819b的流体。旁通球819c还可以给延伸进入并穿过流体联接器主体845a的柔性同轴线缆32提供应力减缓。
在使用中,冷却剂流过入流端口842a然后进入入流增压室842b。入流增压室842b中的流体压力驱使冷却剂进入被形成在柔性同轴线缆32的外表面和流体流动管腔37的内表面之间的入流流体通道 844a。冷却剂继续流到柔性微波导管30的远端,流过远端上的装置(例如辐射部100),然后进入出流流体通道44b。出流流体通道44b被形成在流体流动管腔37的外表面和外护套35的内表面之间。来自出流流体通道44b的流体积聚在出流增压室843b中,流经出流端口843a 然后到达冷却剂终点(例如循环使用和/或排放系统的储存容器)。
流体流动管腔37围绕柔性同轴线缆32被同轴地定位,外护套35 围绕流体流动管腔37被同轴地定位。在柔性同轴线缆32的外径和流体流动管腔37的内径之间的间隙限定第一流体管(例如,入流流体通道44a)。在流体流动管腔37的外径和外护套35的内径之间的间隙限定第二流体管(例如出流流体通道44b)。在使用中,冷却剂(例如二氧化碳、空气、盐水、水、或其他冷却剂媒介)可以包含所需要的介电特性,并可以通过一个冷却剂管被提供给柔性微波导管30和/ 或在柔性微波导管远端上的辐射部100,然后通过另一个冷却剂管从柔性微波导管30排出。也就是说,在某些实施例中,第一流体管(例如入流流体通道44a)供应冷却剂,第二流体管(例如出流流体通道 44b)排出冷却剂。在其他实施例中,流体流动的方向可以相反。一个或多个纵向定向的翅片或支架(未明显地示出)可以被定位在入流流体通道44a、出流流体通道44b和/或外护套35内,以实现并保持外护套35、流体流动管腔37、和/或柔性同轴线缆32之间的同轴居中定位。
在某些实施例中,致动器臂15b提供柔性同轴线缆32和致动器 15之间的联接。致动器15和致动器臂15b被配置成通过可调流体联接器845赋予柔性同轴线缆32运动。柔性同轴线缆32的运动展开辐射部100,如将在下面详细讨论。在柔性同轴线缆32运动期间,通过近侧密封隔膜819b保持围绕柔性同轴线缆的流体密封。
在某些实施例中,联接器致动器臂15c提供可调流体联接器845 和致动器15之间的联接。致动器15和联接器致动器臂15c被配置成赋予可调流体联接器845运动,这进而赋予入流管腔837和外护套35 围绕在集线器18内被固定就位的柔性同轴线缆32运动。因此,在某些实施例中,柔性同轴线缆32穿过静止的可调流体联接器845纵向运动,从而将定位在远侧的辐射部100展开。在某些实施例中,柔性同轴线缆32是静止的,而可调流体联接器845、外护套35和流体流动管腔37是围绕柔性同轴线缆32纵向移动的,从而将外护套35从远侧定位的辐射部100缩回。
在使用中,柔性微波导管30通过管腔被给送至天然身体管腔和/ 或身体结构附近的目标组织。在某些例子中,脉管系统具有穿过身体到达各种天然身体管腔和/或身体结构的蜿蜒路径。例如,股动脉提供到肾动脉的路径。形成所述柔性微波导管30的各种元件可能承受由于柔性微波导管30的元件的不同半径所产生的移位和/或移置作用力,这能导致不需要的效果比如扭结、缠绕等等。有利地,形成柔性微波导管30的各种组件以及到流体密封系统819的连接由具有弹性润滑特性的材料形成,这使得这些元件能在流体联接器主体845a和/或导管集线器18内独立地纵向运动(例如朝近侧和/或朝远侧)。通过这种方式,当柔性微波导管30被引入某位置时,所述元件能移动就位,同时保持冷却元件的流体完整性。
所公开的柔性微波导管30可以被经皮地引入股动脉,然后被定位在肾动脉内靠近肾神经束。柔性微波导管30可以被脉管内引入,然后定位在任何所需的目标组织附近。可配置长度的微波能量辐射装置 100包含有利地与肾动脉生理结构配合以给所述肾神经束传输去神经能量、同时使对动脉血管和相关解剖结构的附带损伤最小化的辐射部。
根据本发明的导管系统可以包含具有被设置在其远端上的球突或球的导丝。所述球突或球可以是辐射不透的,从而通过显像术(荧光透视术、MRI等)来实现导丝(更具体地是其远端)的定位。在使用期间,任选地使用前面所述的显像术将导丝的远端引入身体管腔,然后前进到所需位置。导丝的近端可以被插入导管上的与导丝管腔连通的对应端口。然后所述导管进入身体管腔到达所需位置。在所述导管被推进到所需位置后,所述球突、球、和/或导管的缺口或其他结构提供触觉反馈和/或前挡块,以有利于正确的导管定位。
在某些实施例中,导丝通过管腔30b的远端终止在辐射部100的近侧,如图9A-9C所示。导丝通过管腔30b的远端30bd形成了在柔性微波导管30的外护套35内的导丝球接收器47b。导丝球接收器47b 被配置成接收导丝47的近端,如图9A所示。
在使用中,导丝47和远侧导丝球47a被插入身体,远侧导丝球 47a通过引导系统(例如显像系统或任何合适的引导与定位系统)被定位在目标组织附近。将远侧导丝球47a定位在所需位置之后,导丝 47的近端(未明确示出)被插入导丝球接收器47b,穿过导丝通过管腔30b和导管集线器18(参见图2,6A和7)。
柔性微波导管30通过导丝47被引到目标组织。如图9B和9C中所示,远侧导丝球47a由导丝球接收器47b接收,从而导丝球47a位于辐射部100的近侧。
本文中所讨论的某些实施例和结构具有类似于之前在图4A-4C和 5中所示并被描述的同轴结构,其中所述同轴结构结合天然身体管腔的一个或多个层,从而形成同轴馈线结构。类似于任何其他的同轴结构,形成波导的结构的同轴定位与波导的运行和/或效率直接相关。
图10A-12A每个都示出了被定位在肾动脉RA中的柔性微波导管 30,图10B-12B示出了各自的剖面。在图10A和10B中,柔性微波导管30和远侧辐射部100在肾动脉RA内居中。在图11A和11B中,柔性微波导管30和远侧辐射部100偏离静止中心0.5mm,在图12A 和12B中,柔性微波导管30和远侧辐射部100偏离静止中心1mm。图10A-12A以及10B-12B均示出了通过对柔性微波导管30施加25W 的微波能量大约2分钟所产生的在肾动脉中和周围的热能量分布。
在图10A-12A的每一个中,柔性微波导管30包含由柔性同轴线缆32形成的第一近侧波导,以及由内导体20和部分解剖结构形成的第二远侧波导。形成第一近侧波导的柔性同轴线缆32包含被居中定位且通过介电层22与外导体24同轴偏离的内导体20。第二远侧波导是包含分别从柔性同轴线缆32朝远侧延伸的部分内导体1020,1120, 1220以及通过过渡介电层1026,1126,1226和肾动脉中所含的流体1 与所述内导体同轴偏离的部分肾动脉RA的解剖谐振结构1032,1132 和1232。
柔性微波导管30的辐射部100被形成在柔性同轴线缆32的远端。在根据本发明的实施例及其制造方法中,部分外导体24被去除以暴露出内导体20,从而形成有利于去神经能量(比如微波能量)传播的馈入间隙1050,1150,1250(例如馈入点)。任选地或替换地,过渡介电体26被设置在馈入间隙1050,1150,1250中。所述过渡介电体1026, 1126,1226在总体上和/或在几何上对应于被去除的那部分外导体24。
过渡介电体26的介电特性介于内介电层22的介电特性和目标解剖结构(例如肾动脉RA、身体管腔和/或其他身体结构)的预期或平均介电特性之间。以这种方式使用过渡介电体26可以通过例如减少反射、减少驻波(例如VSWR),以及通过提供辐射部100和目标组织之间的阻抗匹配来提高辐射部100和目标组织之间的耦合。
在图10A和10B中,内导体20在肾动脉RA中同轴地居中。因此,解剖谐振结构1032基本上是同轴的,从而产生一种基本均衡的谐振结构。由于介电损耗和/或导电损耗,所述均衡的解剖谐振结构1032 在肾动脉的部分解剖结构(例如之前所讨论的肾动脉的一个或多个层) 中产生加热。如图10B所示,内导体20在肾动脉RA内的居中定位产生了围绕肾动脉RA的基本均匀的加热1000a。
将内导体1020在肾动脉RA内居中定位除了形成均衡的解剖谐振结构1032之外,还产生了基本均衡的加热1000a以及所产生热能量围绕肾动脉RA的均匀分布。另外,在解剖谐振结构1032中柔性同轴线缆32的远端的加热和暴露的内导体1020的加热被维持在可接受温度。
如图11A-12A所示,将内导体20如图11A-12A和11B-12B所示那样关于形成解剖谐振结构1132和1232的解剖结构(例如肾动脉RA) 偏置产生了围绕肾动脉RA的不均匀加热1100a,1200a。
在图11A和11B中,内导体20偏离肾动脉RA的中心0.5mm,在图12A和12B中,内导体20偏离肾动脉RA的中心1mm,在每个例子中形成不均衡的解剖谐振结构1132和1232。所述不均衡的解剖谐振结构1132,1232产生围绕肾动脉RA的不均匀加热1100a,1200a,从而在肾动脉RA附近形成热斑。所述热斑可能导致靠近该热斑的部分肾动脉RA的温度升高,并可能导致不可逆的组织损伤。另外,将内导体20偏置还可能将柔性同轴线缆32的远端和/或部分已暴露的内导体20加热到不可接受的温度。
附图10A-12A所示,每个解剖谐振结构1032,1132,1232在肾动脉RA的内侧温度和外侧温度之间产生明显差异。图13示出了展示在柔性同轴线缆32的起点处所测得的肾动脉RA的内侧和外侧温度与功率的实验数据(参见图7)。肾动脉内侧最高温度的直线图形1334a和肾动脉外侧最高温度的直线图形1334b显示,所述解剖谐振结构1032,1132,1232在肾动脉RA外侧产生如下的温度:所述温度将在血管外层中实现细胞毒性温度(例如,对细胞有毒的热能量数量),同时保持肾动脉RA内侧低于致死温度。
如下面所讨论,柔性微波导管20可以包含被配置成将辐射部100 在天然身体管腔中或在天然身体结构中同轴地居中定位的居中定位装置,从而形成一种前面所述的均衡的解剖谐振结构。在本文中所描述的居中定位装置包含支架形可膨胀构件(参见图16A-16C,17A-17B, 18A,19A,20,21和22A-22B)、球囊形可扩张构件(参见图24, 25a-25B,26A-26C和58A-58C )、可压缩的膨胀构件(参见图27A-35)、可重新定位的膨胀构件(参见图18A)、带有多个构件的居中定位装置(参见32A-32B,35,37A-37B,39A-39B,40A-41B)、两个或多个翅片的可膨胀构件(参见27A-27D,28)、可膨胀篮构件(参见图29-35)、苜蓿叶式可膨胀构件(参见图34-35)、可膨胀单桨叶和双桨叶构件 (参见图36A-39B)、可膨胀单叶轮和双叶轮构件(参见图36A-39B)、可膨胀叉齿(参见图40A-40B)、可膨胀翅片构件与可膨胀螺旋翅片构件(参见图41A-41B)、以及它们的任意组合。
在本文中所描述的居中定位结构提供血液沿结构流动的最小阻力,这使得流动血液能冷却不作为消融术对象的结构和组织。
在某些实施例中,居中定位装置被限制在外护套中,在被从外护套中释放时自我展开(例如膨胀),从而将辐射部100居中定位。类似地,在被缩回外护套中时居中定位装置自我收缩。
在本文中所描述的居中定位结构可以由导电材料、非导电材料、介电材料或它们的任意组合形成。在某些实施例中,导电的居中定位结构包含形状记忆材料,比如镍钛合金(例如镍钛诺)或铁磁性形状记忆合金。
在某些实施例中,非导电居中定位结构包含形状记忆聚合物。所述形状记忆聚合物可以被由所传输的微波能量所产生的电磁场所触发,以膨胀到形状记忆位置。因此,所述居中定位装置将辐射部100 居中定位在身体管腔中,同时辐射部100传输微波能量。
在某些实施例中,所述居中定位装置可以被用于将柔性医疗导管的辐射部锚定在组织中,或在目标组织附近。替换地,所述居中定位装置可以通过身体管腔BL内的流体的/液力的,和/或机械的作用力自我居中定位。
在某些实施例中,居中定位装置还可以被配置成介电地缓冲来自周围生理结构的微波电流。
本文中所描述的实施例和特征可以被选择并与本文中所描述的其他实施例和特征以任意组合方式组合。例如,辐射部可以选自带单极天线的辐射部(参见图5)、一个或多个开槽的馈入间隙(参见图 10A-12A,14F,16A-C,19A-B ,20-22B,50-53,55和57)、偶极天线(参见图17A)、带螺旋馈入间隙的辐射部(参见图42-45,47, 54,56和57)、或它们的任意组合。为了将所述辐射部从所述柔性微波导管的外护套中展开,所选择的辐射部可以与受流体冷却的柔性微波导管组合,所述柔性微波导管通过流体联接器或可调流体联接器与导管连接并组合。另外,前面所提到的任何组合可以包含居中定位装置或结构。所述居中定位装置或结构可以连接到有利于居中定位装置致动和/或展开的导管集线器。
居中定位装置可以提供除定位该装置之外的其他功能性。例如,在某些实施例中所述居中定位装置可以形成限定和/或限制了去神经区域和/或限定和/或限制了所述解剖谐振结构的扼流器或巴伦仪。在某些实施例中,所述居中定位装置可以包含一个或多个结构,其中所述(多个)结构限定所施加的去神经能量的图案。
在图14A-14E中示出根据本发明的辐射部100的一个实施例,以及其制造方法。在制造方法的第一步,柔性同轴线缆32被提供,如图 14A所示。圆柱形或半圆柱形的部分外导体1424和介电体1422被去除以暴露出内导体,从而形成馈入间隙1450(例如馈入点)。馈入间隙1450有利于去神经能量(比如微波能量)的传播。
部分外导体1424可以通过从线缆上蚀刻、切割或剥离一段长度大约为0.01"的圆环状外导体而被去除,从而在该位置远侧留下大约1/4 波长的同轴线缆。
任选地,过渡介电体1426可以被设置在馈入间隙1450中,大致对应与被去除的外导体圆柱形段1424,如图14B所示。所述过渡介电体1426的介电特性介于内介电体1422和将使用微波天线的解剖结构 (例如肾动脉和/或肾动脉中的血液)的预期或平均介电特性之间。过渡介电体1426可以由任何合适的介电材料和/或介电流体形成。以所述方式使用过渡介电体1426可以通过例如减少反射、减少驻波(例如 VSWR),以及通过提供辐射部100与组织之间的阻抗匹配来改善辐射部100和目标组织之间的耦合。
如图14B所示,柔性同轴线缆32的最远端、部分外导体1424和内介电体1422被去除,从而暴露出部分内导体1420。如图14C所示,短的导电(例如金属)圆柱、盘、或帽1433具有被定义在其中心处的开口,所述开口的尺寸能接受内导体1420,所述帽在所述开口处被结合到内导体1420的被暴露的端部,并且在所述帽的外周处结合到外导体1424。所述远侧“帽”1433使内导体1420与外导体1424短路,从而可以优化、控制、聚集、和/或引导辐射部100的大致朝远侧的辐射图案,例如减少、聚集、定形和/或增强去神经能量越过辐射部100远端的传播。
在某些实施例中,帽1433由高温介电体(比如塑料、陶瓷或其他合适的介电材料)形成。帽1433可以包含高温介电体和形成在其中的提供内导体1420和外导体1424之间的短路或低阻抗路径的导电部。在某些实施例中,帽1433的远侧部分由非导电材料形成,比如聚合物。
在某些实施例中,扼流器或巴伦仪1408短路可以在馈入间隙1450 的近侧位置被固定到外导体1424,如图14D所示。巴伦仪1408可以包含短的导电(金属)环1408a,该环的内径尺寸能接收外导体1424。巴伦仪环1408a被电连接(例如,软焊、焊接、和/或机械连接)到外导体1424。巴伦仪环1408a被定位成与馈入间隙1450隔开大约180 度相位长度的距离。巴伦仪环1408a产生一种微波短路,从而可以优化、控制、聚集、和/或引导辐射部100的大致辐射图案,例如减少去神经能量越过辐射部100近端和/或巴伦仪1408的传播。巴伦仪环1408a可以改善阻抗匹配、减少反射和/或驻波、提高效率、以及减少栓塞(例如凝结)的风险。
巴伦仪1408还可以包含由挤出聚四氟乙烯(PTFE,例如特氟龙)、挤出聚对苯二甲酸乙二酯(PET)和/或挤出氟化乙丙烯(FEP) 形成的巴伦仪介电套管1408b。所述巴伦仪介电套管1408b可以被定位在组件的辐射部100上,并与所述巴伦仪环1408a匹配。所述巴伦仪介电套管1408b还可以包含被定位在PTFE巴伦仪介电套管1408b 上的具有一定长度的热收缩管1408c,从而改变巴伦仪1408的介电特性和/或改善其性能,由此改善去神经能量的辐射图案,所述一定长度的热收缩管1408c具有在其表面(优选为内表面)上的导电材料。银墨可以被设置在所述热收缩管1408c的内表面上,因此将所述热收缩管1408c收缩在所述巴伦仪环1408a和巴伦仪介电套管1408b上,这形成了一种提高巴伦仪1408的性能、进而改善去神经能量的辐射图案的谐振微波结构。
在某些实施例中,所述巴伦仪介电套管1408b和金属环1408a被涂有导电墨水的热收缩件(例如巴伦仪外导体)从近端覆盖到远端附近。在某些实施例中,巴伦仪介电套管1408b的远端没有涂覆导电热收缩件,因此形成一种改善巴伦仪性能的巴伦仪扩展介电体。
如图15A-15B所示,帽1533连接到柔性同轴线缆1532的远端、流体流动管腔1537的远端以及外护套1535的远端。流体流动管腔37 的远端被可密封地结合到帽1533的近侧面,从而实现并保持辐射部 100元件之间的同心对准。被形成在所述帽1533内的一个或多个帽冷却剂通道1533a,1533b使冷却剂从入流流体通道1544a循环到出流流体通道1544b,这便于冷却剂流过辐射部100,以及可以有利地提供辐射部100和帽1533的冷却。
帽1533可以通过近侧内导体接收器1533c接收内导体1520,并连接到外导体1524,从而提供内导体1520和外导体1524之间的短路或低阻抗连接。
帽1533连接到外护套1535,并形成它们之间的流体密封。帽1533 可以通过焊接、粘接、胶合、或任何其他合适的连接方式被结合到外护套1535。冷却流体通过帽入流冷却剂通道1533a进入帽流体腔 1533d,然后通过帽出流冷却剂通道1533b流出帽流体腔1533d。
根据本发明,温度传感器1534可以被操作地与辐射部100和/或帽1533关联。例如但不限于,一个或多个温度探针、压力传感器、流动传感器、或任何其他合适的传感器可以被包含在本文中所描述的辐射部100、帽1533、外护套1535、柔性同轴线缆1532、入流和/或出流流体通道1544a,1544b、帽流体腔1533d或任何其他的管道和/或结构(例如,网、球囊、可膨胀和/或可展开构件)中。在某些实施例中,温度传感器1534可以被定位在帽1533的远端上。一个或多个温度探针可以被包含在柔性微波导管1530(例如本文中所描述的外护套、柔性同轴线缆32、一个或多个流体腔或管道、外介电绝缘层128、屏蔽外导体124a、和/或本文描述的任何其他的结构)中。
温度传感器1534可以被定位在辐射部100的有效加热区的远侧。因此微波能量传输系统12监视流过最热位置的流体的温度。如果温度传感器1534测得一个高于凝结温度阈值的温度,则所述系统12可以临时地或永久地停止能量传输。在某些实施例中,一个或多个温度传感器1534可以被定位在后面所讨论的居中定位装置中所形成、穿过居中定位装置所形成、围绕居中定位装置所形成的流体通道的出口处。
在某些实施例中,帽1533或柔性微波导管30的远侧末端的任意部分可以包含辐射不透材料(比如钡)以增强其在荧光透视术期间的辨识度。
如之前关于图6A和8A-8C所讨论的,位于柔性微波导管30的近端的导管集线器18能实现去神经能量源(例如微波发生器22)到柔性同轴线缆32的、流体冷却系统19到入流流体通道44a和用于从出流流体通道44b排出的冷却剂的接收终点(例如,容器、蓄液池、或排放管)的可操作联接。
如图16A-16C所示,根据本发明的柔性微波导管1630可以包含与辐射部100关联的一个或多个支架形可膨胀元件1670。如图16A所示,在通过脉管系统将柔性微波导管1630引向目标组织附近的位置时,支架形可膨胀元件可以被保持在压缩状态。在某些实施例中,所述支架形可膨胀元件1670被外护套1635的远侧部分保持在压缩状态。在其他实施例中,所述支架形可膨胀元件1670以压缩状态被装载在外护套1635内。
在使用期间,如图16B所示,外护套1635可以被朝近侧收缩,和/或支架形可膨胀元件1670可以被朝远侧推进,从而导致所述支架形可膨胀元件1670脱离外护套1635的约束并围绕辐射部100展开成大致管状、圆柱状和/或球囊状,从而使所述柔性微波导管1630的辐射部100在管腔(未具体示出)中居中定位。所述支架形可膨胀元件 1670被定位成使得支架形可膨胀元件1670的中心与辐射部100的馈入点(例如馈入间隙1650)大致重合。如图16A-16C所示,馈入间隙 1650可以包含内导体1620的被暴露开槽部分,其中外导体1624的一部分已经被去除。内导体1620的暴露部分还可以包含覆盖内导体1620 的过渡介电体1650。
支架形可膨胀元件1670的至少一部分可以被定位在辐射部100 的远侧、被定位在辐射部100的近侧、可以大致围绕辐射部100、或它们的任意组合。所述支架形可膨胀元件1670可以由例如线网、线构件、冲压金属形成,和/或可以由任何合适的导电材料形成,包括但不限于不锈钢、铜、银、铂、金、形状记忆合金(例如镍钛诺)等等。在某些实施例中,支架形可膨胀元件1670还可以由具有低导电性的聚合物或复合材料构成和/或包含低导电性的聚合物或复合材料,比如聚氨酯、聚酰亚胺、FEP、PET、和/或PTFE。
图16C示出了支架形可膨胀网状元件1672。在某些实施例中,所述支架形可膨胀网状元件1672包含被结合到管状主体网1672b的远端和近端帽网1672a。所述管状主体网1672b的至少一部分从包含馈入间隙1650的辐射部100(例如内导体1620和过渡介电体1650)径向向外延伸。
在某些实施例中,端帽网1672a的至少一部分包含可变的网密度,其中所述网密度在远端和/或近端处较大,沿管状主体网1672b的长度较小。在本文中所描述的网状结构为血液沿该结构朝远侧流动提供最小阻抗,这使得流动的血液能冷却不作为消融术对象的结构和组织(肾动脉的血液、内膜和中膜)。
在某些实施例中,所述支架形可膨胀元件1670可以作为支架被置留在肾动脉RA内,以减少潜在性狭窄症所引起的并发症。所述支架形可膨胀元件1670可以在能量施加之后脱离所述柔性微波导管1630 并被留置就位,以机械地支撑肾动脉RA。
在某些实施例中,支架形可膨胀元件1670或本文中所描述的其他可膨胀装置可以包含三个位置。在第一位置,所述支架形可膨胀元件 1670完全膨胀/展开以初始定位。在第二位置,支架形可膨胀元件1670 被朝近侧收缩,以允许在展开的同时保持支架形可膨胀元件1670围绕辐射部100就位。在第三位置,支架形可膨胀元件1670被完全收缩,从而支架形可膨胀元件1670的最近侧部分被释放。当导管30被朝近侧拉出肾动脉RA时,支架形可膨胀元件1670的最远侧部分可以被从柔性微波导管30中释放出来。例如,支架形可膨胀元件可以装入一个面朝远侧方向的槽内,因此在导管朝远侧推进时保持住所述网,但是仅在所述装置被朝近侧拉动且外护套被完全收缩时释放。
在图16A-16C中,帽1633连接到辐射部100的远端,并提供内导体1620和外导体1624,1624a之间的电短路。温度传感器1634可以被收纳在帽1633内或被收纳在辐射部100、支架形可膨胀元件1670、支架形可膨胀网状元件1672、柔性同轴线缆1632或外护套1635的任何其他部分中。
在某些实施例中,支架形可膨胀元件1670的近侧部和/或远侧部和/或支架形可膨胀网状元件1672a的近侧部和/或远侧部形成扼流器或巴伦仪短路。所述扼流器或巴伦仪短路大体上使电磁场局限于由所述扼流器或巴伦仪短路限定的电磁边界。因此,发热基本上被限制在从所述馈入间隙径向向外的部分。
在某些实施例中,居中定位结构形成一种在远端和近端处基本上不透过微波能量的法拉第笼,同时在其至少部分长度上基本保持微波通过。这种结构可能具有若干优点,因为它能使所述装置以径向地传递去神经能量为目标(例如周向地到肾动脉),同时减少或消除去神经能量的轴向传递(例如沿肾动脉朝远侧或朝近侧)。根据本发明的柔性医疗导管可以通过使医生能精确地给目标组织传输能量同时减少或消除附带组织影响所引起的并发症来改善手术结果。
形成法拉第笼的近侧部分和远侧部分的所述网可以形成一种将大部分的所述解剖谐振结构限制于所述法拉第笼的近侧部和远侧部之间的解剖结构的扼流器或巴伦仪短路。
在某些实施例中,所述网可以被配置成适应在去神经手术期间所使用的去神经能量的特定波长或波长范围。例如但不限于,为了提供所需的微波辐射图案,网眼间距(例如相邻网眼元件之间的距离)在网状结构的远端和近端处可以小于大约1/10λ(例如所使用的微波信号的波长的十分之一),以产生有效的微波边界。沿所述网的长度所述网眼间距可以大于大约1/10λ,以避免产生微波边界,从而允许去神经能量的辐射。
有利地,所披露装置的开放网状结构在去神经手术期间使血液能沿外科手术部位持续流动,从而增加了医生完成手术的时间窗口。保持血液流动提供了柔性微波导管30和辐射部100的热管理,同时提供血管壁内侧结构的冷却。
根据本发明的某些实施例包含具有多个馈入间隙的辐射部。根据本发明的柔性微波导管的辐射部可以包含其中限定有多个窗口的网状结构。窗口可能包含性质与网状结构的主体不同的一种或多种材料。替换地,窗口可以是一种以材料的缺失为特征的开放结构(例如,孔)。如本文中所述,在结构上由不同材料形成的窗口和在结构上以材料缺失为特征的窗口(例如,孔)被互换地使用。所述材料性质可以包含机械性质、材料性质、电性质、或它们的任意组合。窗口材料性质可以包含机械差异,比如网眼间距、网眼规格、网眼形状、网眼厚度或它们的任意组合。所述窗口材料特性可以包含物理差异,比如材料类型、组分、材料结构或它们的任意组合。所述窗口特性可以包含电差异,比如导电性、电阻性或它们的任意组合。
所述窗口的位置可以沿网状结构侧向地分布并且可以被径向地指向(indexed),和/或径向地分布。在某些实施例中,三个窗口槽被径向地60度指向并沿网状结构纵向地分布。所述窗口对应于使医生能准确地选择作为去神经对象的组织区域的被限定治疗区(例如,杀伤区)。如本文中所述,多窗口网状结构也可以与单馈入间隙设计一起使用。多窗口设计的优点在于:在去神经期间,仅有部分血管壁承受能量传输,但仍然保证肾神经束被有效地处理。
网状结构可以被配置成将柔性微波导管30的辐射部100在身体管腔和/或身体结构中居中定位。
网状结构可以包含导电材料、非导电材料或导电与非导电材料的组合。导电的网状结构被配置成与柔性微波导管的辐射部相互作用。例如,导电网状结构可以形成谐振结构的一部分。在某些实施例中,导电网状结构形成包含围绕该网状结构的至少一部分组织的解剖谐振结构的一部分。
至少一部分网状结构可以包含被配置成形成微波扼流器或巴伦仪的导电部分。例如,网状结构的远侧部和/或近侧部可以包含被配置成分流微波能量信号的导电网状结构,从而防止至少一部分微波能量信号朝该导电网状结构的近侧和/或远侧传播。
在某些实施例中,支架形可膨胀元件1670被联接到致动器(例如致动器15和/或旋转致动器15g)。致动器可以被配置成机械地使所述支架形可膨胀元件1670膨胀(或被配置成膨胀、展开或打开本文中所描述的居中定位装置)。远侧或近侧端帽网1672a可以被联接到致动器15,并通过致动器15的位置变化被膨胀和/或收缩。
所述居中定位装置(例如,支架形快或本文中所描述的其他居中定位装置)的致动可以改变施加给身体管腔内表面的作用力的大小,从而将所述解剖结构定形为所需的结构和/或形状。所述身体管腔可以被定形以形成一种特定的外形、直径和/或圆柱结构,从而有利于对目标组织的能量传输。
如图17A-17B所示,所述导电网状结构1772包含被限定在至少一部分长度段上的多个窗口1773a-1773e。导电网状结构1772被配置成使得通过所述窗口1773a-1773e给组织传输去神经能量,同时削弱或消除该网状结构1772的剩余部分向组织传递去神经能量。近侧或远侧网状端帽1772a,1772b可以被配置成实质地将所述谐振结构限制于网状结构1772的范围。
在某些实施例中,导电网状结构1772具有足够大的密度以限制通过其的微波能量辐射,除了在所述结构具有大约为零的密度的一个或多个窗口1773a-1773e处之外。因此临床效果是图案对应于窗口 1773a-1773e的肾动脉消融。
在某些实施例中,所述网1772的窗口区域可以具有大于大约 1/10λ的网眼密度(例如网眼元件的间距大于1/10λ),而所述网的非窗口区域可以具有小于大约1/10λ的网眼密度(例如网眼元件的间距小于1/10λ)。在某些实施例中,所述网1772的窗口区域包含非导电材料或任何能透过微波能量的材料。在某些实施例中,被形成在导电网状结构1772中的所述窗口1773a-1773e是敞开的并不包含任何材料。
在使用期间,柔性微波导管可以被定位在目标组织附近,然后导电网状结构1772被膨胀,然后去神经能量被施加给暴露在所述窗口 1773a-1773e中的组织。
图17B示出了由图17A中所示的装置施加过去神经能量后的肾动脉RA。经每个窗口1773a-1773e被施加给肾动脉RA的去神经能量产生了相应的去神经区1774a-1774e。
为了展示,图17B中的肾动脉具有沿肾动脉RA纵向延伸的多个肾神经RN。去神经区1774a-1774e(以及对应的窗口1773a-1773e) 被纵向地彼此隔开,同时提供周向重合,从而使得每个单独的肾神经 RN穿过至少一个去神经区1774a-1774e。通过这种布置,去神经能量通过沿着肾动脉RA长度的多个窗口1773a-1773e中的至少一个被施加给每个肾神经。
提供能量的周向重合和/或周向传输的实施例可能需要单独的处理以获得所需结果。
如图18A中所示,导电网状结构1872包含被限定在其至少一部分长度段上的窗口1873。所述导电网状结构1872被配置成经该窗口 1873给组织传输去神经能量,同时削弱或消除去神经能量从网状结构 1872的剩余部分向组织传递。近侧和远侧端帽1872a,1872b可以被配置成实质地将所述谐振结构限制于网状结构1872的范围。
在某些实施例中,窗口1873可以包含具有大于大约1/10λ的网眼密度的网。导电网1872的非窗口区域可以具有小于大约1/10λ的网眼密度。
在图18B-18G 中示出利用图18A中所示的导电网状结构1872施加去神经能量的方法。如图18B中所示,柔性微波导管1830的远端被定位在目标动脉(例如肾动脉RA)内。如图18C中所示,外护套 1835被缩回以移出导电网状结构1872,并且导电网状结构1872被膨胀。窗口1873指向肾动脉RA第一目标部分1874a,当第一目标组织 1874a被暴露给窗口1873时,第一次去神经能量应用被施加给肾动脉 RA。在去神经能量的第一次施加之后,导电网状结构1872被重新定位,如图18D中所示,从而将肾动脉RA的不同区域(例如第二目标组织1874b)暴露给所述窗口1873。在重新定位期间导电网状结构1872 可以被彻底地或部分地收缩,然后如图18E中所示再次膨胀。在将柔性微波导管1830重新定位后,第二次去神经能量应用被施加给第二目标组织1874b。如图18F-18G中所示,可以根据需要按所述方式实施连续的柔性微波导管1830重新定位和去神经能量的施加,从而给第一、第二、和第三目标组织1874a-1874c等等施加能量。
导电网状结构1872最初被定位在身体血管内的最远侧位置,然后每次连续重新定位都被朝近侧拉动。在某些实施例中,导电网状结构 1872(以及所述窗口1873)能独立地绕柔性微波导管1830的纵轴线旋转。旋转致动器15g(参见图7)(例如但不限于,球突或杆)可以被提供在导管集线器18上(参见图7),从而使医生能在原位置转动和/或操纵所述导电网状结构1872,而不需要退出和重新插入所述柔性微波导管,和/或不需要旋转整个柔性微波导管1830。
图18A-18G 中的柔性微波导管30可以包括在辐射部100远端处的温度传感器1834。温度传感器1834可以被用于测量经肾动脉循环并流过近侧和远侧端帽网1872a的流体的温度。温度传感器1834所测得的流体温度可指示辐射部100所传输的能量。温度传感器1834所测得的流体温度可指示流过近侧和远侧端帽网1872a的流动速率。当能量传输终止时,低流动速率可能以不期望的温度升高、温度变化率的变化、和/或降温的失效为特征。低流动速率可能指示存在凝结、栓塞、或在导电网状结构1872近侧的其他阻塞。
传感器引线1834a被沿着导电网状结构1872的外表面走线。导电网状结构1872至少部分地将传感器引线1834a与辐射部100所产生的电磁场隔离。
可以提供与旋转致动器15g相关的一个或多个标记物,以告知医生导电网状结构1872的位置。在某些实施例中,导电网状结构1872 或其一部分由可通过显像技术探测的材料形成,从而使得医生能通过荧光透视或其他医疗显像装置(例如MRI和/或血管造影术)确定其位置。
在某些实施例中,辐射部100包含根据本发明的天线结构,该天线结构包含多个馈入间隙1950a,1950b,1950c(例如能量馈点)。图19A示出了包含柔性同轴线缆1932的柔性微波导管1930,柔性同轴线缆1932在其远端上被连接到带有多个辐射馈入间隙1950a-1950c的辐射部100。辐射部100包含第一辐射馈入间隙1950a、在第一辐射馈入间隙1950a远侧的第二辐射馈入间隙1950b、和在第一与第二辐射馈入间隙1950a,1950b远侧的第三辐射馈入间隙1950c。在这些实施例中,传输给组织的总功率被分配给多个辐射馈入间隙 1950a-1950c。每个间隙1950a-1950c的尺寸(例如暴露的内导体的纵向长度)可以被调整以确定被每个馈入间隙1950a-1950c传输的总能量的百分数。
图19A仅示出了一种具有带三个辐射馈入间隙1950a-1950c的辐射部100的非限制性例子。因为来自发生器的能量最先到达第一辐射馈入间隙1950a,所以馈入间隙1950a可以被确定尺寸以传输到达的能量的三分之一。再转向第二辐射馈入间隙1950b,由于三分之一的总能量由第一辐射馈入间隙1950a传播,所以剩下的三分之二的总能量到达第二辐射馈入间隙1950b。所以,第二辐射馈入间隙1950b必须传播所到达能量的二分之一,从而将总能量的三分之一传输给组织。最后,总能量的三分之一到达第三辐射馈入间隙1950c,因此第三辐射馈入间隙1950c必须传播所到达能量的百分之百,以传输总能量的三分之一给组织。
在图19A中,带有多个辐射槽1973a-1973c的辐射部100包含导电网状结构1972,所述导电网状结构1972将所述辐射部在导电网状结构1972内居中定位并且包含用于经窗口1973a-1973d给组织传输去神经能量的多个窗口1973a-1973d。在某些实施例中,每个窗口1973a-1973d被配置成在导电网状结构1972的圆周的90度上传输去神经能量。在某些实施例中,每个窗口的径向段与窗口的总数相关。
在某些实施例中,同轴绝缘体D0-D7的介电常数被选择以匹配辐射部100的特殊结构。例如,近侧同轴绝缘体D0的介电常数可以与柔性同轴线缆1832的介电常数相关,其余同轴绝缘体D0-D7的介电常数与辐射部100的特定段相关。
在某些实施例中,每个馈入间隙1950a-1950c的宽度改变以促进平均地传输能量给每个槽,如下面详细讨论那样(参见图51和53)。
在某些实施例中,近侧网状结构1972a和远侧网状结构1972b被配置成提供流体流过其中的最小阻碍。经近侧网状结构1972a和远侧网状结构1972b的充裕流体流动提供了冷却效果,并可以防止凝结。在某些实施例中,如果血液温度接近和/或高于凝结水平,则微波能量传输系统停止微波能量功率信号的传输。
如图19B中所示,每个窗口1973a-1973d给肾动脉RA上的对应目标组织1974a-1974d传输去神经能量,其中沿着肾动脉的整个圆周的组织的至少一部分被沿着其纵向长度确定为目标。
在具有多个馈入间隙的某些实施例中,多个对应的导电网状结构 2072a-2072c被提供,如图20中所示。每个馈入间隙2050a-2050c与单独的导电网状结构2072a-2072c操作地关联。每个单独的导电网状结构2072a-2072c可以包含可变的网眼密度构造和/或一个或多个窗口 2073a-2073c,如本文中所述那样。如图20中所示,所述窗口 2072a-2073c的方位可以被布置以沿不同方向辐射(例如径向上分散)。在某些实施例中,所述窗口2073a-2073c可以被布置以沿相似的方向辐射(例如径向上指向)。
一个或多个导电网状结构2072a-2072c可以独立地绕柔性微波导管2030的纵轴线单独或一起旋转。一个或多个相应的致动器15g(参见图7)例如可以被提供在导管集线器18上(参见图7),并且可以远程地定位和/或监视所述导电网状结构2072a-2072c。
单独的致动器可以被有选择地关联到一个或多个导电网状结构 2072a-2072c,从而使医生能按照需要操纵/转动所述导电网状结构 2072a-2072c的任意组合。例如但不限于,每个导电网状结构 2072a-2072c可以与开关相关联,所述开关被接通时将各网状结构操作地联接到表盘致动器。一个或多个导电网状结构2072a-2072c可以被选择成在所述表盘致动器被转动时,所选择的导电网状结构2072a-2072c相应地旋转。其他的致动器控制方案和联接布置可以额外地或替换地被包含在根据本发明的导管或系统内,包括但不限于机电式或机械式利用离合器、棘爪、液压联结器、磁流变联结器、电机、分档器、一个或多个齿轮、一个或多个辊子、一个或多个带轮等等。
如图21所示,根据本发明的柔性微波导管2130可以包含被布置在一个或多个馈入间隙2150a-2150c之间或附近的一个或多个网状结构2172a-2172d。所述网状结构2172a-2172d可以单独地或共同地膨胀和/或收缩。所述柔性微波导管可以包含能被朝远侧拉动的外护套 2135,以有选择地展开一个或多个网状结构2172a-2172d,从而改变能量传输的区域。所述馈入间隙2150a-2150c的尺寸(例如每个馈入间隙2150a-2150c的长度L1-L3)可以被裁剪成围绕馈入间隙 2150a-2150c分配去神经能量(例如微波能量),如本文中所述。具有大致管状外形的一段长度的过渡介电体2126a-2126c可以围绕已暴露的内导体2120被同轴地设置在一个或多个馈入间隙2150a-2150c中,这可以对每一段进行加载、改善阻抗匹配、减少反射和/或驻波、提高效率、以及减少栓塞(例如凝结)的风险。
所述网状结构2172a-2172d被配置成将辐射部100在管状身体结构或身体部分(例如肾动脉RA)内居中定位。在某些实施例中,所述管状身体结构可能形状不均匀,并且每个网状结构的直径可以改变以适应所述管状身体结构的不均匀形状,从而将辐射部100在管状身体结构或身体部分内居中定位。每个网状结构2172a-2172d可以由不同材料形成。在某些实施例中,一个或多个网状结构2172a-2172d可以被配置成作为扼流器或巴伦仪,从而防止至少一部分的微波能量信号越过所述网状结构2172a-2172d纵向地传播。例如,在一个实施例中,近侧网状结构2172a和远侧网状结构2172d包含导电材料并被配置成作为扼流器或巴伦仪,从而防止至少一部分的微波能量信号从近侧网状结构2172a朝近侧传播以及从远侧网状结构2172d朝远侧传播 (例如,沿轴向减少来自辐射部的微波能量的传播)。
在某些实施例中,近侧网状结构2172a和/或远侧网环状结构 2172d具有较高的密度,以作为在辐射部100的工作频率下的有效电墙。
在某些实施例中,每个网状结构2172a-2172d形成扼流器或巴伦仪,从而限制每个馈入间隙2150a所产生的能量的传播。如图21中所示,柔性微波导管2150的远侧部分可以由区域D0-D7限定。区域 D0中所辐射的能量受到近侧网状结构2172a的限制。每个网状结构2172a-2172d分别限制在区域D1、D3、D5和D7中的微波能量。在区域2中的能量被限制为第一馈入间隙2150a所辐射的能量,在区域4 中的能量被限制为第二馈入间隙2150b所辐射的能量,在区域6中的能量被限制为第三馈入间隙2150c所辐射的能量。
在某些实施例中,所述近侧和/或远侧表面可以被有选择地在近侧和/或远侧表面上涂覆导电膜、箔、和/或墨水,以增强能量方向性。
如图22A-22B 中所示,根据本发明的柔性微波导管2230包含具有篮状和/或伞状外形的远侧网篮结构2278a,2278b。远侧网篮结构包含远侧顶点和近侧开放(膨胀)端。远侧网篮结构的顶点被锚定到柔性微波导管2230的远侧帽2233或靠近柔性微波导管2230的远侧帽 2233。通过这种布置,远侧网篮结构可以捕获在任何可能在使用期间形成的栓塞物质,从而例如防止凝块或其他生物物质进入血液流。
在图22A中,远侧网篮结构2278a和网状结构2272a被配置成将辐射部100的馈入间隙2250在管状身体结构(例如肾动脉)中居中定位、和/或通过禁止或减少能量的向远侧传播来改善去神经能量的传输,如在本文中所述。
在图22B中,辐射部100包含用于将辐射部100的馈入间隙2250 在天然身体管腔(例如肾动脉RA)中居中定位的远侧和近侧网状结构。远侧网篮结构2278b通过系绳2278c被连接到帽2233。系绳2278c 可以由导管集线器18中的旋转致动器15g(见图7)释放,或者系绳 2278c可以被纳入导丝系统。
如图23中所示,根据本发明的台阶式柔性微波导管2330包含一种台阶式结构,其中近侧部分2330a具有较大的第一直径,远侧部分 2330b具有较小的第二直径。通常,系统可传输的功率数量至少部分地由系统中导体的尺寸确定。较粗的近侧部分2330a能容纳较大直径的柔性同轴线缆2332a,且导体能比较细导体处理更大的功率线缆。较粗的导体倾向于不如较细的导体具有柔性。有利地,所披露的台阶式柔性微波导管2330的较细较具有柔性的远侧柔性同轴线缆2332c 能在曲折的管状身体结构(例如肾动脉)或其他身体部分中容易地给送台阶式柔性微波导管2330的远侧部分2330b,而台阶式柔性微波导管2330的较粗的近侧部分2330非常适合于较粗较直的管状身体结构 (例如股动脉)。可传输给目标部位的能量数量可以被增加,因为在台阶式柔性微波导管2330的近侧部分2330a中的损耗被减少。
分别在台阶式柔性微波导管2330的近侧和远侧部分2330a,2330b 中的柔性同轴线缆2332a,2332b通过锥形匹配网络2332c联接。所述锥形匹配网络2332c可以包含直线的锥形部分和/或指数曲线的锥形部分。额外地或替换地,在近侧段2330a、锥形段2332c、和/或远侧段 2332c中的柔性同轴线缆2332内使用不同的介电层,以改善匹配、减少反射/驻波(VSWR)、以及减少损耗。
如图24中所示,根据本发明的某些实施例中,用于天然管腔的柔性微波导管2430的所述辐射部包含由生物相容弹性材料形成的可扩张球囊2479。该可扩张球囊2479可以用任意合适的介质进行扩张,包括但不限于介电流体(例如盐水或除离子水)和/或气体(例如,空气、二氧化碳等)。在某些实施例中,馈入间隙2450可以被包含在可扩张球囊2479内,介电流体和/或部分可扩张球囊可以形成解剖谐振结构的一部分,如本文中所述。可扩张球囊2479可以包含沿大致纵向方位被设置的一个或多个管道或通道,所述管道或通道被布置成在使用时便于脉管流体(例如血流)流过所述球囊(参见图25A-25B,和 26A-26C)。与一个或多个球囊管道流体连通的一个或多个流体端口被设置在导管的近侧部分和/或导管的末端,从而增强从中穿过的脉管流体的流动。至少部分球囊可以包含被设置在球囊上的导电层(参见图58A-58C )。所述导电层可以被设置在球囊的外表面上,或者优选地在内表面上。导电层可以由任何合适的涂覆或沉积方法形成,包括但不限于薄膜沉积、电镀、导电墨水或箔的施加、等等。在某些实施例中,导电层由导电银墨水形成。导电层可以被形成一种图案,例如螺旋图案、格子图案、浓淡点图案、梯度图案、或便于球囊的弹性扩张和收缩同时保持导电层图案的元件之间的导电性的任何图案。在某些实施例中,透射的螺旋区域(例如没有墨水覆盖)可以具有大约三到五密耳(mil)(0.003"-0.005")的宽度。通过这种布置,法拉第笼可以由导电层形成,这可以改善辐射图案并由此改善去神经能量的传输。例如但不限于,根据本发明的一种球囊包含被设置在球囊近端和远端处的螺旋导电图案,同时沿中间部分几乎没有或没有导电材料。在实施例中,所述球囊结构可以包含按照之前所描述的网状结构的配置所布置的导电图案,例如带窗口的球囊(整个球囊上都具有导电涂层除了开窗口部分)、多球囊、带有多个窗口的单球囊、(多个)可旋转球囊等等。
图25A示出了根据本发明某些实施例的微波能量传输系统2512,其包含被连接到柔性微波导管2530的导管集线器2518,柔性微波导管在其远端上带有在可扩张球囊2579内的远侧辐射部。系统2512仅示出了关于可扩张球囊2579的方案,但是应当明白本文中所描述的任意方案都可以与系统2512结合。
球囊式导管集线器2518包含用于使可扩张球囊2579扩张和/或收缩的球囊流体联接器2545。球囊式导管集线器2518还可以包含本文中所描述的导管集线器18和联接器45或可调流体联接器845的任何其他的方案(参见图7-9C)。球囊流体联接器2545形成分别与入流和出流增压室2542b,2543b流体连通的入流和出流端口2542a,2543a。入流和出流增压室2542b,2543b分别与被形成在流体流动管腔、柔性同轴线缆2532以及外护套2535之间的入流和出流流体通道2544a, 2544b流体连通。
如图25A-25B中所示,可扩张球囊2579包含形成球囊腔2579b 的外表面的可扩张材料2579a。球囊腔2579b可以包含由每个球囊叶 2579b-2579d形成的一个或多个室。在某些实施例中,可扩张球囊2579 包含三个叶2579b-2579d,其中由每个球囊叶2579b-2579d形成的腔被入流流体通道2544a所提供的流体扩张。
球囊叶2579b-2579d被配置成将辐射部100在身体管腔或身体部分中居中定位。球囊叶2579b-2579d提供流体在每个球囊叶 2579b-2579d和身体管腔之间流动的通道,其中流体流动为球囊叶 2579b-2579d和身体管腔提供冷却。
保持充裕的血液流过辐射部对诸如球囊居中定位装置的情况是关键的,否则该装置将会堵塞到远侧组织的关键血液流动。因此,除其他的居中定位装置和柔性微波导管30之外,本文中所描述的任何可扩张球囊2579可以被制造成具有围绕其圆周的多个套入部分(例如,褶部件、通道部件或交错折叠部件),从而在所述结构被放置时使流体 (血液)可以持续流过结构。
来自入流流体通道2544a的流体被传输到球囊腔2579b的靠近帽 2533的最远侧部分。流体经被连接到球囊腔2579b的最近侧部分的出流流体通道2544b离开球囊腔2579b。因此,流体经球囊腔2579b朝近侧流动,从而给辐射部100提供额外的冷却源。在某些实施例中,需要流体流动以消除辐射部100产生的热并维持一种介电缓冲。
可扩张球囊2579可以被预成型为包含球囊叶2579b-2579d。在某些实施例中,可扩张材料2579a在每个叶2579b-2579d之间被结合到辐射部100。
系统2512可以包含压力调节以维持可扩张球囊2579内的压力。可要求维持压力,以维持天线定位以及维持可扩张球囊和身体管腔之间的通道。可以通过采用压力传感器作为给流体冷却系统40(参见图 7)中的泵或机械调节器的反馈来调节出流端口2542a处的压力来完成压力调节。可以通过利用在球囊流体联接器2545内的压差调节器 2543d在入流端口2542和出流端口2543a之间维持一个压差来实现压力调节。
在某些实施例中,在可扩张球囊内的流体被排入管状管腔和/或身体结构。可扩张球囊2579接收来自入流流体通道2544a的流体。为了维持可扩张球囊2579内的压力和/或为了维持可扩张球囊2579的形状,可扩张球囊2579中的流体经可扩张材料2579a上的孔眼离开。排入管状管腔和/或身体结构的流体量可以取决于手术的长度和所述孔眼的尺寸。
还可以通过实施解剖结构测量来调节所述压力。例如,如果被用在脉管系统内,还可以通过采用压力传感器2542e来探测可扩张球囊 2579内的收缩压脉冲来调节可扩张球囊2579中的压力。在可扩张球囊2579内侧所测得的压力脉冲将在脉管结构由于可扩张球囊2579的扩张而变得更加闭塞时增大,而下降的压力脉冲则表示较收缩的球囊 2579。
图26A-26C示出了另一种用于将辐射部在身体管腔(例如肾动脉) 中居中定位的可扩张球囊2679的实施例。可扩张球囊2679包含被结合到可扩张球囊外壳2679e的第一、第二、和第三叶2679b-2679d。可扩张球囊外壳2679e形成收纳冷却流体的内室。来自可扩张球囊外壳2679e的冷却流体通过多个入流流体通道2644a流到第一、第二、和第三叶2679b-2679d。
图27A-41B示出了多种被用于将根据本发明的辐射部在身体管腔或身体结构内定位的居中定位装置。一个或多个居中定位装置可以被连接到柔性微波导管的任意部分。在某些实施例中,所述居中定位装置被连接到可展开部分,其中在未展开的第一位置所述居中定位装置处于受限状态,在已展开的第二位置所述居中定位装置处于不受限状态,例如被膨胀或配置成将所述辐射部在所述身体管腔中居中定位。
图27A-27D示出了用于将辐射部100在身体管腔BL中居中定位的居中定位翅片2790。居中定位翅片2790包含被连接到部分柔性微波导管2730的第一、第二、和第三翅片2790a-2790c。图27A示出了被限制在外护套2735内的居中定位翅片2790。居中定位翅片2790被示出在辐射部100的远侧,但是居中定位翅片2790可以被定位在辐射部100的附近或近侧。图27B是图27A的横向剖面,其示出了受外护套2735约束并彼此偏移约120度的每个翅片2790a-2790c。
在图27C-27D中,居中定位翅片2790和辐射部100从外护套2735 展开。当脱离外护套2735的约束后,翅片2790a-2790c将辐射部100 围绕身体管腔BL的中心居中定位。使用后,居中定位翅片2790和辐射部100被收缩到外护套2735内的受约束位置(参见图27A)。
如图27C中所示,居中定位翅片2790可以通过与身体管腔BL 的接触将辐射部100居中定位。在某些实施例中,居中定位翅片2790 通过流体/液力、和/或机械作用力将辐射部100在身体管腔BL中自我居中定位,从而保证均匀的能量传输。
在某些实施例中,帽2733从柔性微波导管2730朝远侧延伸,并将辐射部100纵向地定位在身体管腔中靠近目标组织。例如,帽2733 被确定尺寸以在肾脏巴伦仪处进入和/或被射入肾动脉的分支。帽2733 和辐射部100之间的距离被确定为使得辐射部100被定位在肾动脉中靠近目标组织。
图28示出了包含被连接到远侧接收器2891e并形成近侧接收器 2891f的四个叉2891a-2891d的四叉居中定位装置2891。远侧接收器 2891e和近侧接收器2891f均被配置成接收柔性同轴线缆(未示出)的一部分通过其中。
图29-32示出了用于将辐射部100在身体管腔BL中居中定位的居中定位篮2992。每个居中定位篮2992包含被连接到近侧接收器 2992e和远侧接收器2992f的第一、第二、第三、和第四条带 2992a-2992d。在某些实施例中,近侧接收器2992e和远侧接收器2992f 的至少一个被固定到柔性微波导管的一部分,而另一个在柔性微波导管上自由滑动。因此,在已展开状态下居中定位篮2992被膨胀,如图 29所示。在未展开状态下(例如受到外护套或类似装置的约束)所述条带2992a-2992d被压缩,从而将居中定位篮2992拉长。
在图29中,近侧接收器2992在辐射部100的远侧并被连接到细长帽2933。远侧接收器2992f不受约束并从细长帽2933朝远侧延伸。在某些实施例中,细长帽2933的远端包含倒圆表面,以便于插入和/ 或引导柔性微波导管2930到目标组织。
在图30中,所述居中定位篮3092被定位在辐射部100的近侧。远侧接收器3092e被固定到柔性微波导管3030。近侧接收器3092f在柔性微波导管3030上自由滑动,从而允许该居中定位篮3092在被约束在外护套或类似装置(未明确示出)内时被压缩和拉伸。
在图31中,居中定位篮3192围绕辐射部100被居中定位,其中远侧接收器3192e在辐射部100和帽3122之间被固定到柔性微波导管 3130。近侧接收器3192f在柔性微波导管3030上在辐射部100的近侧自由滑动,从而允许居中定位篮3192在被约束在外护套或类似装置内时被压缩和拉伸。
在图32A和32B中,近侧居中定位篮3292a和远侧居中定位篮 3292b被连接到柔性微波导管3230。近侧居中定位篮3292a和远侧居中定位篮3292b被配置成将包含图32A中的近侧馈入间隙3250a和远侧馈入间隙3250b以及图32B中的近侧馈入间隙3250a的辐射部100居中定位。近侧居中定位篮3292a被定位在近侧馈入间隙3250a的近侧,远侧接收器3292ae被固定到柔性微波导管3230。近侧居中定位篮3292a的近侧接收器3292af在柔性微波导管3230上自由滑动,从而允许近侧居中定位篮3292a在被约束在外护套或类似装置(未明确示出)内时被压缩和拉伸。
在图32B中,远侧居中定位篮3292b在远侧馈入间隙3250b上被居中定位,其中远侧接收器3292be在远侧馈入间隙3250和帽3233 之间被固定到柔性微波导管3130。远侧居中定位篮3292b的近侧接收器3292bf在远侧馈入间隙3250b的近侧在柔性微波导管3230上自由滑动,从而允许远侧居中定位篮3292b在被外护套或类似装置约束时被压缩和拉伸。
在图32B中,近侧馈入间隙3250a在近侧居中定位篮3292a和远侧居中定位篮3292b之间被居中定位。在某些实施例中,近侧居中定位篮3292a被定位在近侧馈入间隙3250a的近侧,而远侧接收器3292ae 被固定到柔性微波导管3230,从而近侧居中定位篮3292a的近侧接收器3292af在柔性微波导管3230上自由滑动。远侧居中定位篮3292b 被定位在近侧馈入间隙3250a的远侧,而远侧接收器3292be在帽3233 的近侧被固定到柔性微波导管3130,从而近侧接收器3292bf在柔性微波导管3230上自由滑动。因此,近侧和远侧居中定位篮3292a,3292b 可以在被外护套或类似装置约束在时被压缩和拉伸。
在图33中,双条带居中定位装置3393围绕辐射部100的馈入间隙3350被居中定位。双条带居中定位装置3393包含被固定到柔性微波导管3330的近侧接收器3393f,以及在柔性微波导管3330的帽3333 上自由滑动的远侧接收器3393b。
双条带居中定位装置3393包含彼此偏移180度的第一和第二条带 3393a,3393b。因此,当在身体管腔BL中膨胀时,所述双条带居中定位装置3393将身体管腔BL关于第一和第二条带3393a,3393b拉伸,同时朝辐射部100的馈入间隙3350牵拉身体管腔BL(例如沿着双条带居中定位装置3393的每一侧)。通过这种方式,所述双条带居中定位装置3393将身体管腔定形为一种椭圆形,其中被朝着馈入间隙 3350牵拉的部分将会由于椭圆形的同轴布置而产生热斑。
在图34中,苜蓿叶形居中定位装置3494被连接到辐射部100的馈入间隙3450远侧的帽3433。苜蓿叶形居中定位装置3494包含围绕柔性微波导管3430的圆周均匀隔开的多个叶瓣3494a-3494d。叶瓣 3494a-3494d可以由形状记忆材料形成,比如镍钛诺,从而叶瓣3494a-3494d在从外护套3435被展开后向外膨胀以形成苜蓿叶形状。
在某些实施例中,苜蓿叶形居中定位装置3494与辐射部100电绝缘。苜蓿叶形居中定位装置3494可以被具有粘性的介电体(例如介电胶)结合,从而防止苜蓿叶形居中定位装置3494的叶瓣3494a-3494d 和/或辐射部100的任意金属部分之间的金属-金属的接触。
在图35中,柔性微波导管3530包含苜蓿叶形居中定位装置3594 和居中定位篮3592。苜蓿叶形居中定位装置3594被结合到远侧帽3533 并被定位在辐射部100的馈入间隙3550的远侧。居中定位篮3592被定位在柔性微波导管3530的馈入间隙3550近侧的部分上。
图36A和36B示出了根据本发明某些实施例的桨叶式居中定位装置3695。桨叶式居中定位装置3695包括被固定到部分柔性微波导管 3650的第一、第二、和第三桨叶3695a-3695c。桨叶3695a-3695c可以通过类似于铰链的附接件3695d被固定,该附接件将每个桨叶3695a-3695c枢转地附接和/或铰接地附接到柔性同轴线缆3632。
在图36A中,所述桨叶式居中定位装置3695的桨叶3695a-3695c 被约束在柔性微波导管3630的外护套3635内。在受约束状态下,所述桨叶3695a-3695c被向内折叠并被定位在柔性同轴3632附近。
在图36B中,柔性同轴线缆3632和桨叶3695a-3695c被展示从柔性微波导管3630的外护套3635展开。通过围绕类似铰链的附接件移动每个桨叶,桨叶3695a-3695c被打开。在打开位置中,桨叶止挡3695e 防止桨叶3695a-3695c过度打开,和/或桨叶的运动受到类似铰链的连接件3695d的限制。在某些实施例中,所述桨叶止挡3695e是一种被形成在柔性同轴线缆3532上的扼流器或巴伦仪。
桨叶3695a-3695c可以在图36A中所示的关闭状态和图36B中所示的打开状态之间枢转。在某些实施例中,通过导管集线器18上的致动器(参见图7)可以实现枢转。在某些实施例中,通过柔性同轴线缆3632从外护套3635的展开可以实现枢转。
桨叶式居中定位装置3695可以包含围绕柔性微波导管3730对称定位(例如有规律地分布)的任意数目的桨叶3695a-3695c。在某些实施例中,所述桨叶3695a-3695c在长度和宽度上基本相同,但是在某些实施例中,桨叶3695a-3695c在长度和/或宽度上可以变化。
图37A和37B示出了根据本发明某些实施例的双桨叶式居中定位装置3795。双桨叶式居中定位装置3795包含近侧桨叶式居中定位装置3795a和远侧桨叶式居中定位装置3795b。近侧桨叶式居中定位装置3795a在第一馈入间隙3750a和第二馈入间隙3750b之间被定位在柔性微波导管3730上。远侧桨叶式居中定位装置3795b在第二馈入间隙3750b和第三馈入间隙3750c之间被定位在柔性微波导管3730上。近侧桨叶式居中定位装置3795a和远侧桨叶式居中定位装置3795b将第一馈入间隙3750a、第二馈入间隙3750b、和第三馈入间隙3750c 在身体管腔BL中居中定位。
图38A和38B示出了根据本发明某些实施例的桨叶式居中定位装置3896。桨叶式居中定位装置3896包含被固定到部分柔性微波导管 3830上的第一、第二、和第三桨叶3896a-3896c。桨叶3896a-3896c 可以通过类似铰链的附接件3996d被固定,该附接件将每个桨叶3896a-3896c枢转地附接和/或铰接地附接到柔性微波导管3850。
在图38A中,桨叶式居中定位装置3896的桨叶3896a-3896c被约束在柔性微波导管3830的外护套3835内。在受约束状态下,桨叶 3896a-3896c被向内折叠并被定位在柔性同轴线缆3832附近。
在图38B中,柔性同轴线缆3832和桨叶3896a-3896c被展示从柔性微波导管3830的外护套3835展开。通过围绕类似铰链的附接件移动每个桨叶,桨叶3695a-3695c被打开。在打开位置中,桨叶止挡(例如外护套3835)防止桨叶3896a-3896c过度打开,和/或桨叶的运动受到类似铰链的连接件3896d的限制。
桨叶3896a-3896c可以在图38A中所示的关闭状态和图38B中所示的打开状态之间枢转。在某些实施例中,可以通过导管集线器18 上的致动器(参见图7)实现枢转。在某些实施例中,可以通过柔性同轴线缆3832从外护套3835的展开实现枢转。
桨叶3896a-3896c可以沿与流体流动FF相反的方向打开,如图 38B中所示,或者桨叶3695a-3695c(参见图36A-36B)可以沿与流体流动FF相同的方向打开。
图39A和39B示出了根据本发明某些实施例的双桨叶式居中定位装置3996。双桨叶式居中定位装置3996包含近侧桨叶式居中定位装置3996a和远侧桨叶式居中定位装置3996b。近侧桨叶式居中定位装置3996a在第一馈入间隙3950a的近侧被定位在柔性微波导管3930 上。远侧桨叶式居中定位装置3996b在第一馈入间隙3950a和第二馈入间隙3950b之间被定位在柔性微波导管3930上。近侧桨叶式居中定位装置3996a和远侧桨叶式居中定位装置3996b将第一馈入间隙 3950a和第二馈入间隙3950b在身体管腔BL中居中定位。
图40A和40B示出了利用多个叉齿4097将柔性微波导管4030的远侧辐射部100居中定位的可展开居中定位装置。在未展开状态下,如图40A中所示,所述叉齿被约束在柔性微波导管4030的外护套4035 内。外护套4035可以朝近侧收缩,从而从外护套4035展开辐射部100 和叉齿4097。替换地,辐射部100和叉齿4097可以从外护套4035朝远侧展开。在已展开状态下,如图40B中所示,所述叉齿被附接于柔性微波导管,并从柔性微波导管径向向外延伸,从而将辐射部在肾动脉RA内居中定位。
图41A示出了被用于将柔性微波导管4030的远侧辐射部100居中定位的螺旋居中定位装置4198。螺旋居中定位装置4198包含均被连接到柔性微波导管4130的远端的外表面的多个螺旋肋 4198a-4198c。在某些实施例中,所述螺旋肋4198a-4198c被附接到柔性同轴线缆4032a的外表面。在未展开状态下所述螺旋肋4198a-4198c 被压缩在柔性同轴线缆4032a和外护套4035的内表面之间。当螺旋居中定位装置从外护套4035展开时,每个螺旋肋4198a-4198c从柔性同轴线缆4032a径向伸出,从而将辐射部100在身体管腔中居中定位。
图41B示出了被配置成插在柔性微波导管的远侧部分上的根据本发明实施例的螺旋居中定位装置4199。螺旋肋4199a-4199c附接到螺旋套管4199d的外表面,螺旋套管被配置成可滑动地接合柔性微波导管的远侧部分。
图42-44示出了柔性微波导管30,柔性微波导管30包含形成柔性微波导管30的外层的外护套135和可滑动地接合外护套135的内表面的柔性同轴线缆32。外护套135的近侧部分包含容纳外导体124的外径的第一内径D1。外护套135的最远侧部分形成容纳柔性同轴线缆 32的辐射部100的滑动套135a。滑动套135a包含容纳外介电绝缘层 128的外径的第二内径D2,其中外护套135的第一内径D1小于滑动套135a的第二内径D2。因此,机械止挡129由在第一内径D1和第二内径D2之间的外护套135的过渡部分形成。
在某些实施例中,与柔性微波导管30的近侧部分相比滑动套135a 较没有柔性。在某些实施例中,滑动套135a是刚性的。柔性微波导管 30还可以包含用于操控柔性微波导管30的近侧较有柔性部分和柔性微波导管的远侧较没有柔性和/或刚性部分(例如滑动套135a)之间的角度的引导系统(未明确示出)。
外护套135的外表面可以包含介电涂层。在一个实施例中,所述介电涂层是化学气相沉积聚合物,比如由Parylene Coating Services of Katy,Texas销售并制造的商品名为ParyleneTM的涂层。在另一个实施例中,介电涂层包含一种或多种降低凝血特性或成分。
图42,43和44示出了被定位在各种位置的柔性同轴线缆32及其远端上的辐射部100,比如被定位在完全收缩位置(见图42)、在部分展开位置(见图43)、以及在完全打开位置(见图44)。
参见图42,辐射部100被完全地收缩在外护套135的滑动套135a 内。在完全收缩状态下,外介电绝缘层128的近端抵接外护套135的机械止挡129,从而防止柔性同轴线缆32在外护套135内的进一步收缩。外介电绝缘层128的近端可以接合机械止挡129,其中该接合表面进一步防止柔性同轴线缆32在外护套135内的收缩。
帽133抵接外护套135的远端,并在外护套135的外表面与帽133 的外表面之间形成平滑过渡。帽133和外护套135可以通过机械接合、过盈配合、或通过软焊、钎焊、粘合和/或激光焊被结合在一起,从而防止帽133和外护套135之间的不期望分离(例如,展开)。帽133 可以防止柔性同轴线缆32在外护套135内的进一步收缩。虽然本文中所示的实施例示出了一种能使柔性微波导管30有利地跟随引导管腔的钝远端,但在其他实施例中,所述帽可以包含被配置用于经皮插入组织的锋利末端。
在使用中,医师通过一个通道将柔性微波导管30(例如辐射部 100)插入患者体内,然后操纵该柔性微波导管30到达患者的所需位置。所述通道可以是天然形成的身体通道和/或管腔(例如,动脉血管、食道、支气管、肛门、阴道、尿道,等等)、被插入天然身体通道内的管腔、套管、轴或任何其他合适的插入针头、装置、引导器、或系统。
在插入步骤期间,辐射部100被收纳在外护套135的滑动套135a 内。滑动套135a接合外导体124并防止任何对患者组织的不期望的能量释放。
帽133可以电接合外护套135,从而通过外护套135的一部分形成在内导体120和外导体124之间的电通路(例如电短路)。在完全收缩位置,如图42中所示,整个辐射部100被包含在外护套和帽133 内,从而使来自辐射部的外科手术能量的放出被最小化或消除。
参见图43,在柔性微波导管32的外护套35内朝远侧推进柔性同轴线缆32,这将辐射部100从滑动套135a展开。从滑动套135a展开的辐射部100的长度由医师选择。
参见图7,8C和42-44,至少部分柔性同轴线缆32连接到导管集线器18中的致动器15,815。致动器15,815的致动驱动柔性同轴线缆32,并使柔性同轴线缆32在外护套35内前进和收缩。致动器15, 815可以沿致动器槽15a被致动到任意所需的位置。致动器15,815 在致动器槽15a中的位置与辐射部100在滑动套135a中的位置相关,并且与从滑动套135a展开的辐射部100节段相关。
锁机构817可以被集成到可调流体联接器845的主体845a,845b。在某些实施例中,锁机构817的最近侧位置包含将致动器15,815锁定就位的锁定位置,以在将柔性微波导管30定位在引导管腔中时防止辐射部100的意外展开。在某些实施例中,锁机构817和/或致动器15, 815包含张紧机构,比如弹簧(未明确示出),在致动器15,815处于锁定位置时所述张紧机构在柔性同轴线缆32上提供朝近侧的偏置。在某些实施例中,所述致动器15,815的锁定位置包含拉紧机构,所述拉紧机构补偿在将柔性微波导管30定位在引导管腔中时由于外护套35和柔性同轴线缆32的弯曲和/或转动所导致的柔性同轴线缆32 和外护套35之间的任何长度改变。在某些实施例中,致动器15,815 包含锁机构817、张紧机构、拉紧机构或它们的任意组合。例如,致动器15,815可以包含与被形成在流体联接器主体845a上的接收器部 817b匹配的凸起部817a,接收器部817b提供多个纵向位置以沿其长度接收凸起部817a。致动器15,815还可以包含偏置机构,比如弹簧或弹性构件,或任何其他合适的张紧机构和/或拉紧机构。
图44示出了柔性微波导管30的远侧部的截面图,其中辐射部从滑动套135a完全地展开。在完全展开位置中,外介电绝缘层128的近侧部仍然被收纳在滑动套135a内。外介电绝缘层128的近侧部128a 保持与滑动套135a的接合,从而便于辐射部100在该滑动套135a内的后续收缩(参见图42和43)。近侧部128a可以形成与滑动套135a 的液密密封121a。液密密封121a可以防止体液进入滑动套135a并充满由于展开辐射部100而在滑动套135a内所形成的空隙135b。
过渡介电体126可以具有与外介电绝缘层128的介电特性相关的介电特性。在某些实施例中,在过渡介电体126、外介电绝缘层128 和配合辐射部100使用的解剖结构(例如肾动脉或其他身体管腔/身体结构)之间形成介电梯度。
外介电绝缘层128的外表面和滑动套135a的内表面可以包含提供机械止挡的交界表面117a,117b,从而防止外介电绝缘层128的近侧部128a从滑动套135a前进。例如,在一个实施例中,滑动套135a 的内表面包含径向向内凸舌117a。在完全展开位置,所述径向向内凸舌117a接合被形成在介电绝缘层128上的机械止挡117b,从而防止辐射部100从滑动套135a朝远侧更进一步的展开。
在某些实施例中,扼流器或巴伦仪短路(未明确示出)被定位在螺旋馈入间隙结构50的纵向近侧,并可以被固定到外导体124和/或外护套135。所述巴伦仪可以由短的导电(例如金属)环形成,所述环的内径被确定尺寸以接收外导体124(或外护套135)。替换地,所述巴伦仪可以被形成在外护套135的内表面上。所述巴伦仪被电结合 (例如通过合适的导体软焊和/或电连接)到外导体124。该巴伦仪影响射频短路,由此可能优化、控制、聚集、和/或引导所述辐射部天线的大致上朝近侧的辐射图案,例如减少去神经能量越过天线辐射部的近端和/或巴伦仪的传播。
所述巴伦仪组件可以包含巴伦仪介电套管,其可以由挤出聚四氟乙烯(PTFE,例如TeflonTM)形成。所述巴伦仪介电套管可以被定位在柔性微波导管30的辐射部100上,并与所述巴伦仪环匹配。在其表面(优选地内表面)上具有导电材料的一段热收缩管(未明确示出)可以被定位在PTFE套管上,以改善所述巴伦仪的性能,由此改善去神经能量的辐射图案。
在某些实施例中,如将在后面描述和在图42-57中所示那样,根据本发明的柔性微波导管包含具有螺旋结构的辐射部,其中辐射部的外导体以一种螺旋图案被暴露。螺旋开口的宽度可以随螺旋沿着辐射部朝远侧缠绕而被可选地渐缩、渐增以沿其长度均匀地辐射能量(参见图42-49和54-57)。螺旋传感器管腔或导体可以被散布在螺旋馈入点内,以操作地将被设置在探针远侧区域处或附近的传感器联接到位于探针近侧的发生器或其他设备。
如之前所述的任意数目的篮、居中定位装置或可膨胀构件可以结合所述螺旋被使用,以有选择地沿远离居中结构的径向方向消融组织。这能通过提供多个选择性定向的辐射元件的一次放置来简化通常要求多次放置消融装置的手术。使用者可以选择展开任意数目的篮、居中定位装置或可膨胀构件,同时由于覆盖了馈入间隙的导电护套而使其他的元件保持压缩,由此保持未激活。
在本文中所描述的且在图42-44中所示的可展开结构还可以被用于展开本文中所描述的任意结构和辐射部100。
如之前关于图42-44所讨论的,辐射部100包含使内导体120暴露的屏蔽外导体124a,从而形成螺旋馈入间隙50(例如馈入点)。在一个实施例中,通过去除在螺旋馈入间隙50处的部分外导体124来形成屏蔽外导体124a。留在内导体120上的屏蔽外导体124a围绕内导体120的纵轴线螺旋地缠绕。螺旋和/或盘旋的馈入间隙提供沿辐射部段轴向长度的均匀能量分布以及与同轴波导阻抗相匹配的理想阻抗,从而减少沿柔性同轴馈线32的不期望的加热。
在某些实施例中,在使用之前(例如在制造期间),从辐射部100 的内导体120去除外导体124和内介电绝缘质,屏蔽外导体124a和屏蔽介电体(未明确示出)被定位在已暴露的内导体上。屏蔽外导体124a 围绕内导体120的纵向轴线螺旋地缠绕。屏蔽外导体124a的近侧部分被电连接到外导体124的远侧部分。屏蔽外导体124a的远侧部分被电连接到帽133。所述帽使屏蔽外导体124a与内导体120短路。
来自流体冷却系统40(参见图7)的冷却流体可以流过被形成在屏蔽外导体124a中并被连接到柔性微波导管30的入流流体通道44a 和出流流体通道44b的流体管腔,从而为冷却流体提供流到辐射部100 的远端和流出辐射部100的远端的流体通路。
如之前所讨论的,过渡介电体126可以被设置在螺旋馈入间隙150 内,并可以大致地和/或几何地对应于螺旋馈入间隙150的尺寸。过渡介电体126和屏蔽介电体(未明确示出)可以由具有相似介电特性的相似材料形成。在某些实施例中,过渡介电体126和屏蔽介电体可以具有不同的介电特性。在某些实施例中,单个介电层包含过渡介电体 126,并且屏蔽介电层包含具有对应于所述过渡介电体126的介电特性的第一几何部分和具有对应于屏蔽介电体的介电特性的第二几何部分。
如之前所讨论,馈入间隙150由去除部分外导体124所形成的空隙所限定。类似地,螺旋馈入间隙150由螺旋缠绕(例如围绕内导体 120的纵轴线螺旋缠绕)的屏蔽外导体124a的相邻绕圈之间的空隙所限定。螺旋馈入间隙150的尺寸与屏蔽外导体124a的特性和位置相关。螺旋馈入间隙150还可以由部分未被屏蔽外导体124a螺旋缠绕的内导体限定。因此,限定屏蔽外导体124a的尺寸特性和位置必然限定了沿辐射部100的纵向长度变化的螺旋馈入间隙150。在一个实施例中,螺旋馈入间隙150的位置沿其长度周向地改变。在某些实施例中,螺旋的螺距(例如,平行于该螺旋所测得的一个完整螺圈的宽度)沿辐射部100的纵向长度变化。在某些实施例中,所述螺距可能由于螺旋角的改变(例如任意螺旋和垂直于内导体的轴向线之间的角度)而发生变化。在某些实施例中,所述螺距可能由于螺旋馈入间隙150的宽度改变(例如螺旋馈入间隙150沿其纵向长度的变化厚度)而发生变化。在某些实施例中,所述螺距可能由于螺旋馈入间隙150的螺旋角和宽度的改变而发生变化。
在使用中,由辐射部100传输给组织的能量与螺旋馈入间隙150 的面积和位置相关。如图42-44中所示,螺旋馈入间隙150的面积随螺旋朝远侧的缠绕而增加,从辐射部100的近端上的窄螺旋馈入间隙 150过渡到辐射部100远端上的宽螺旋馈入间隙150。面积上的改变(例如随螺旋朝远侧的缠绕而在面积上的增加)在近端上转化为低耦合因数,而在远端上转化为高耦合因数。在辐射部100的近端上,所述耦合因数为1%,该耦合因数以指数的方式在远端处增加到100%。
图45和46示出了非线性缠绕图案的另一种实施例,所述非线性缠绕图案形成可被结合到根据本发明某些实施例的任何柔性微波导管 30上的辐射部200。螺旋馈入间隙250的面积随该螺旋朝远侧缠绕而增加,同时近端提供窄馈入间隙250,远侧部分被基本上更多地暴露。在辐射部200近端处的螺旋馈入间隙250的面积和在辐射部200远端处的螺旋馈入间隙250的面积的非线性变化是由于屏蔽外导体224a 的几何外形造成的。
如图46中所示,屏蔽外导体224a包含近侧的第一非线性边缘 224b、远侧的第二非线性边缘224c,其中第一非线性边缘224b和第二非线性边缘224c终止在远端224d上,从而形成一种基本上尖锐的远端224d。
图47和48示出了非线性缠绕图案的另一种实施例,所述非线性缠绕图案形成可被结合到本发明的任何柔性微波导管30的辐射部 300。螺旋馈入间隙350的面积随螺旋朝远侧的行进而增加,同时近端提供窄馈入间隙,远侧部分基本上被暴露。在辐射部300近端处的螺旋馈入间隙350的面积和在辐射部300远端处的螺旋馈入间隙350的面积的非线性变化是由于屏蔽外导体324a的几何外形造成的。
如图48中所示,屏蔽外导体324a包含近侧的第一非线性边缘 324b、终止在屏蔽外导体远端上的远侧的第二线性边缘324c。所述远端形成被配置成与内导体的远端(未明确示出)对齐的平坦远侧边缘 324d。
变化的螺旋馈入间隙150的一种衡量是馈入间隙比,在本文中被限定为螺旋馈入间隙150的剖面周长与屏蔽外导体124a的剖面周长的比值。图49是示出了沿图44,45和47中所示各实施例的辐射部1000, 200,300的纵向长度的馈入间隙比的曲线图。图44中的辐射部1000 的馈入间隙比在0%和50%之间变化,并且沿纵向长度在辐射部1000 的近端和远端之间线性变化。图45中的辐射部200的馈入间隙比在 0%和100%之间变化,并且沿纵向长度在辐射部200的近端和远端之间非线性地变化。图47中的辐射部300的馈入间隙比在0%和100%之间变化,并且沿纵向长度在辐射部300的近端和远端之间非线性地变化。其他可以被使用的图形包含指数形渐缩、三角形渐缩和来自阶梯Chebyshev变换器的Klopfenstein对数形渐缩(其中断面增加到无穷大(类似于Taylor分布))。
如之前关于图6A-6B和8A-8C所讨论的,柔性微波导管30可以包含在内侧柔性同轴线缆32和外护套135之间被同轴定位的管状入流管腔37。在柔性同轴线缆32的外径和入流管腔37的内径之间的间隙限定入流流体通道44a。入流管腔37的外径和外护套135的内径之间的间隙限定出流流体通道44b。在使用期间,冷却剂(例如二氧化碳、空气、盐水、水、或其他冷却剂介质)可以通过入流流体通道44a被提供给辐射部100,然后通过出流流体通道44b从辐射部100排出。
在某些实施例中,提供冷却剂的入流流体通道44a是最内侧的流体管道,排出冷却剂的出流流体通道44b是最外侧的流体管道。在其他实施例中,流体流动的方向可以相反。一个或多个纵向定向的翅片或支柱(未明确示出)可以被定位在入流流体通道和/或出流流体通道内,以支撑并控制入流管腔关于外护套135的位置,以及支撑并控制柔性同轴线缆32关于入流管腔37的位置。
图50是根据本发明另一个实施例的漏隙波导的电路图。所述漏隙波导包含带有Z0阻抗的网络,其中所有的能量在该漏隙波导中辐射或散发。每个ZL由辐射电阻、无功阻抗和损耗电阻构成,其中:
ZL=RR-iRI+R,(1)
虽然由总元件所代表,但是ZL分量可以是分布式网络。如图51 中所示,每个ZL分量可以代表同轴线缆中的五个槽S1-S5之一。
根据本发明的另一种波导可以包含任意数目的槽。图52示出了具有使用十(10)个槽的辐射部200的实施例。为了沿辐射部的长度提供一致的辐射图案,十(10)个槽的每一个必须辐射被提供给波导Z0的总可用能量的大约10%。因为每个槽辐射总可用能量的一部分,所以每个在后槽的剩余可用能量小于被提供给在前槽的能量。因此,一致的辐射图案要求被朝远侧定位的每个槽比被朝近侧定位(例如,靠前)的每个槽辐射更多百分比的剩余可用能量。
在图52中所示的示例实施例中,100瓦的能量被提供给漏隙波导 200,因此槽1应当传输被提供给它的总能量的大约10%(例如100 瓦的10%--10瓦)。槽2被提供大约90瓦(100瓦减去由槽1传输的 10瓦),所以槽2应当传输被提供给它的总能量的大约11%(例如,90瓦的11%=10瓦)。槽3被提供大约80瓦(100瓦减去由槽1-2传输的20瓦),所以槽3应当传输被提供给它的总能量的大约12.5%(例如,80瓦的12.5%=10瓦)。槽4被提供大约70瓦(100瓦减去由槽 1-3传输的30瓦),所以槽4应当传输被提供给它的总能量的大约 14.3%(例如,70瓦的14.3%=10瓦)。槽5被提供大约60瓦(100 瓦减去由槽1-4传输的40瓦),所以槽5应当传输被提供给它的总能量的大约16.7%(例如,60瓦的16.7%=10瓦)。槽6被提供大约50 瓦(100瓦减去由槽1-5传输的50瓦),所以槽6应当传输被提供给它的总能量的大约20%(例如,50瓦的20%=10瓦)。槽7被提供大约40瓦(100瓦减去由槽1-6传输的60瓦),所以槽7应当传输被提供给它的总能量的大约25%(例如,40瓦的25%=10瓦)。槽8 被提供大约30瓦(100瓦减去由槽1-7传输的70瓦),所以槽8应当传输被提供给它的总能量的大约33%(例如,30瓦的33%=10瓦)。槽9被提供大约20瓦(100瓦减去由槽1-8传输的80瓦),所以槽9 应当传输被提供给它的总能量的大约50%(例如,20瓦的50%=10 瓦)。槽10具有大约10瓦(100瓦减去由槽1-9传输的90瓦),所以槽10应当传输被提供给它的总能量的大约100%(例如,10瓦的 100%=10瓦)。
沿着所述波导朝远侧移动,每个槽应当渐增地传输单独槽可用的更高百分比的能量。一种逐渐增加从每个槽传输的能量百分比的方式是随波导朝远侧的发展改变每个槽的宽度(增加朝远侧移动的每个槽的宽度)。图53示出了一种每个槽在宽度上逐渐增加的波导。在某些实施例中,宽度上的增加提供效率上的改善,从而导致从槽传输的能量百分比的提高。最远侧的槽可以被认为是能从槽辐射总剩余功率的高效率槽(例如辐射被提供给槽的功率的100%)。
从每个槽辐射出的能量与每个槽的所需效率、槽的宽度和/或被提供给该波导(例如每个槽)的能量的波长相关。在某些实施例中,每个槽的宽度与该槽所需效率相关。例如,如果槽的所需效率是被提供给它的能量的20%,则所述宽度可以通过微波信号的波长和所需效率计算得出。
在另一个实施例中,最远侧槽的有效长度等于微波信号的波长的 1/2,在该最远侧槽近侧的槽的宽度与这些槽的所需效率相关,其中每个槽的效率由被提供给每个独立槽的能量和每个槽的所需功率输出决定。
由于同轴波导中的损耗,被提供给每个槽的能量数量等于被提供给所述波导的能量减去近侧槽所传输的能量数量,再减去同轴线缆中的任何损耗。因此,每个渐进槽的百分数可以被增加和/或槽的数目可以被减少,以补偿同轴波导中的能量损耗。
用图52中的槽4作为例子,并假设槽1-3中的损耗等于5瓦,被提供给槽4的实际能量是65瓦(100瓦减去槽1-3传输的30瓦和5 瓦的损耗)。所以,槽4应当传输被提供给槽4的65瓦的大约15.4% (65瓦的15.4%)。因此,近侧槽中的损耗可能导致槽数目的减少,以提供来自每个槽的均匀且均等的能量辐射。
与独立槽的分段方法相反,一种更加分散的方法提供一种均匀且一致的能量分布图案。图54示出了一种逐渐增加每个槽宽度的波导,如图53中所示的波导中,其被布置为一种连续的螺旋槽450。在一个实施例中,所述槽的几何形状(例如螺旋角、螺距和槽宽)与每段螺旋所要求的效率相关。在某些实施例中,每段螺旋的效率由被提供给每段螺旋的能量和每段螺旋的所需功率输出决定。可以变化的几何参数包含轴向比、绕圈数和馈入间隙的宽度。省却了独立槽的所述螺旋还可以减少由每个独立槽所产生的损耗。
当所述开口被加宽时(例如沿近侧到远侧的方向),由于在螺距上的改变和/或在螺旋角上的改变,所述槽渐进地辐射更多的能量,从而促成一种一致的能量图案并导致更少的回波损耗。
图55和56示出了带有分别与图53和54的波导相关的波导500 和600的柔性微波导管530和630。在图55中,波导500包含多个渐进地隔开的槽550,其中每个朝远侧隔开的槽的宽度增加以提供所需的功率输出。在图56中,所述波导600包含带有变化的螺距、槽宽和螺旋角的螺旋馈入槽650,其中逐渐增加的槽宽以及辐射内导体520, 620的暴露部分沿波导600的长度提供了所需的功率输出。柔性微波导管530和630可以包含之前所讨论过的流体冷却布置。
图57示出了波导700和800,其中开槽波导700包含五(5)个槽,螺旋波导800包含五圈螺旋。波导700和800被布置成提供开槽波导700的槽S1-S5和螺旋波导的各个螺旋圈HT1-HT5之间的比较/ 关联。每个螺旋圈HT1-HT5包含在螺旋上的对应位置,其中螺旋的宽度与对应的槽S1-S5的宽度以及被暴露的内导体720的宽度相关。如之前所讨论,螺旋槽HS的形状和位置与内导体820上的屏蔽外导体824a的单独绕圈之间的变化间隙相关并由其限定。
如图57中进一步所示,开槽波导700包含五个辐射槽S1-S5,且每个槽S1-S5暴露内导体720的一部分。槽S1-S5分别产生对应的电磁场F1-F5。所述电磁场F1-F5是不同的并且被独立地产生,但是一个或多个电磁场F1-F5的至少一部分可以与相邻的电磁场F1-F5重叠和/或组合。
螺旋波导800产生了沿着螺旋波导800的纵向长度延伸的螺旋电磁场HF。所述螺旋电磁场HF的形状与所述螺旋槽HS的形状相关,还与在屏蔽外导体的单独绕圈之间形成的变化间隙相关。
螺旋电磁场HF的形状可以被表示为多个相互连接的螺旋形电磁场HF1-HF5,每个互连的螺旋形电磁场与开槽波导700上的对应槽 S1-S5相关。螺旋电磁场HF可以包含多个最小节点和多个最大节点,其中所述螺旋电磁场在最小节点处的强度是一个相对最小值,而所述螺旋电磁场在最大节点处的强度是一个相对最大值。在一个实施例中,最小节点的数目与螺旋圈的数目相关。螺旋电磁场HF的整体形状可以围绕所述螺旋动态地改变。在某些实施例中,最大节点的数目与螺旋圈的数目相关。
图58A是根据本发明某些实施例的具有形成在其中的螺旋窗口 5899的收缩球囊居中定位装置5872的透视图。球囊居中定位装置5872 包含被涂覆有导电层5872b的球囊膜5872a。如图58A的切除部分中所示,导电层5872b可以被形成在球囊膜5872a的内表面上。替换地,在某些实施例中,所述导电层5872b可以被形成在球囊膜5872a的外表面上。
导电层5872b可以由任何合适的涂层或沉积方式形成,包含但不限于,薄膜沉积、电镀、施加导电墨水、箔等等。在某些实施例中,所述导电层5872b由导电银墨水形成。所述导电层5872b可以以图案被形成,例如螺旋图案、格子图案、浓淡点图案、梯度图案、或便于球囊居中定位装置5872的弹性扩张和收缩同时保持形成导电层5872 的图案的元件之间的导电性的任何图案。
螺旋窗口5899包含球囊膜5872a,但不包含导电层5872b。在螺旋窗口5899区域内的球囊膜5872a由能透过微波能量的材料形成,从而将螺旋窗口5899附近的组织暴露给去神经能量。螺旋窗口5899可以具有大约三-五密耳(0.003"-0.005")的最大宽度。通过这种布置,导电层5872b形成一种能改善辐射图案并便于去神经能量传输到螺旋窗口5899附近的组织的法拉第笼结构。在某些实施例中,球囊膜5872 可以由不顺应材料形成以保证获得正确的形状。
在某些实施例中,根据本发明的球囊居中定位装置5872可以包含被设置在其近端和远端处的导电层5872b,同时在沿中间部分的导电层5872中几乎不或完全不具有导电材料,从而在近端和远端以及中间部分之间形成导电梯度。球囊居中定位装置5872可以包含根据之前所描述的(多个)网状结构配置进行布置的导电图案,其中导电层5872 被涂覆在除了窗口部分5899之外的整个球囊居中定位装置5872上。某些实施例可以包含多个球囊居中定位装置、带有多个窗口的单个球囊居中定位装置、可旋转的(多)球囊居中定位装置,等等。
流体端口5872c形成经过球囊居中定位装置5872的多个管腔。流体端口5872c的径向位置可以被径向向外地定位,以为解剖结构提供冷却。在实施例中,流体端口5872c可以被径向向内地定位,以给柔性微波导管5830的辐射部提供冷却。
图58B是被完全扩张并被定位在肾动脉RA内的图58A中的球囊居中定位装置的透视图。窗口5899沿球囊居中定位装置5872的纵向长度围绕整个圆周延伸。在被放置在身体管腔(比如肾动脉RA)中后,经所述窗口5899所施加的能量形成一种与窗口5899的形状相一致的加热图案。
被完全扩张后,螺旋窗口5899可以沿着大约2-3cm的纵向跨距 360度地辐射能量。在其他身体管腔中,螺旋窗口5899可以沿着大约 3-5cm的纵向跨距360度地辐射能量。在另一些身体管腔中,螺旋窗口5899可以沿着大约5-7cm的纵向跨距360度地辐射能量。在另一些身体管腔中,螺旋窗口5899可以沿着超过7cm的纵向跨距360度地辐射能量。
图58C示出了被图58A-B中的装置施加去神经能量后的肾动脉 RA。经窗口5899被施加给肾动脉RA的去神经能量产生了相应的去神经区5874。所述360度的加热图案横跨肾动脉的一部分进行施加,以使肾脏去神经但不导致由血管壁受伤引起的病症。其他的可以被使用的治疗角度包含90度加热图案、180度加热图案、180度加热图案和450度加热图案。
使用本文中所描述的实施例的方法包含以下步骤:进入股动脉,将用于进入肾动脉的长护套放入股动脉、腹主动脉和肾动脉,将根据本发明一个实施例的柔性微波导管30放入长护套,然后进入肾动脉的一部分,通过柔性同轴线缆将微波能量传输到解剖辐射结构,持续能量传输直到传输足量的能量来损伤目标神经结构为止,同时通过冷却 (例如血液循环)保存肾动脉的关键构造,然后取出微波导管,取出长护套,然后封闭到股动脉的入口。方法中的其他步骤可以包含通过远侧定位的温度传感器监视流体温度的危险温度升高。
使用本文中所描述的实施例的其他方法包含以下步骤:通过脉管内通路将包含本文中所描述的一个或多个实施例的柔性微波导管放入肾动脉,使用可收缩护套以围绕辐射部(例如馈入间隙)展开导电网 (根据本文中所描述的一个实施例),其中所述导电网通过产生一种能经组织谐振微波信号的解剖结构波导增强了对肾神经(围绕肾动脉的交感神经)的微波能量传输。在该方法中的其他步骤包含在导电网上的一个位置形成以缺少材料为特征的窗口,从而产生与该窗口相关的消融区域。在该方法中的另一个步骤可以包含提供流体冷却结构以增强能量传输并减少围绕进入路径的组织的线缆加热。另一个步骤可以包含提供允许柔性同轴结构穿过其中纵向滑动的导管集线器。
所描述的本发明的实施例意在展示而不是限制,并且不表示本发明的每一种实施方式。在不脱离本文和/或后面权利要求中字面上所述的本发明精神和范围及其专利法上的等同物的前提下,上述实施例的其他变化以及其他结构和功能,或其替代物可以被制造或被理想地组合到多种其他不同的系统或应用中。

Claims (14)

1.一种柔性微波导管,包括:
导管集线器;
从导管集线器延伸的外护套,所述外护套被构造成防止微波能量释放穿过其中;以及
布置在外护套内的同轴馈线,所述同轴馈线具有内导体、围绕内导体被同轴布置的内介电体、和围绕内介电体被同轴布置的外导体,其中,同轴馈线限定位于同轴馈线的远侧部分处的辐射部,辐射部被构造成发射微波能量;
其中,同轴馈线能够在外护套内沿着外护套的纵向轴线滑动,以使得在同轴馈线相对于外护套向远侧运动时辐射部有选择地从外护套展开;以及
其中,辐射部的外导体的宽度根据其沿辐射部的内导体的纵向位置而变化。
2.根据权利要求1所述的柔性微波导管,还包括帽,所述帽被可操作地联接到内导体和外导体的远端,并提供内导体和外导体之间的电连接。
3.一种柔性微波导管,包括:
导管集线器;
从导管集线器延伸的外护套,所述外护套被构造成防止微波能量释放穿过其中;以及
布置在外护套内的同轴馈线,所述同轴馈线具有内导体、围绕内导体被同轴布置的内介电体、和围绕内介电体被同轴布置的外导体,其中,同轴馈线限定位于同轴馈线的远侧部分处的辐射部,辐射部被构造成发射微波能量;
其中,同轴馈线能够在外护套内沿着外护套的纵向轴线滑动,以使得在同轴馈线相对于外护套向远侧运动时辐射部有选择地从外护套展开;以及
其中,所述柔性微波导管还包括帽,所述帽被可操作地联接到内导体和外导体的远端,并提供内导体和外导体之间的电连接。
4.根据权利要求1或3所述的柔性微波导管,还包括被布置在辐射部的远侧部分处的温度传感器。
5.根据权利要求1或3所述的柔性微波导管,其中,辐射部所产生的辐射图案与外导体的可变宽度或辐射部中的外导体的可变螺旋角中的至少一个相关。
6.根据权利要求1或3所述的柔性微波导管,其中,辐射部中的外导体围绕辐射部中的内导体螺旋缠绕,并且其中,辐射部还包括由外导体的相邻绕圈之间形成的空隙所限定的馈入间隙。
7.一种柔性微波导管,包括:
导管集线器;
从导管集线器延伸的外护套,所述外护套被构造成防止微波能量释放穿过其中;以及
布置在外护套内的同轴馈线,所述同轴馈线具有内导体、围绕内导体被同轴布置的内介电体、和围绕内介电体被同轴布置的外导体,其中,同轴馈线限定位于同轴馈线的远侧部分处的辐射部,辐射部被构造成发射微波能量;
其中,同轴馈线能够在外护套内沿着外护套的纵向轴线滑动,以使得在同轴馈线相对于外护套向远侧运动时辐射部有选择地从外护套展开;
其中,辐射部中的外导体围绕辐射部中的内导体螺旋缠绕,并且其中,辐射部还包括由外导体的相邻绕圈之间形成的空隙所限定的馈入间隙;以及
其中,由沿横截面的馈入间隙的周长和外导体的周长的比值所限定的馈入间隙比从辐射部中的外导体的近端到辐射部中的外导体的远端线性地变化。
8.根据权利要求7所述的柔性微波导管,其中,馈入间隙比在辐射部的近端处的0%和辐射部的远端处的大约50%之间变化。
9.根据权利要求1、3或7所述的柔性微波导管,还包括联接至柔性同轴线缆的致动器,所述致动器被构造成使柔性同轴线缆相对于导管集线器运动。
10.根据权利要求9所述的柔性微波导管,其中,致动器被构造成使柔性同轴线缆相对于外护套运动。
11.一种柔性微波导管,包括:
导管集线器;
从导管集线器延伸的外护套,所述外护套被构造成防止微波能量释放穿过其中;以及
布置在外护套内的同轴馈线,所述同轴馈线具有内导体、围绕内导体被同轴布置的内介电体、和围绕内介电体被同轴布置的外导体,其中,同轴馈线限定位于同轴馈线的远侧部分处的辐射部,辐射部被构造成发射微波能量;
其中,同轴馈线能够在外护套内沿着外护套的纵向轴线滑动,以使得在同轴馈线相对于外护套向远侧运动时辐射部有选择地从外护套展开;以及
其中,外护套包括沿纵向轴线的至少一部分的第一内径,并且外护套的远侧部分限定具有大于第一内径的第二外径的滑动套。
12.根据权利要求11所述的柔性微波导管,其中,辐射部还包括围绕辐射部中的外导体被布置的外介电绝缘层,外介电绝缘层被构造成沿滑动套的长度滑动并且从滑动套展开。
13.根据权利要求12所述的柔性微波导管,其中,外介电绝缘层的外表面能够沿滑动套的内表面运动。
14.根据权利要求12所述的柔性微波导管,其中,外介电绝缘层的外径大于第一内径。
CN201610052796.4A 2011-04-08 2012-04-09 柔性微波导管 Active CN105496552B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161473564P 2011-04-08 2011-04-08
US61/473,564 2011-04-08
CN201280024844.9A CN103841913B (zh) 2011-04-08 2012-04-09 用于天然或人造管腔的柔性微波导管

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201280024844.9A Division CN103841913B (zh) 2011-04-08 2012-04-09 用于天然或人造管腔的柔性微波导管

Publications (2)

Publication Number Publication Date
CN105496552A CN105496552A (zh) 2016-04-20
CN105496552B true CN105496552B (zh) 2018-04-10

Family

ID=46966668

Family Applications (5)

Application Number Title Priority Date Filing Date
CN201280024841.5A Active CN103732171B (zh) 2011-04-08 2012-04-09 用于天然或人造管腔的柔性微波导管
CN201510184518.XA Active CN104840249B (zh) 2011-04-08 2012-04-09 联接器
CN201610052796.4A Active CN105496552B (zh) 2011-04-08 2012-04-09 柔性微波导管
CN201280024844.9A Active CN103841913B (zh) 2011-04-08 2012-04-09 用于天然或人造管腔的柔性微波导管
CN201280025173.8A Active CN103717166B (zh) 2011-04-08 2012-04-09 联接柔性同轴线缆、流体冷却系统、和导管外护套的联接器

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201280024841.5A Active CN103732171B (zh) 2011-04-08 2012-04-09 用于天然或人造管腔的柔性微波导管
CN201510184518.XA Active CN104840249B (zh) 2011-04-08 2012-04-09 联接器

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201280024844.9A Active CN103841913B (zh) 2011-04-08 2012-04-09 用于天然或人造管腔的柔性微波导管
CN201280025173.8A Active CN103717166B (zh) 2011-04-08 2012-04-09 联接柔性同轴线缆、流体冷却系统、和导管外护套的联接器

Country Status (7)

Country Link
US (10) US9387038B2 (zh)
EP (5) EP2693971B1 (zh)
JP (7) JP2014516616A (zh)
CN (5) CN103732171B (zh)
AU (6) AU2012364793B2 (zh)
CA (4) CA2832595C (zh)
WO (4) WO2013106052A2 (zh)

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6702811B2 (en) 1999-04-05 2004-03-09 Medtronic, Inc. Ablation catheter assembly with radially decreasing helix and method of use
US20140018880A1 (en) 2002-04-08 2014-01-16 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US20040226556A1 (en) 2003-05-13 2004-11-18 Deem Mark E. Apparatus for treating asthma using neurotoxin
EP1819304B1 (en) 2004-12-09 2023-01-25 Twelve, Inc. Aortic valve repair
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
WO2009137819A1 (en) 2008-05-09 2009-11-12 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
WO2011056684A2 (en) 2009-10-27 2011-05-12 Innovative Pulmonary Solutions, Inc. Delivery devices with coolable energy emitting assemblies
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
KR101820542B1 (ko) 2009-11-11 2018-01-19 호라이라 인코포레이티드 조직을 치료하고 협착을 제어하기 위한 방법, 기구 및 장치
US9084610B2 (en) 2010-10-21 2015-07-21 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
TW201221174A (en) 2010-10-25 2012-06-01 Medtronic Ardian Luxembourg Microwave catheter apparatuses, systems, and methods for renal neuromodulation
EP3100696B1 (en) 2010-10-25 2023-01-11 Medtronic Ardian Luxembourg S.à.r.l. Catheter apparatuses having multi-electrode arrays for renal neuromodulation
US9089350B2 (en) * 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
AU2012364793B2 (en) 2011-04-08 2015-08-06 Covidien Lp Flexible microwave catheters for natural or artificial lumens
EP4101399A1 (en) 2011-08-05 2022-12-14 Route 92 Medical, Inc. System for treatment of acute ischemic stroke
CN104125799A (zh) * 2011-11-07 2014-10-29 美敦力阿迪安卢森堡有限责任公司 血管内神经监测装置及相关的系统和方法
CA2872189A1 (en) 2012-05-11 2013-11-14 William W. CHANG Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods
US9247993B2 (en) * 2012-08-07 2016-02-02 Covidien, LP Microwave ablation catheter and method of utilizing the same
US9333035B2 (en) 2012-09-19 2016-05-10 Denervx LLC Cooled microwave denervation
US9044575B2 (en) 2012-10-22 2015-06-02 Medtronic Adrian Luxembourg S.a.r.l. Catheters with enhanced flexibility and associated devices, systems, and methods
US9095321B2 (en) 2012-11-21 2015-08-04 Medtronic Ardian Luxembourg S.A.R.L. Cryotherapeutic devices having integral multi-helical balloons and methods of making the same
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
JP2016512090A (ja) * 2013-03-13 2016-04-25 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 組織分離のための装置およびそれに関連する使用法
US9179974B2 (en) 2013-03-15 2015-11-10 Medtronic Ardian Luxembourg S.A.R.L. Helical push wire electrode
US9161814B2 (en) * 2013-03-15 2015-10-20 Covidien Lp Microwave energy-delivery device and system
US9301723B2 (en) 2013-03-15 2016-04-05 Covidien Lp Microwave energy-delivery device and system
US9119650B2 (en) 2013-03-15 2015-09-01 Covidien Lp Microwave energy-delivery device and system
EP2978382B1 (en) 2013-03-29 2018-05-02 Covidien LP Step-down coaxial microwave ablation applicators and methods for manufacturing same
EP2996754B1 (en) 2013-05-18 2023-04-26 Medtronic Ardian Luxembourg S.à.r.l. Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices and systems
US20140378968A1 (en) * 2013-06-21 2014-12-25 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US20150073515A1 (en) 2013-09-09 2015-03-12 Medtronic Ardian Luxembourg S.a.r.I. Neuromodulation Catheter Devices and Systems Having Energy Delivering Thermocouple Assemblies and Associated Methods
US10390881B2 (en) 2013-10-25 2019-08-27 Denervx LLC Cooled microwave denervation catheter with insertion feature
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
GB201323171D0 (en) 2013-12-31 2014-02-12 Creo Medical Ltd Electrosurgical apparatus and device
US20150209107A1 (en) 2014-01-24 2015-07-30 Denervx LLC Cooled microwave denervation catheter configuration
EP3099377B1 (en) 2014-01-27 2022-03-02 Medtronic Ireland Manufacturing Unlimited Company Neuromodulation catheters having jacketed neuromodulation elements and related devices
US9855402B2 (en) * 2014-02-15 2018-01-02 Rex Medical, L.P. Apparatus for delivering fluid to treat renal hypertension
US9579149B2 (en) 2014-03-13 2017-02-28 Medtronic Ardian Luxembourg S.A.R.L. Low profile catheter assemblies and associated systems and methods
WO2015164280A1 (en) 2014-04-24 2015-10-29 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters having braided shafts and associated systems and methods
WO2016004302A1 (en) 2014-07-02 2016-01-07 Covidien Lp Alignment ct
CA2953691A1 (en) 2014-07-02 2016-01-07 Covidien Lp Unified coordinate system for multiple ct scans of patient lungs
CN106572884B (zh) * 2014-08-20 2020-06-12 柯惠有限合伙公司 用于球形消融的系统和方法
US10624697B2 (en) 2014-08-26 2020-04-21 Covidien Lp Microwave ablation system
US10813691B2 (en) * 2014-10-01 2020-10-27 Covidien Lp Miniaturized microwave ablation assembly
US11628009B2 (en) 2014-12-17 2023-04-18 Biosense Webster (Israel) Ltd. EP catheter with trained support member, and related methods
US10231770B2 (en) * 2015-01-09 2019-03-19 Medtronic Holding Company Sárl Tumor ablation system
CN104523333B (zh) * 2015-01-28 2017-03-29 南京维京九洲医疗器械研发中心 一种用于癌栓梗阻消融治疗的微波消融天线及其制造方法
US10426497B2 (en) 2015-07-24 2019-10-01 Route 92 Medical, Inc. Anchoring delivery system and methods
JP6732769B2 (ja) 2015-02-04 2020-07-29 ルート92メディカル・インコーポレイテッドRoute 92 Medical, Inc. 急速吸引血栓摘出システムおよび方法
US11065019B1 (en) 2015-02-04 2021-07-20 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
EP3294410A2 (en) 2015-05-12 2018-03-21 National University of Ireland Galway Devices for therapeutic nasal neuromodulation and associated methods and systems
EP3307384B1 (en) * 2015-06-12 2020-08-05 The University Of Sydney Microwave ablation device
US10575754B2 (en) 2015-09-23 2020-03-03 Covidien Lp Catheter having a sensor and an extended working channel
GB2543039A (en) * 2015-10-02 2017-04-12 Creo Medical Ltd Electrosurgical device
US10238495B2 (en) * 2015-10-09 2019-03-26 Evalve, Inc. Delivery catheter handle and methods of use
JP6857187B2 (ja) * 2015-10-26 2021-04-14 ニューウェーブ メディカル, インコーポレイテッドNeuwave Medical, Inc. エネルギー供給システム及びその使用
CN105520782B (zh) * 2016-02-02 2018-05-29 四川大学华西医院 一种水冷式电磁止血针
CN105726121B (zh) * 2016-02-02 2020-07-14 四川大学华西医院 一种套筒加载型多缝隙电磁止血针
US10813692B2 (en) * 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
GB2547941A (en) * 2016-03-04 2017-09-06 Creo Medical Ltd Electrosurgical instrument
PL3454737T3 (pl) * 2016-03-31 2022-02-07 Thomas Jefferson University Implant do loży po guzie do leczenia multimodalnego zagrożonych tkanek otaczających jamę po resekcji
US10265111B2 (en) 2016-04-26 2019-04-23 Medtronic Holding Company Sárl Inflatable bone tamp with flow control and methods of use
CN105816240B (zh) * 2016-05-24 2018-09-28 赛诺微医疗科技(浙江)有限公司 用于微波消融的天线组件及采用其的微波消融针
GB2551117A (en) * 2016-05-31 2017-12-13 Creo Medical Ltd Electrosurgical apparatus and method
US10285710B2 (en) * 2016-06-01 2019-05-14 DePuy Synthes Products, Inc. Endovascular detachment system with flexible distal end and heater activated detachment
CN106037930B (zh) * 2016-06-15 2019-07-12 上海市胸科医院 一种微波消融软杆针
US11197715B2 (en) 2016-08-02 2021-12-14 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US10376309B2 (en) 2016-08-02 2019-08-13 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11065053B2 (en) 2016-08-02 2021-07-20 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
CN106420048A (zh) * 2016-08-31 2017-02-22 赛诺微医疗科技(北京)有限公司 一种柔性微波消融天线及采用其的微波消融针
BR112019007862B1 (pt) * 2016-10-18 2023-04-11 Smartbow Gmbh Dispositivo para artificialmente inseminar um mamífero
IT201600113574A1 (it) * 2016-11-10 2018-05-10 Elesta S R L Dispositivo per termoablazione laser con mezzi di centraggio e apparecchiatura comprendente detto dispositivo
IT201600113567A1 (it) * 2016-11-10 2018-05-10 Elesta S R L Dispositivo per termoablazione laser e apparecchiatura comprendente detto dispositivo
CN108201474A (zh) * 2016-12-19 2018-06-26 先健科技(深圳)有限公司 心脏瓣膜成形环
EP4134120A1 (en) 2017-01-10 2023-02-15 Route 92 Medical, Inc. Aspiration catheter systems
US10864350B2 (en) 2017-01-20 2020-12-15 Route 92 Medical, Inc. Single operator intracranial medical device delivery systems and methods of use
CN110430829B (zh) * 2017-02-22 2023-05-16 捷锐士股份有限公司 改进的夹套柔性针组件
EP3381393A1 (en) * 2017-03-31 2018-10-03 National University of Ireland Galway An ablation probe
SG11201909305PA (en) * 2017-04-05 2019-11-28 Miraki Innovation Think Tank Llc Cold slurry containment
WO2018226991A1 (en) 2017-06-07 2018-12-13 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US20180360538A1 (en) * 2017-06-20 2018-12-20 Covidien Lp Tapered tubular members for laparoscopic microwave ablation instruments
EP3441034A1 (en) * 2017-08-09 2019-02-13 National University of Ireland Galway A microwave ablation probe
US20190053886A1 (en) * 2017-08-15 2019-02-21 Covidien Lp Methods and tools for treating diseased tissue
US20210212756A1 (en) * 2017-08-25 2021-07-15 Nasser Rafiee Tissue cutting systems and methods
US20190090948A1 (en) * 2017-09-26 2019-03-28 Covidien Lp Flexible ablation catheter with stiff section around radiator
CN107875522B (zh) * 2017-11-08 2023-12-26 中国科学院苏州生物医学工程技术研究所 用于理疗系统的柔性导管、复合能量源及多功能理疗系统
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US10765440B2 (en) * 2017-11-14 2020-09-08 Sonic Vascular, Inc. Focused intraluminal lithectomy catheter device and methods
CN107753104A (zh) * 2017-12-01 2018-03-06 中国科学技术大学 一种磁兼容的水冷微波消融针及其制备方法
TWI634868B (zh) * 2017-12-22 2018-09-11 財團法人工業技術研究院 雙極電極探針
GB2569812A (en) * 2017-12-27 2019-07-03 Creo Medical Ltd Electrosurgical ablation instrument
US20190201093A1 (en) * 2018-01-03 2019-07-04 Neuwave Medical, Inc. Systems and methods for energy delivery
US10773053B2 (en) 2018-01-24 2020-09-15 Covidien Lp Methods of manufacturing a catheter having a sensor
US10773051B2 (en) 2018-01-24 2020-09-15 Covidien Lp Methods of manufacturing a catheter having a sensor
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11464576B2 (en) 2018-02-09 2022-10-11 Covidien Lp System and method for displaying an alignment CT
CN112423824B (zh) 2018-05-17 2023-02-21 92号医疗公司 抽吸导管系统和使用方法
US20200015878A1 (en) * 2018-07-11 2020-01-16 Covidien Lp Bounded electrosurgical energy systems and methods employing zone-based energy
CN108852508B (zh) * 2018-07-16 2024-03-22 华科精准(北京)医疗科技有限公司 一种激光手术器械水冷结构
CN108938080B (zh) * 2018-07-26 2024-02-09 南京康友医疗科技有限公司 一种超声内镜下柔性微波消融针
CN109172042B (zh) * 2018-09-07 2024-03-12 郑州大学第一附属医院 超声引导下激光原位开窗系统及其使用方法
EP3813706B1 (en) * 2018-09-11 2023-04-26 St. Jude Medical, Cardiology Division, Inc. Unibody intravascular catheter shaft
GB2578576B (en) 2018-10-30 2022-08-24 Creo Medical Ltd Electrosurgical instrument
US20200179043A1 (en) 2018-12-11 2020-06-11 Neurent Medical Limited Systems and methods for therapeutic nasal neuromodulation
US20200205887A1 (en) * 2018-12-27 2020-07-02 Biosense Webster (Israel) Ltd. Ablation Balloon Catheter Allowing Blood Flow
GB2583715A (en) * 2019-04-30 2020-11-11 Creo Medical Ltd Electrosurgical system
CN110191530B (zh) * 2019-05-28 2021-10-29 中国电子科技集团公司第十二研究所 一种微波辐射加热装置
CN111067591A (zh) * 2019-06-14 2020-04-28 谱创医疗科技(上海)有限公司 用于穿过病变位点的冲击波发生系统
JP2022540616A (ja) 2019-07-12 2022-09-16 シファメド・ホールディングス・エルエルシー 血管内血液ポンプならびに製造および使用の方法
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
CN111821017B (zh) * 2019-07-22 2022-11-11 合肥源康信息科技有限公司 产科用宫腔微波治疗装置
GB201910527D0 (en) * 2019-07-23 2019-09-04 Emblation Ltd Microwave apparatus and method
WO2021033275A1 (ja) * 2019-08-20 2021-02-25 株式会社Alivas カテーテルデバイスおよび処置方法
WO2021062265A1 (en) 2019-09-25 2021-04-01 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
WO2021100142A1 (ja) 2019-11-20 2021-05-27 株式会社Alivas 医療デバイス、医療器具、および処置方法
US20230118576A1 (en) * 2019-12-20 2023-04-20 Hitachi High-Tech Corporation Wafer processing method and plasma processing apparatus
US11484355B2 (en) 2020-03-02 2022-11-01 Medtronic Holding Company Sàrl Inflatable bone tamp and method for use of inflatable bone tamp
US11896818B2 (en) 2020-04-09 2024-02-13 Neurent Medical Limited Systems and methods for therapeutic nasal treatment
WO2021205229A1 (en) 2020-04-09 2021-10-14 Neurent Medical Limited Systems and methods for improving sleep with therapeutic nasal treatment
US20230149080A1 (en) * 2020-04-10 2023-05-18 Intuitive Surgical Operations, Inc. Flexible instruments with patterned antenna assemblies having variable recoverable flexibility
CN111856139B (zh) * 2020-07-27 2021-07-06 中国科学技术大学 一种具有拉紧测量线功能的阻抗匹配过渡段装置
CN111760166B (zh) * 2020-08-03 2021-06-18 蚌埠医学院第一附属医院(蚌埠医学院附属肿瘤医院) 一种皮下埋植式的胆道引流管
CN113116513B (zh) * 2021-02-24 2022-12-13 电子科技大学 一种基于基片集成同轴电缆的微波消融天线
CN113346212B (zh) * 2021-06-24 2022-07-19 中国电子科技集团公司第十二研究所 一种过渡波导
CN113577576A (zh) * 2021-09-02 2021-11-02 北京翌光医疗科技研究院有限公司 一种光医疗装置
US11682841B2 (en) 2021-09-16 2023-06-20 Eagle Technology, Llc Communications device with helically wound conductive strip and related antenna devices and methods
CN114485896B (zh) * 2022-01-25 2023-11-24 重庆医科大学 基于聚偏氟乙烯压电薄膜的波导管声速测量装置及方法
CN114652434B (zh) * 2022-02-16 2023-09-26 电子科技大学 一种基于mems微针束的多窗口微波消融方法及其装置
CN114305676B (zh) * 2022-03-10 2022-05-31 北京科技大学 一种基于断开式外导体结构的微波消融天线
CN114469310B (zh) * 2022-03-25 2022-07-29 天津市鹰泰利安康医疗科技有限责任公司 一种用于不可逆电穿孔设备的电极控制系统
WO2023193090A1 (en) * 2022-04-04 2023-10-12 Medtronic Cryocath Lp Copd targeted lung denervation (tld)
CN116898568B (zh) * 2023-08-08 2024-03-08 南京康友医疗科技有限公司 一种防止组织炸裂的微波消融系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210367B1 (en) * 1995-09-06 2001-04-03 Microwave Medical Systems, Inc. Intracorporeal microwave warming method and apparatus
CN1819802A (zh) * 2003-06-23 2006-08-16 麦科罗苏立思有限公司 用于微波医学治疗的辐射辐照器
CN1943523A (zh) * 1998-12-14 2007-04-11 西奥多C.奥姆斯比 用于切除身体组织的基于射频的导管系统和中空同轴电缆
EP2060239A1 (en) * 2007-11-16 2009-05-20 Vivant Medical, Inc. Dynamically matched microwave antenna for tissue ablation
EP2147651A1 (en) * 2008-07-24 2010-01-27 Tyco Healthcare Group, LP Suction coagulator with thermal insulation

Family Cites Families (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE390937C (de) 1922-10-13 1924-03-03 Adolf Erb Vorrichtung zur Innenbeheizung von Wannenoefen zum Haerten, Anlassen, Gluehen, Vergueten und Schmelzen
DE1099658B (de) 1959-04-29 1961-02-16 Siemens Reiniger Werke Ag Selbsttaetige Einschaltvorrichtung fuer Hochfrequenzchirurgiegeraete
FR1275415A (fr) 1960-09-26 1961-11-10 Dispositif détecteur de perturbations pour installations électriques, notamment d'électrochirurgie
DE1139927B (de) 1961-01-03 1962-11-22 Friedrich Laber Hochfrequenz-Chirurgiegeraet
DE1149832C2 (de) 1961-02-25 1977-10-13 Siemens AG, 1000 Berlin und 8000 München Hochfrequenz-chirurgieapparat
FR1347865A (fr) 1962-11-22 1964-01-04 Perfectionnements aux appareils de diathermo-coagulation
DE1439302B2 (de) 1963-10-26 1971-05-19 Siemens AG, 1000 Berlin u 8000 München Hochfrequenz Chirurgiegerat
SU401367A1 (ru) 1971-10-05 1973-10-12 Тернопольский государственный медицинский институт Биактивный электрохирургическнп инструмент
FR2235669A1 (en) 1973-07-07 1975-01-31 Lunacek Boris Gynaecological sterilisation instrument - has hollow electrode protruding from the end of a curved ended tube
GB1480736A (en) 1973-08-23 1977-07-20 Matburn Ltd Electrodiathermy apparatus
DE2455174A1 (de) 1973-11-21 1975-05-22 Termiflex Corp Ein/ausgabegeraet zum datenaustausch mit datenverarbeitungseinrichtungen
DE2407559C3 (de) 1974-02-16 1982-01-21 Dornier System Gmbh, 7990 Friedrichshafen Wärmesonde
DE2415263A1 (de) 1974-03-29 1975-10-02 Aesculap Werke Ag Chirurgische hf-koagulationssonde
DE2429021C2 (de) 1974-06-18 1983-12-08 Erbe Elektromedizin GmbH, 7400 Tübingen Fernschalteinrichtung für ein HF-Chirurgiegerät
FR2276027A1 (fr) 1974-06-25 1976-01-23 Medical Plastics Inc Raccordement electrique pour electrode plane
DE2460481A1 (de) 1974-12-20 1976-06-24 Delma Elektro Med App Elektrodenhandgriff zur handfernschaltung eines hochfrequenz-chirurgiegeraets
US4237887A (en) 1975-01-23 1980-12-09 Valleylab, Inc. Electrosurgical device
DE2504280C3 (de) 1975-02-01 1980-08-28 Hans Heinrich Prof. Dr. 8035 Gauting Meinke Vorrichtung zum Schneiden und/oder Koagulieren menschlichen Gewebes mit Hochfrequenzstrom
CA1064581A (en) 1975-06-02 1979-10-16 Stephen W. Andrews Pulse control circuit and method for electrosurgical units
FR2315286A2 (fr) 1975-06-26 1977-01-21 Lamidey Marcel Pince a dissequer, hemostatique, haute frequence
DE2540968C2 (de) 1975-09-13 1982-12-30 Erbe Elektromedizin GmbH, 7400 Tübingen Einrichtung zum Einschalten des Koagulationsstroms einer bipolaren Koagulationspinzette
FR2390968A1 (fr) 1977-05-16 1978-12-15 Skovajsa Joseph Dispositif de traitement local d'un patient, notamment pour acupuncture ou auriculotherapie
US4154246A (en) * 1977-07-25 1979-05-15 Leveen Harry H Field intensification in radio frequency thermotherapy
SU727201A2 (ru) 1977-11-02 1980-04-15 Киевский Научно-Исследовательский Институт Нейрохирургии Электрохирургический аппарат
DE2803275C3 (de) 1978-01-26 1980-09-25 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Fernschalteinrichtung zum Schalten eines monopolaren HF-Chirurgiegerätes
DE2823291A1 (de) 1978-05-27 1979-11-29 Rainer Ing Grad Koch Schaltung zur automatischen einschaltung des hochfrequenzstromes von hochfrequenz-koagulationsgeraeten
DE2946728A1 (de) 1979-11-20 1981-05-27 Erbe Elektromedizin GmbH & Co KG, 7400 Tübingen Hochfrequenz-chirurgiegeraet
USD263020S (en) 1980-01-22 1982-02-16 Rau Iii David M Retractable knife
USD266842S (en) 1980-06-27 1982-11-09 Villers Mark W Phonograph record spacer
USD278306S (en) 1980-06-30 1985-04-09 Mcintosh Lois A Microwave oven rack
JPS5778844A (en) 1980-11-04 1982-05-17 Kogyo Gijutsuin Lasre knife
DE3045996A1 (de) 1980-12-05 1982-07-08 Medic Eschmann Handelsgesellschaft für medizinische Instrumente mbH, 2000 Hamburg Elektro-chirurgiegeraet
FR2502935B1 (fr) 1981-03-31 1985-10-04 Dolley Roger Procede et dispositif de controle de la coagulation de tissus a l'aide d'un courant a haute frequence
DE3120102A1 (de) 1981-05-20 1982-12-09 F.L. Fischer GmbH & Co, 7800 Freiburg Anordnung zur hochfrequenzkoagulation von eiweiss fuer chirurgische zwecke
JPS5854853A (ja) 1981-09-29 1983-03-31 Toshiba Corp モ−タ
JPS5854853U (ja) * 1981-10-08 1983-04-14 アロカ株式会社 体腔内挿入型加温治療用マイクロ波放射器
US4583589A (en) 1981-10-22 1986-04-22 Raytheon Company Subsurface radiating dipole
FR2517953A1 (fr) 1981-12-10 1983-06-17 Alvar Electronic Appareil diaphanometre et son procede d'utilisation
JPS5957650A (ja) * 1982-09-27 1984-04-03 呉羽化学工業株式会社 腔内加熱用プロ−ブ
US4583556A (en) * 1982-12-13 1986-04-22 M/A-Com, Inc. Microwave applicator/receiver apparatus
US4799479A (en) * 1984-10-24 1989-01-24 The Beth Israel Hospital Association Method and apparatus for angioplasty
FR2573301B3 (fr) 1984-11-16 1987-04-30 Lamidey Gilles Pince chirurgicale et son appareillage de commande et de controle
DE3510586A1 (de) 1985-03-23 1986-10-02 Erbe Elektromedizin GmbH, 7400 Tübingen Kontrolleinrichtung fuer ein hochfrequenz-chirurgiegeraet
USD295893S (en) 1985-09-25 1988-05-24 Acme United Corporation Disposable surgical clamp
USD295894S (en) 1985-09-26 1988-05-24 Acme United Corporation Disposable surgical scissors
DE3604823C2 (de) 1986-02-15 1995-06-01 Lindenmeier Heinz Hochfrequenzgenerator mit automatischer Leistungsregelung für die Hochfrequenzchirurgie
DE3616463A1 (de) 1986-05-15 1987-11-19 Battenfeld Maschfab Vorrichtung zum dosieren von reaktionsgemischen
EP0246350A1 (de) 1986-05-23 1987-11-25 Erbe Elektromedizin GmbH. Koagulationselektrode
DE3711511C1 (de) 1987-04-04 1988-06-30 Hartmann & Braun Ag Verfahren zur Bestimmung der Gaskonzentrationen in einem Gasgemisch und Sensor zur Messung der Waermeleitfaehigkeit
DE8712328U1 (zh) 1987-09-11 1988-02-18 Jakoubek, Franz, 7201 Emmingen-Liptingen, De
US4841988A (en) 1987-10-15 1989-06-27 Marquette Electronics, Inc. Microwave hyperthermia probe
WO1989011311A1 (en) * 1988-05-18 1989-11-30 Kasevich Associates, Inc. Microwave balloon angioplasty
US5129396A (en) * 1988-11-10 1992-07-14 Arye Rosen Microwave aided balloon angioplasty with lumen measurement
JP2584665B2 (ja) 1988-11-16 1997-02-26 株式会社トキメック 加温療法用マイクロ波放射器
US5026959A (en) * 1988-11-16 1991-06-25 Tokyo Keiki Co. Ltd. Microwave radiator for warming therapy
JP2734572B2 (ja) 1988-11-16 1998-03-30 松下電器産業株式会社 調理器
US4945912A (en) 1988-11-25 1990-08-07 Sensor Electronics, Inc. Catheter with radiofrequency heating applicator
DE3904558C2 (de) 1989-02-15 1997-09-18 Lindenmeier Heinz Automatisch leistungsgeregelter Hochfrequenzgenerator für die Hochfrequenz-Chirurgie
DE3942998C2 (de) 1989-12-27 1998-11-26 Delma Elektro Med App Elektrochirurgisches Hochfrequenzgerät
JP2806511B2 (ja) 1990-07-31 1998-09-30 松下電工株式会社 合金系焼結体の製法
JP2951418B2 (ja) 1991-02-08 1999-09-20 トキコ株式会社 試料液成分分析装置
US5301687A (en) 1991-06-06 1994-04-12 Trustees Of Dartmouth College Microwave applicator for transurethral hyperthermia
DE4122050C2 (de) 1991-07-03 1996-05-30 Gore W L & Ass Gmbh Antennenanordnung mit Zuleitung zur medizinischen Wärmeapplikation in Körperhohlräumen
DE4238263A1 (en) 1991-11-15 1993-05-19 Minnesota Mining & Mfg Adhesive comprising hydrogel and crosslinked polyvinyl:lactam - is used in electrodes for biomedical application providing low impedance and good mechanical properties when water and/or moisture is absorbed from skin
DE4205213A1 (de) 1992-02-20 1993-08-26 Delma Elektro Med App Hochfrequenzchirurgiegeraet
FR2687786B1 (fr) 1992-02-26 1994-05-06 Pechiney Recherche Mesure de la resistivite electrique et de la conductivite thermique a haute temperature de produits refractaires.
USD354218S (en) 1992-10-01 1995-01-10 Fiberslab Pty Limited Spacer for use in concrete construction
US5706809A (en) * 1993-01-29 1998-01-13 Cardima, Inc. Method and system for using multiple intravascular sensing devices to detect electrical activity
DE4303882C2 (de) 1993-02-10 1995-02-09 Kernforschungsz Karlsruhe Kombinationsinstrument zum Trennen und Koagulieren für die minimal invasive Chirurgie
GB9309142D0 (en) 1993-05-04 1993-06-16 Gyrus Medical Ltd Laparoscopic instrument
FR2711066B1 (fr) * 1993-10-15 1995-12-01 Sadis Bruker Spectrospin Antenne pour le chauffage de tissus par micro-ondes et sonde comportant une ou plusieurs de ces antennes.
GB9322464D0 (en) 1993-11-01 1993-12-22 Gyrus Medical Ltd Electrosurgical apparatus
DE4339049C2 (de) 1993-11-16 2001-06-28 Erbe Elektromedizin Einrichtung zur Konfiguration chirurgischer Systeme
CN1079269C (zh) 1993-11-17 2002-02-20 刘中一 多频率微波治疗仪
US5462521A (en) 1993-12-21 1995-10-31 Angeion Corporation Fluid cooled and perfused tip for a catheter
US5397320A (en) * 1994-03-03 1995-03-14 Essig; Mitchell N. Dissecting surgical device and associated method
GB9413070D0 (en) 1994-06-29 1994-08-17 Gyrus Medical Ltd Electrosurgical apparatus
GB9425781D0 (en) 1994-12-21 1995-02-22 Gyrus Medical Ltd Electrosurgical instrument
US6106524A (en) 1995-03-03 2000-08-22 Neothermia Corporation Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue
JP3500228B2 (ja) 1995-06-21 2004-02-23 オリンパス株式会社 内視鏡用処置具挿抜装置
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
WO1997024074A1 (en) 1995-12-29 1997-07-10 Microgyn, Inc. Apparatus and method for electrosurgery
US6013076A (en) * 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
US6139527A (en) 1996-03-05 2000-10-31 Vnus Medical Technologies, Inc. Method and apparatus for treating hemorrhoids
DE19608716C1 (de) 1996-03-06 1997-04-17 Aesculap Ag Bipolares chirurgisches Faßinstrument
JPH09313619A (ja) 1996-05-30 1997-12-09 Olympus Optical Co Ltd 温熱治療用アプリケータ
DE29616210U1 (de) 1996-09-18 1996-11-14 Winter & Ibe Olympus Handhabe für chirurgische Instrumente
DE19643127A1 (de) 1996-10-18 1998-04-23 Berchtold Gmbh & Co Geb Hochfrequenzchirurgiegerät und Verfahren zu dessen Betrieb
US5923475A (en) 1996-11-27 1999-07-13 Eastman Kodak Company Laser printer using a fly's eye integrator
DE19717411A1 (de) 1997-04-25 1998-11-05 Aesculap Ag & Co Kg Verfahren und Vorrichtung zur Überwachung der thermischen Belastung des Gewebes eines Patienten
US5891137A (en) * 1997-05-21 1999-04-06 Irvine Biomedical, Inc. Catheter system having a tip with fixation means
EP0882955B1 (de) 1997-06-06 2005-04-06 Endress + Hauser GmbH + Co. KG Mit Mikrowellen arbeitendes Füllstandsmessgerät
US6652515B1 (en) 1997-07-08 2003-11-25 Atrionix, Inc. Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
US6514249B1 (en) 1997-07-08 2003-02-04 Atrionix, Inc. Positioning system and method for orienting an ablation element within a pulmonary vein ostium
US6997925B2 (en) 1997-07-08 2006-02-14 Atrionx, Inc. Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
US6117101A (en) 1997-07-08 2000-09-12 The Regents Of The University Of California Circumferential ablation device assembly
US6869431B2 (en) 1997-07-08 2005-03-22 Atrionix, Inc. Medical device with sensor cooperating with expandable member
US6547788B1 (en) 1997-07-08 2003-04-15 Atrionx, Inc. Medical device with sensor cooperating with expandable member
WO1999007297A1 (en) 1997-08-05 1999-02-18 Trustees Of Dartmouth College System and methods for fallopian tube occlusion
DE19751108A1 (de) 1997-11-18 1999-05-20 Beger Frank Michael Dipl Desig Elektrochirurgisches Operationswerkzeug
EP0923907A1 (en) 1997-12-19 1999-06-23 Gyrus Medical Limited An electrosurgical instrument
CA2317410A1 (en) 1998-01-14 1999-07-22 Surx, Inc. Ribbed electrodes and methods for their use
DE19801173C1 (de) 1998-01-15 1999-07-15 Kendall Med Erzeugnisse Gmbh Klemmverbinder für Filmelektroden
AU3072499A (en) * 1998-03-09 1999-09-27 Cardiofocus, Inc. Thermal treatment device including expansion element
US6014581A (en) 1998-03-26 2000-01-11 Ep Technologies, Inc. Interface for performing a diagnostic or therapeutic procedure on heart tissue with an electrode structure
US6061551A (en) 1998-10-21 2000-05-09 Parkervision, Inc. Method and system for down-converting electromagnetic signals
DE19848540A1 (de) 1998-10-21 2000-05-25 Reinhard Kalfhaus Schaltungsanordnung und Verfahren zum Betreiben eines Wechselrichters
USD425201S (en) 1998-10-23 2000-05-16 Sherwood Services Ag Disposable electrode assembly
USD424694S (en) 1998-10-23 2000-05-09 Sherwood Services Ag Forceps
USD449886S1 (en) 1998-10-23 2001-10-30 Sherwood Services Ag Forceps with disposable electrode
EP2206475A3 (de) 1998-12-18 2010-11-17 Celon AG Medical Instruments Elektrodenanordnung für ein chirurgisches Instrument zur elektrothermischen Koagulation im Gewebe
US6097985A (en) 1999-02-09 2000-08-01 Kai Technologies, Inc. Microwave systems for medical hyperthermia, thermotherapy and diagnosis
US6427089B1 (en) * 1999-02-19 2002-07-30 Edward W. Knowlton Stomach treatment apparatus and method
US20020022836A1 (en) 1999-03-05 2002-02-21 Gyrus Medical Limited Electrosurgery system
GB9905209D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgery system
US6398781B1 (en) 1999-03-05 2002-06-04 Gyrus Medical Limited Electrosurgery system
GB9905211D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgery system and instrument
US6161049A (en) 1999-03-26 2000-12-12 Urologix, Inc. Thermal therapy catheter
USD424693S (en) 1999-04-08 2000-05-09 Pruter Rick L Needle guide for attachment to an ultrasound transducer probe
US6317615B1 (en) * 1999-04-19 2001-11-13 Cardiac Pacemakers, Inc. Method and system for reducing arterial restenosis in the presence of an intravascular stent
US6325796B1 (en) * 1999-05-04 2001-12-04 Afx, Inc. Microwave ablation instrument with insertion probe
US6962586B2 (en) * 1999-05-04 2005-11-08 Afx, Inc. Microwave ablation instrument with insertion probe
GB9911954D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and instrument
GB9911956D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and method
GB9912625D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical generator and system
US6277113B1 (en) 1999-05-28 2001-08-21 Afx, Inc. Monopole tip for ablation catheter and methods for using same
GB9912627D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical instrument
GB9913652D0 (en) 1999-06-11 1999-08-11 Gyrus Medical Ltd An electrosurgical generator
US6306132B1 (en) * 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
JP2001003776A (ja) 1999-06-22 2001-01-09 Mitsubishi Electric Corp 自動変速機制御装置
US6669687B1 (en) 1999-06-25 2003-12-30 Vahid Saadat Apparatus and methods for treating tissue
JP2001037775A (ja) 1999-07-26 2001-02-13 Olympus Optical Co Ltd 治療装置
JP2003510126A (ja) * 1999-09-28 2003-03-18 ノヴァシス メディカル インコーポレイテッド エネルギーと薬の適用による組織の処置
US6197042B1 (en) * 2000-01-05 2001-03-06 Medical Technology Group, Inc. Vascular sheath with puncture site closure apparatus and methods of use
US6629974B2 (en) 2000-02-22 2003-10-07 Gyrus Medical Limited Tissue treatment method
US6723091B2 (en) 2000-02-22 2004-04-20 Gyrus Medical Limited Tissue resurfacing
US7300436B2 (en) 2000-02-22 2007-11-27 Rhytec Limited Tissue resurfacing
JP2001231870A (ja) 2000-02-23 2001-08-28 Olympus Optical Co Ltd 加温治療装置
EP1642544B1 (en) * 2000-05-03 2009-04-08 C.R.Bard, Inc. Apparatus for mapping and ablation in electrophysiology procedures
EP1286624B1 (en) 2000-05-16 2008-07-09 Atrionix, Inc. Deflectable tip catheter with guidewire tracking mechanism
AU6321301A (en) 2000-05-16 2001-11-26 Atrionix Inc Apparatus and method incorporating an ultrasound transducer onto a delivery member
GB0011764D0 (en) 2000-05-17 2000-07-05 Femcare Cyprus Ltd Medical clips
DE10027727C1 (de) 2000-06-03 2001-12-06 Aesculap Ag & Co Kg Scheren- oder zangenförmiges chirurgisches Instrument
US6511478B1 (en) 2000-06-30 2003-01-28 Scimed Life Systems, Inc. Medical probe with reduced number of temperature sensor wires
JP2002035004A (ja) 2000-07-24 2002-02-05 Olympus Optical Co Ltd 前立腺加温用治療装置
US6699241B2 (en) 2000-08-11 2004-03-02 Northeastern University Wide-aperture catheter-based microwave cardiac ablation antenna
US6676657B2 (en) 2000-12-07 2004-01-13 The United States Of America As Represented By The Department Of Health And Human Services Endoluminal radiofrequency cauterization system
US6866624B2 (en) * 2000-12-08 2005-03-15 Medtronic Ave,Inc. Apparatus and method for treatment of malignant tumors
US6658363B2 (en) * 2001-01-18 2003-12-02 Hewlett-Packard Development Company, L.P. Digital data pattern detection methods and arrangements
US6740108B1 (en) 2001-04-05 2004-05-25 Urologix, Inc. Thermal treatment catheter having preferential asymmetrical heating pattern
USD457959S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer
USD457958S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer and divider
US6761733B2 (en) 2001-04-11 2004-07-13 Trivascular, Inc. Delivery system and method for bifurcated endovascular graft
US7853333B2 (en) * 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US7617005B2 (en) * 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
DE10224154A1 (de) 2002-05-27 2003-12-18 Celon Ag Medical Instruments Vorrichtung zum elektrochirurgischen Veröden von Körpergewebe
JP2004018773A (ja) 2002-06-19 2004-01-22 Yuusui Kasei Kogyo Kk 機能性発泡粒子
GB2390545B (en) 2002-07-09 2005-04-20 Barts & London Nhs Trust Hollow organ probe
US6866662B2 (en) 2002-07-23 2005-03-15 Biosense Webster, Inc. Ablation catheter having stabilizing array
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
USD487039S1 (en) 2002-11-27 2004-02-24 Robert Bosch Corporation Spacer
JP4138468B2 (ja) * 2002-12-06 2008-08-27 アルフレッサファーマ株式会社 マイクロ波手術器
US6847848B2 (en) 2003-01-07 2005-01-25 Mmtc, Inc Inflatable balloon catheter structural designs and methods for treating diseased tissue of a patient
DE10310765A1 (de) 2003-03-12 2004-09-30 Dornier Medtech Systems Gmbh Sonde und Vorrichtung für eine Thermotherapie
AU2003901390A0 (en) 2003-03-26 2003-04-10 University Of Technology, Sydney Microwave antenna for cardiac ablation
EP1613387B1 (en) 2003-03-28 2008-01-30 C.R. Bard, Inc. Braided mesh catheter
USD496997S1 (en) 2003-05-15 2004-10-05 Sherwood Services Ag Vessel sealer and divider
USD499181S1 (en) 2003-05-15 2004-11-30 Sherwood Services Ag Handle for a vessel sealer and divider
DE10328514B3 (de) 2003-06-20 2005-03-03 Aesculap Ag & Co. Kg Chirurgisches Instrument
US7311703B2 (en) * 2003-07-18 2007-12-25 Vivant Medical, Inc. Devices and methods for cooling microwave antennas
US7460898B2 (en) * 2003-12-05 2008-12-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
JP4232688B2 (ja) 2003-07-28 2009-03-04 株式会社村田製作所 同軸プローブ
US7294125B2 (en) 2003-08-22 2007-11-13 Scimed Life Systems, Inc. Methods of delivering energy to body portions to produce a therapeutic response
EP3045136B1 (en) * 2003-09-12 2021-02-24 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US7270656B2 (en) 2003-11-07 2007-09-18 Visualase, Inc. Cooled laser fiber for improved thermal therapy
FR2862813B1 (fr) 2003-11-20 2006-06-02 Pellenc Sa Procede de chargement equilibre d'une batterie lithium-ion ou lithium polymere
FR2864439B1 (fr) 2003-12-30 2010-12-03 Image Guided Therapy Dispositif de traitement d'un volume de tissu biologique par hyperthermie localisee
AU2004312058B2 (en) * 2003-12-31 2010-12-02 Biosense Webster, Inc. Circumferential ablation device assembly with dual expandable members
CN1557259A (zh) * 2004-01-16 2004-12-29 吴丹明 血管电凝器
US20050215942A1 (en) * 2004-01-29 2005-09-29 Tim Abrahamson Small vessel ultrasound catheter
USD541938S1 (en) 2004-04-09 2007-05-01 Sherwood Services Ag Open vessel sealer with mechanical cutter
DE102004022206B4 (de) 2004-05-04 2006-05-11 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Sensor und Sensoranordnung zur Messung der Wärmeleitfähigkeit einer Probe
USD533942S1 (en) 2004-06-30 2006-12-19 Sherwood Services Ag Open vessel sealer with mechanical cutter
USD531311S1 (en) 2004-10-06 2006-10-31 Sherwood Services Ag Pistol grip style elongated dissecting and dividing instrument
USD541418S1 (en) 2004-10-06 2007-04-24 Sherwood Services Ag Lung sealing device
USD525361S1 (en) 2004-10-06 2006-07-18 Sherwood Services Ag Hemostat style elongated dissecting and dividing instrument
USD535027S1 (en) 2004-10-06 2007-01-09 Sherwood Services Ag Low profile vessel sealing and cutting mechanism
USD564662S1 (en) 2004-10-13 2008-03-18 Sherwood Services Ag Hourglass-shaped knife for electrosurgical forceps
US7200445B1 (en) 2005-10-21 2007-04-03 Asthmatx, Inc. Energy delivery devices and methods
EP1819304B1 (en) * 2004-12-09 2023-01-25 Twelve, Inc. Aortic valve repair
USD576932S1 (en) 2005-03-01 2008-09-16 Robert Bosch Gmbh Spacer
US7402168B2 (en) 2005-04-11 2008-07-22 Xtent, Inc. Custom-length stent delivery system with independently operable expansion elements
WO2007030433A2 (en) * 2005-09-06 2007-03-15 Nmt Medical, Inc. Removable intracardiac rf device
DE202005015147U1 (de) 2005-09-26 2006-02-09 Health & Life Co., Ltd., Chung-Ho Biosensor-Teststreifen mit Identifizierfunktion
JP4855482B2 (ja) * 2005-12-30 2012-01-18 シー・アール・バード・インコーポレーテッド 心臓組織を剥離する方法及び装置
US7826904B2 (en) * 2006-02-07 2010-11-02 Angiodynamics, Inc. Interstitial microwave system and method for thermal treatment of diseases
US8672932B2 (en) * 2006-03-24 2014-03-18 Neuwave Medical, Inc. Center fed dipole for use with tissue ablation systems, devices and methods
EP2032045A2 (en) 2006-05-24 2009-03-11 Emcision Limited Vessel sealing device and methods
EP2465574B1 (en) 2006-06-28 2015-10-28 Ardian, Inc. Systems for thermally-induced renal neuromodulation
US10376314B2 (en) 2006-07-14 2019-08-13 Neuwave Medical, Inc. Energy delivery systems and uses thereof
GB0624584D0 (en) 2006-12-08 2007-01-17 Medical Device Innovations Ltd Skin treatment apparatus and method
JP4618241B2 (ja) 2006-12-13 2011-01-26 株式会社村田製作所 同軸プローブ装置
US20080161890A1 (en) 2007-01-03 2008-07-03 Boston Scientific Scimed, Inc. Methods, systems, and apparatuses for protecting esophageal tissue during ablation
US7998139B2 (en) 2007-04-25 2011-08-16 Vivant Medical, Inc. Cooled helical antenna for microwave ablation
EP2184025B1 (en) * 2007-08-10 2012-04-11 Beijing Amsino Medical CO., LTD. Electrophysiology ablation device
US8945111B2 (en) 2008-01-23 2015-02-03 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US8965536B2 (en) 2008-03-03 2015-02-24 Covidien Lp Intracooled percutaneous microwave ablation probe
CA2732059A1 (en) * 2008-03-27 2009-10-01 Lintec Corporation Removable adhesive sheet
US8133222B2 (en) 2008-05-28 2012-03-13 Medwaves, Inc. Tissue ablation apparatus and method using ultrasonic imaging
US9155588B2 (en) * 2008-06-13 2015-10-13 Vytronus, Inc. System and method for positioning an elongate member with respect to an anatomical structure
USD606203S1 (en) 2008-07-04 2009-12-15 Cambridge Temperature Concepts, Ltd. Hand-held device
JP5072764B2 (ja) * 2008-08-01 2012-11-14 キヤノン株式会社 光学機器及びカメラシステム
USD594736S1 (en) 2008-08-13 2009-06-23 Saint-Gobain Ceramics & Plastics, Inc. Spacer support
CN102066029B (zh) 2008-09-29 2013-03-27 京瓷株式会社 切削镶刀、切削工具以及使用该切削镶刀和切削工具的切削方法
US9980774B2 (en) * 2008-10-21 2018-05-29 Microcube, Llc Methods and devices for delivering microwave energy
US8968287B2 (en) 2008-10-21 2015-03-03 Microcube, Llc Methods and devices for applying energy to bodily tissues
USD594737S1 (en) 2008-10-28 2009-06-23 Mmi Management Services Lp Rebar chair
DE102009015699A1 (de) 2008-10-30 2010-05-06 Rohde & Schwarz Gmbh & Co. Kg Breitband-Antenne
JP5399688B2 (ja) 2008-11-05 2014-01-29 ビバント メディカル, インコーポレイテッド 組織切除のための動的に整合したマイクロ波アンテナ
US8197473B2 (en) * 2009-02-20 2012-06-12 Vivant Medical, Inc. Leaky-wave antennas for medical applications
ES2575302T3 (es) 2009-02-26 2016-06-27 Advanced Cooling Therapy, Inc. Dispositivos para controlar la temperatura del paciente
US10045819B2 (en) 2009-04-14 2018-08-14 Covidien Lp Frequency identification for microwave ablation probes
US8934989B2 (en) 2009-04-15 2015-01-13 Medwaves, Inc. Radio frequency based ablation system and method with dielectric transformer
US8328799B2 (en) 2009-08-05 2012-12-11 Vivant Medical, Inc. Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
USD634010S1 (en) 2009-08-05 2011-03-08 Vivant Medical, Inc. Medical device indicator guide
US8328800B2 (en) 2009-08-05 2012-12-11 Vivant Medical, Inc. Directive window ablation antenna with dielectric loading
USD613412S1 (en) 2009-08-06 2010-04-06 Vivant Medical, Inc. Vented microwave spacer
US8328801B2 (en) 2009-08-17 2012-12-11 Vivant Medical, Inc. Surface ablation antenna with dielectric loading
US8343145B2 (en) 2009-09-28 2013-01-01 Vivant Medical, Inc. Microwave surface ablation using conical probe
US8876814B2 (en) * 2009-09-29 2014-11-04 Covidien Lp Fluid cooled choke dielectric and coaxial cable dielectric
US8469953B2 (en) * 2009-11-16 2013-06-25 Covidien Lp Twin sealing chamber hub
US9993294B2 (en) 2009-11-17 2018-06-12 Perseon Corporation Microwave coagulation applicator and system with fluid injection
US8394092B2 (en) 2009-11-17 2013-03-12 Vivant Medical, Inc. Electromagnetic energy delivery devices including an energy applicator array and electrosurgical systems including same
US8920415B2 (en) * 2009-12-16 2014-12-30 Biosense Webster (Israel) Ltd. Catheter with helical electrode
US8617153B2 (en) * 2010-02-26 2013-12-31 Covidien Lp Tunable microwave ablation probe
US9561076B2 (en) 2010-05-11 2017-02-07 Covidien Lp Electrosurgical devices with balun structure for air exposure of antenna radiating section and method of directing energy to tissue using same
FR2962838B1 (fr) * 2010-07-16 2012-07-13 Eurocopter France Procede d'aide au pilotage ameliore pour aeronef
US9788891B2 (en) * 2010-12-28 2017-10-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation electrode assemblies and methods for using same
JP5854853B2 (ja) 2012-01-13 2016-02-09 古河電気工業株式会社 Cvd装置
AU2012364793B2 (en) * 2011-04-08 2015-08-06 Covidien Lp Flexible microwave catheters for natural or artificial lumens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210367B1 (en) * 1995-09-06 2001-04-03 Microwave Medical Systems, Inc. Intracorporeal microwave warming method and apparatus
CN1943523A (zh) * 1998-12-14 2007-04-11 西奥多C.奥姆斯比 用于切除身体组织的基于射频的导管系统和中空同轴电缆
CN1819802A (zh) * 2003-06-23 2006-08-16 麦科罗苏立思有限公司 用于微波医学治疗的辐射辐照器
EP2060239A1 (en) * 2007-11-16 2009-05-20 Vivant Medical, Inc. Dynamically matched microwave antenna for tissue ablation
EP2147651A1 (en) * 2008-07-24 2010-01-27 Tyco Healthcare Group, LP Suction coagulator with thermal insulation

Also Published As

Publication number Publication date
WO2012139135A2 (en) 2012-10-11
AU2015243789B2 (en) 2016-10-13
EP2693970B1 (en) 2017-10-25
US20220142707A1 (en) 2022-05-12
US9220562B2 (en) 2015-12-29
CN104840249A (zh) 2015-08-19
US20160278859A1 (en) 2016-09-29
CN103717166B (zh) 2015-05-20
EP3095407A2 (en) 2016-11-23
US20160135885A1 (en) 2016-05-19
CN104840249B (zh) 2017-04-12
CN103732171B (zh) 2016-08-17
US20140052125A1 (en) 2014-02-20
US20190343583A1 (en) 2019-11-14
AU2015243789A1 (en) 2015-11-05
AU2012364793B2 (en) 2015-08-06
WO2013106054A2 (en) 2013-07-18
AU2016256746A1 (en) 2016-12-01
US20140039487A1 (en) 2014-02-06
CN103732171A (zh) 2014-04-16
AU2012364793A1 (en) 2013-10-31
US20140031811A1 (en) 2014-01-30
CA2832586C (en) 2016-08-16
JP2015186594A (ja) 2015-10-29
EP2693971A2 (en) 2014-02-12
AU2012364792A1 (en) 2013-11-21
JP2014516616A (ja) 2014-07-17
WO2013106053A2 (en) 2013-07-18
US11234765B2 (en) 2022-02-01
WO2013106052A9 (en) 2013-09-26
US20120259326A1 (en) 2012-10-11
EP3095407A3 (en) 2017-03-08
JP5593467B2 (ja) 2014-09-24
US20140031812A1 (en) 2014-01-30
AU2012239878B2 (en) 2015-01-29
US10321956B2 (en) 2019-06-18
CN103841913A (zh) 2014-06-04
JP2014516614A (ja) 2014-07-17
US9387038B2 (en) 2016-07-12
JP2017099906A (ja) 2017-06-08
WO2012139135A3 (en) 2013-01-17
JP2018167052A (ja) 2018-11-01
US9358066B2 (en) 2016-06-07
JP5763263B2 (ja) 2015-08-12
WO2013106052A2 (en) 2013-07-18
CA2832593A1 (en) 2012-07-18
EP2693971B1 (en) 2016-07-13
CA2832595A1 (en) 2012-10-11
JP2014514071A (ja) 2014-06-19
CN103841913B (zh) 2016-02-24
US10226296B2 (en) 2019-03-12
CA2845795A1 (en) 2013-07-18
CN105496552A (zh) 2016-04-20
WO2013106054A3 (en) 2013-10-10
US20160302864A1 (en) 2016-10-20
EP2693969A4 (en) 2014-06-18
EP2693969A2 (en) 2014-02-12
EP3001971A1 (en) 2016-04-06
JP6389535B2 (ja) 2018-09-12
US10363094B2 (en) 2019-07-30
AU2012239878A1 (en) 2013-10-31
JP6080181B2 (ja) 2017-02-15
AU2016256746B2 (en) 2018-10-04
WO2013106053A3 (en) 2013-10-24
AU2012364794A1 (en) 2013-11-21
EP2693970A2 (en) 2014-02-12
EP2693971A4 (en) 2015-01-28
EP2693969B1 (en) 2016-02-03
CA2832586A1 (en) 2013-07-18
CA2832595C (en) 2017-09-19
US10314652B2 (en) 2019-06-11
EP2693970A4 (en) 2014-12-17
EP3001971B1 (en) 2019-09-25
CN103717166A (zh) 2014-04-09
JP2014516615A (ja) 2014-07-17

Similar Documents

Publication Publication Date Title
CN105496552B (zh) 柔性微波导管
AU2015202149B2 (en) Flexible microwave catheters for natural or artificial lumens

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant