CN105063187B - 一种快速检测灰葡萄孢菌对sdhi类杀菌剂抗性的方法及引物组合物 - Google Patents

一种快速检测灰葡萄孢菌对sdhi类杀菌剂抗性的方法及引物组合物 Download PDF

Info

Publication number
CN105063187B
CN105063187B CN201510450026.0A CN201510450026A CN105063187B CN 105063187 B CN105063187 B CN 105063187B CN 201510450026 A CN201510450026 A CN 201510450026A CN 105063187 B CN105063187 B CN 105063187B
Authority
CN
China
Prior art keywords
pathogen
botrytis cinerea
primer
seq
series bactericidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510450026.0A
Other languages
English (en)
Other versions
CN105063187A (zh
Inventor
段亚冰
周明国
陈长军
杨莹
王建新
张晓柯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN201510450026.0A priority Critical patent/CN105063187B/zh
Publication of CN105063187A publication Critical patent/CN105063187A/zh
Application granted granted Critical
Publication of CN105063187B publication Critical patent/CN105063187B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于环介导恒温扩增技术快速检测灰葡萄孢菌对SDHI类杀菌剂抗性的方法及引物组合物。用于检测灰葡萄孢菌对SDHI类杀菌剂抗性的引物组合物,由SEQ ID NO.2所示的正向内引物FIP、SEQ ID NO.3所示的反向内引物BIP、SEQ ID NO.4所示的正向外引物F3、SEQ ID NO.5所示的反向外引物B3和SEQ ID NO.6所示的环引物LF组成。本发明的检测方法简便易行、实用性好、灵敏度高、特异性强、准确性高、实现了恒温扩增,为灰葡萄孢菌对SDHI类杀菌剂抗性的检测提供了新的技术平台,能够对灰葡萄孢菌的SDHI类杀菌剂抗性群体进行监测,及时了解抗性群体发展动态。本发明对作物灰霉病的抗药性治理和科学指导用药,降低生产成本,减少农药的环境污染也具有重要的现实意义。

Description

一种快速检测灰葡萄孢菌对SDHI类杀菌剂抗性的方法及引物 组合物
技术领域
本发明属于生物技术领域,具体涉及基于环介导恒温扩增技术(loop-mediatedisothermal amplification,LAMP)检测灰葡萄孢菌对SDHI类杀菌剂抗性的方法及引物组合物,可用于灰葡萄孢菌对SDHI类杀菌剂抗性群体发展的动态监测与抗性风险评估,为作物灰霉病的抗性治理、流行预警及合理用药指导提供重要的理论依据。
背景技术
灰霉病是一类由灰葡萄孢菌(Botrytis cinerea)引起的植物真菌病害,可危害200多种蔬菜、果树以及观赏性植物等重要的经济作物,该病的发生可引起植物幼苗、果实及贮藏器官的猝倒、落叶、花腐、烂果及烂窑,造成严重的经济损失。近年来,随着保护地蔬菜生产的发展,加重了灰霉病的发生和流行。目前由于作物种质资源缺少高抗灰霉病的品种,采用化学药剂是控制灰霉病最有效方便的途径之一。多年来,灰霉病主要采用苯并咪唑类、二甲酰亚胺类、嘧啶胺类、酰胺类、甲氧基丙烯酸酯类(QoIs)、琥珀酸脱氢酶抑制剂类(SDHI)等化学药剂进行防治,但随着使用年限的增长和使用剂量的增加,田间逐渐产生了抗药性群体,从而导致该病防效显著下降。灰葡萄孢菌对常用杀菌剂抗药性的监测不仅能应用于作物灰霉病的抗药性流行预警,而且也能为作物灰霉病的抗性治理提供用药指导。传统的杀菌剂抗性检测或监测的方法主要是通过分离培养病原菌,然后在含药培养基上培养,根据药剂对菌丝生长的抑制作用鉴定是否为抗药性菌株,该方法检测周期较长,从分离到鉴定长达1周,甚至数周,且在病原菌培养过程中存在杂菌污染,给实验结果带来误差;同时,还需投入大量的人力资源,增加检测成本。近年来,随着核酸相关分子检测技术的发展,PCR技术为植物病原菌的抗药性检测提供了快速、灵敏、准确的优势,但是检测需要昂贵的实验仪器及繁琐的电泳过程,检测时间长,检测成本高昂等,不能满足经济高效检测的需求,并且在鉴定过程中还需要接触大量有毒有害试剂,对实验操作人员存在较大的安全隐患。因此,开发对植物病原菌抗药性检测的新技术已迫在眉睫。
环介导恒温扩增反应(LAMP)是2000年由日本学者Notomi等发明的一种新颖的恒温核酸体外扩增技术,广泛应用于动物、植物等疾病的基因诊断。该技术原理是:利用一套(4种)特异性引物,在一种高活性链置换DNA聚合酶的作用下引起自循环链置换反应,60~65℃范围60min内,大量合成目标DNA的同时伴随有副产物——白色的焦磷酸镁沉淀产生。羟基萘酚蓝(HNB)是一种金属离子指示剂,根据反应液中镁离子的变化而呈现出不同的颜色,阴性(没有扩增出产物)时为紫色,阳性(有产物扩增)时为天蓝色。LAMP方法的最大特点就是实现恒温扩增,不需要循环仪等昂贵的仪器;扩增反应极快;扩增产生的产物量大,通过肉眼即可判定结果,不需要繁琐的电泳过程;灵敏度高、特异性强;操作简便、快捷,极适于病原的快速诊断及抗性检测。
经过多年的研究发现灰葡萄孢菌对SDHI类杀菌剂的抗药性主要是由灰葡萄孢菌琥珀酸脱氢酶基因B亚基(SdhB)突变造成,该基因编码第225、230或272位氨基酸密码子的突变可引起灰葡萄孢菌对SDHI类杀菌剂抗药性的产生。225位氨基酸突变的基因型为P225Y(CCC→TTC);230为氨基酸突变的基因型为N230I(AAC→ATC);272位氨基酸的突变可分为3种突变基因型,分别为H272R(CAC→TAC)、H272Y(CAC→CGC)和H272L(CAC→CTC)。5种突变基因型P225Y、N230I、H272R、H272Y和H272L约占抗性突变类型的比例分别为5.26%、8.77%、68.42%、15.79%和1.75%。因此,在本发明中,依据灰葡萄孢菌琥珀酸脱氢酶基因B亚基(SdhB)272位氨基酸的3种突变基因型(H272R/H272Y/H272),基于环介导恒温扩增技术(LAMP)建立了灰葡萄孢菌对SDHI类杀菌剂抗性的快速分子检测技术。该检测技术具有简单、快速、成本低,灵敏性高等特点,能大大提高检测效率,对灰霉病的有效防治、抗药性流行预警具有重要的现实意义。然而,经检索目前国内外尚未有灰葡萄孢菌对SDHI类杀菌剂抗药性菌株的LAMP快速分子检测的相关报道。
发明内容
已报道的灰葡萄孢菌对SDHI类杀菌剂抗性菌株的鉴定及检测方法存在费时、费力、成本高的缺点。针对这一缺点,根据灰葡萄孢菌对SDHI类杀菌剂抗性菌株的基因型,通过实验条件优化,建立了一种快速检测灰葡萄孢菌对SDHI类杀菌剂抗性菌株的方法。该方法具有简便、快速、省时省力、灵敏度高、检测成本低等特点,对灰霉病的抗药性监测、控制病害发生与流行、指导合理用药及减少经济损失具有实用价值。目前在国内外,本发明是LAMP技术在检测灰葡萄孢菌对SDHI类杀菌剂抗性的首次报道。
田间采集的SDHI类杀菌剂抗性灰葡萄孢菌株约86%的突变类型是由于灰葡萄孢菌琥珀酸脱氢酶基因B亚基(SdhB)第272位氨基酸密码子突变造成的。该位点的突变可分为3种突变基因型,分别为H272R(CAC→TAC)、H272Y(CAC→CGC)和H272L(CAC→CTC)。本发明所述的快速检测灰葡萄孢菌对SDHI类杀菌剂抗性菌株的分子生物学方法,可同时检测上述3种突变基因型,本发明通过如下技术方案实现:
SEQ ID NO.1所示的灰葡萄孢菌琥珀酸脱氢酶基因B亚基作为靶标在LAMP检测灰葡萄孢菌对SDHI类杀菌剂抗性中的应用。
用于检测灰葡萄孢菌对SDHI类杀菌剂抗性的LAMP引物组合物:由SEQ ID NO.2所示的正向内引物FIP、SEQ ID NO.3所示的反向内引物BIP、SEQ ID NO.4所示的正向外引物F3、SEQ ID NO.5所示的反向外引物B3、SEQ ID NO.6所示的环引物LF组成。
本发明所述的LAMP引物组合物在检测灰葡萄孢菌对SDHI类杀菌剂抗性中的应用。
本发明所述的LAMP引物组合物在制备灰葡萄孢菌对SDHI类杀菌剂抗性LAMP检测试剂盒中的应用。
一种检测灰葡萄孢菌对SDHI类杀菌剂抗性的LAMP检测试剂盒,含有本发明所述的引物组合物。
本发明所述的检测灰葡萄孢菌对SDHI类杀菌剂抗性的LAMP检测试剂盒,包含的检测溶液为:240U/mL Bst DNA聚合酶,20mM Tris-HCl,10mM KCl,10mM(NH4)2SO4,2mM MgSO4,0.1%Triton X-100,2.0mM MgCl2,0.6mM dNTPs,0.32M甜菜碱,0.2mM羟基溴酚蓝(HNB),0.8μM正向内引物FIP,0.8μM反向内引物BIP,0.2μM正向外引物F3,0.2μM反向外引物B3,0.4μM环引物LF,加入无菌超纯水制备得到。
一种检测灰葡萄孢菌对SDHI类杀菌剂抗性的LAMP试剂盒在检测灰葡萄孢菌对SDHI类杀菌剂抗性中的应用。
一种检测灰葡萄孢菌对SDHI类杀菌剂抗性的LAMP检测方法,取待检灰葡萄孢菌的DNA为模板,利用本发明的引物组合物或本发明所述的LAMP检测试剂盒进行LAMP扩增,扩增产物进行琼脂糖凝胶电泳,在紫外光下检测结果,若存在梯状条带,则证明所检测灰葡萄孢菌为灰葡萄孢菌对SDHI类杀菌剂272位抗性突变型菌株;若无梯状条带,则证明所检测灰葡萄孢菌为非272位抗性突变型菌株;或观察LAMP反应溶液颜色变化,若为天蓝色,判定为灰葡萄孢菌对SDHI类杀菌剂272位抗性突变型菌株;若为紫色,判定为非272位抗性突变型菌株。
本发明所述的检测灰葡萄孢菌对SDHI类杀菌剂抗性的LAMP检测方法,LAMP反应参数为59~61℃,15~120min。
本发明提供的快速检测灰葡萄孢菌对SDHI类杀菌剂抗性的分子生物学方法,具有灵敏度高,特异性强等特点,与现有技术相比,本发明的有益结果是:
1、简便易行:该检测方法通过恒温水浴锅或有稳定热源的设备就能进行实验,通过反应产物颜色变化即可判定结果,省去了昂贵的仪器设备及繁琐的电泳操作过程;
2、检测高效性:该检测方法所用检测时间仅需45min,当加入环引物LF后,15min就可以完成检测,大大提高了检测效率,而传统的室内生物测定法需要几天时间,PCR检测需要繁琐的电泳过程,也要数小时;
3、灵敏度高:将构建的质粒载体稀释成不同的浓度,作为模板,进行灵敏度检测,最低检测下限为普通PCR检测下限的100倍;
4、特异性强:该方法通过2对引物特异性识别靶序列上的6个独立区域,相对于PCR引物识别靶序列的2个独立区域而言,特异性大大提高,假阳性出现的概率也随之降低;
5、准确性高:该方法几乎不受反应混合液中存在的大量外源DNA和杂质的影响,不需要从样本中纯化DNA,可直接利用发病组织及病残体提取DNA进行快速检测,大大提高检测准确度;
6、本发明是针对灰葡萄孢菌琥珀酸脱氢酶基因B亚基(SdhB)第272位氨基酸的3种突变类型进行同时检测,均能表现出较好的特异性,在农业生产中的抗性监测和抗性流行预警具有重要的应用前景;
7、本发明是国内外首次利用LAMP技术对SDHI类杀菌剂抗性的灰葡萄孢菌株进行检测,这种方法简便快捷,对抗性菌株的准确诊断、及时了解抗性群体发展动态、指导科学用药、降低成本及减少环境污染具有重要的现实意义;
附图说明
图1:LAMP检测的反应温度优化
图2:LAMP检测的反应时间优化
图3:LAMP检测的灵敏度优化
图4:LAMP检测的重复性优化。图中显示第1-3管呈紫色,为阴性;4-15管呈天蓝色,为阳性。其中,1-3为灰葡萄孢菌对SDHI类杀菌剂的敏感菌株;4-7为灰葡萄孢菌对SDHI类杀菌剂的H272R突变基因型菌株;8-11为灰葡萄孢菌对SDHI类杀菌剂的H272Y突变基因型菌株;12-15为灰葡萄孢菌对SDHI类杀菌剂的H272L突变基因型菌株。
图5:环引物LF的优化
具体实施方式
实施例1 LAMP反应引物组合物的特异性实验
为了验证LAMP反应引物组合物的特异性,以灰葡萄孢菌琥珀酸脱氢酶基因B亚基第272位3种突变类型为依据,设计LAMP引物,其突变位点位于反向内引物BIP的3’端,在突变位点上下游各3个碱基间进行任一或任二碱基进行错配突变,并以灰葡萄孢菌敏感菌株和灰葡萄孢菌对SDHI类杀菌剂抗性的3种突变基因型菌株的DNA为模板进行LAMP实验,优选出能特异性鉴定灰葡萄孢菌对SDHI类杀菌剂抗性的LAMP引物组合物。
各引物序列具体如下:
FIP:5’-CGGGAATCTGCAAGCCATCTGTAACCCCTCCTACTGGTGGAA-3’(SEQ ID NO.2);
BIP:5’-AGGAAGAACGTAAGGCAGCTTTGGAGCAGTTGAGAATAGTGCAACA-3’(SEQ IDNO.3);
F3:5’-GCATGCTGCTCGACATCT-3’(SEQ ID NO.4);
B3:5’-GGATTCAATCCCTTCGGACATG-3’(SEQ ID NO.5);
LF:5’-GGTCCCAAGTACTCCTCACTG-3’(SEQ ID NO.6)。
其中,在反向内引物BIP的3’端碱基中,加粗的“CA”碱基为灰葡萄孢菌对SDHI类杀菌剂抗性的点突变碱基。
实施例2 LAMP反应体系及检测试剂盒体系优化
为了节省检测成本,保证该检测方法的稳定性和可靠性,对反应体系中BstDNA聚合酶(8U/μL)(0.8-4.0U)、Mg2+(25mM)浓度(0.6-2.0μL)、引物FIP/BIP(40μM)及F3/B3(10μM)浓度(0.1-0.5μL),甜菜碱(8M)浓度(0.4-2.0μL)、HNB(2.5mM)浓度(0.4-1.2μL)进行了优化,确定了试剂盒中最佳反应体系为:Bst DNA聚合酶(8U/μL)0.3μL,10×ThermoPol 1μL,MgCl2(25mM)0.8μL,dNTP(10mM)0.6μL,FIP(40μM)0.2μL,BIP(40μM)0.2μL,F3(10μM)0.2μL,B3(10μM)0.2μL,LF(20μM)0.2μL,甜菜碱(8M)0.4μL,HNB(2.5mM)0.8μL,加入无菌超纯水制备,100次包装,低温运输,-20℃保存,有效期1年。
其中各引物序列具体如下:
FIP:5’-CGGGAATCTGCAAGCCATCTGTAACCCCTCCTACTGGTGGAA-3’(SEQ ID NO.2);BIP:5’-AGGAAGAACGTAAGGCAGCTTTGGAGCAGTTGAGAATAGTGCAACA-3’(SEQ ID NO.3);
F3:5’-GCATGCTGCTCGACATCT-3’(SEQ ID NO.4);
B3:5’-GGATTCAATCCCTTCGGACATG-3’(SEQ ID NO.5);
LF:5’-GGTCCCAAGTACTCCTCACTG-3’(SEQ ID NO.6)。
实施例3 LAMP反应条件优化
为了得到最适的反应温度和时间,保证该检测方法的高效性,在不加环引物LF条件下,对反应参数中的反应温度及时间进行了优化,在反应温度和时间分别为59-61℃(图1)和45min(图2)的条件均有DNA条带扩增,且颜色变化明显,因此从高效性考虑,得出最适反应温度和时间分别为59-61℃和45min。
实施例4 LAMP反应灵敏度检测
为了确定LAMP反应的检测下限,本实验PCR扩增含有272位突变位点的DNA片段,将该片段克隆至载体pMD-18,转化大肠杆菌,挑取阳性转化子,提取质粒,测定浓度后,并计算拷贝数,以10倍梯度稀释作为模板,分别进行LAMP及PCR扩增。最终得出,LAMP的最低检测下限为普通PCR检测下限的100倍(图3)。
实施例5 LAMP反应特异性检测
以灰葡萄孢菌对SDHI类杀菌剂抗性的5种基因型:P225Y、N230I、H272R、H272Y和H272L和野生型菌株的基因组DNA为模板分别进行LAMP扩增。当模板为第272位突变基因型时,反应产物颜色为天蓝色,电泳图谱成梯状条带;当模板为非272位突变基因型时,反应产物颜色为紫色,电泳无条带,上述结果表明该检测方法结果可靠,特异性强。
实施例6 LAMP反应重复性检测
对采集不同地理位置的12个SDHI类杀菌剂第272位突变基因型的灰葡萄孢菌株基因组DNA为模板进行LAMP检测,以野生型为对照,结果显示12个实验样品的反应颜色均为天蓝色,电泳图谱均呈梯状条带(图4)。并经过突变基因的测序结果表明,12个样品均在第272位发生点突变。上述结果表明该检测方法结果可靠,重复性好。
实施例7环引物LF对LAMP的加速反应
为了能加速LAMP的反应速率,本发明设计了环引物LF,将该环引物LF加入反应体系中,结果显示,LF能加速LAMP反应,15min即能观察到LAMP颜色变化,能有效鉴别272位突变基因型,60min后,则不能有效鉴别272位突变基因型(图5)。因此,加入LF后,最适的反应时间则为15min。
本发明所建立的检测方法能准确、快速对SDHI类杀菌剂抗性的灰葡萄孢菌进行检测,为科学研究和生产实践提供了一种简便、快速、成本低廉的检测技术,也为灰霉病对SDHI类杀菌剂抗性群体的动态监测,抗药性病害的流行预警及合理用药提供了理论基础和技术指导。

Claims (2)

1.用于检测灰葡萄孢菌对SDHI类杀菌剂抗性的LAMP引物组合物:由SEQ ID NO.2所示的正向内引物FIP、SEQ ID NO.3所示的反向内引物BIP、SEQ ID NO.4所示的正向外引物F3、SEQ ID NO.5所示的反向外引物B3、SEQ ID NO.6所示的环引物LF组成。
2.一种检测灰葡萄孢菌对SDHI类杀菌剂抗性的LAMP检测方法,步骤为:
(1)运用权利要求1所述的两对特异性引物对待测样品的基因组DNA进行LAMP恒温扩增,反应体系为10μL,包括240U/mL Bst DNA聚合酶,20 mM Tris-HCl,10 mM KCl,10mM(NH4)2SO4,2mM MgSO4,0.1%Triton X-100,2.0mM MgCl2,0.6mM dNTPs,0.32M甜菜碱,0.2mM羟基溴酚蓝(HNB),0.8μM正向内引物FIP,0.8μM反向内引物BIP,0.2μM正向外引物F3,0.2μM反向外引物B3,0.4μM环引物LF,加入无菌超纯水;反应参数为59-61℃ 60min,80℃10min;
(2)对上述LAMP扩增产物进行琼脂糖凝胶电泳,在紫外光下检测结果,若存在梯状条带,则证明所检测灰葡萄孢菌为灰葡萄孢菌对SDHI类杀菌剂272位抗性突变型菌株;若无梯状条带,则证明所检测灰葡萄孢菌为非272位抗性突变型菌株;或观察LAMP反应溶液颜色变化,若为天蓝色,判定为灰葡萄孢菌对SDHI类杀菌剂272位抗性突变型菌株,若为紫色,判定为非272位抗性突变型菌株。
CN201510450026.0A 2015-07-28 2015-07-28 一种快速检测灰葡萄孢菌对sdhi类杀菌剂抗性的方法及引物组合物 Active CN105063187B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510450026.0A CN105063187B (zh) 2015-07-28 2015-07-28 一种快速检测灰葡萄孢菌对sdhi类杀菌剂抗性的方法及引物组合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510450026.0A CN105063187B (zh) 2015-07-28 2015-07-28 一种快速检测灰葡萄孢菌对sdhi类杀菌剂抗性的方法及引物组合物

Publications (2)

Publication Number Publication Date
CN105063187A CN105063187A (zh) 2015-11-18
CN105063187B true CN105063187B (zh) 2017-12-05

Family

ID=54492691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510450026.0A Active CN105063187B (zh) 2015-07-28 2015-07-28 一种快速检测灰葡萄孢菌对sdhi类杀菌剂抗性的方法及引物组合物

Country Status (1)

Country Link
CN (1) CN105063187B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988336A (zh) * 2017-12-29 2018-05-04 华中农业大学 用于检测灰葡萄孢对sdhi类杀菌剂的抗药性的试剂盒
CN111363836B (zh) * 2019-12-26 2022-11-22 南京农业大学 镰孢菌遗传分化的sdhc亚基作为药靶资源在药物研发中的用途
CN115786560B (zh) * 2022-08-12 2024-03-22 上海市农业科学院 一种检测灰葡萄孢菌的琥珀酸脱氢酶b亚基点突变类型的引物组、试剂盒和方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103725776A (zh) * 2013-12-08 2014-04-16 北京工业大学 一种基于ARMS的灰葡萄孢菌SdhB基因H272Y突变检测方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103725776A (zh) * 2013-12-08 2014-04-16 北京工业大学 一种基于ARMS的灰葡萄孢菌SdhB基因H272Y突变检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AY726618;NCBI GenBank;《NCBI》;20050901 *
Development and Evaluation of a Novel and Rapid Detection Assay for Botrytis cinerea Based on Loop-Mediated Isothermal Amplification;Duan et al;《PLOS ONE》;20141020;第9卷(第10期);e111094,1-9 *
灰霉病菌抗药位点及其分子检测方法研究进展;张鑫 等;《生物技术进展》;20141231;第4卷(第4期);251-257 *

Also Published As

Publication number Publication date
CN105063187A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
CN106434993B (zh) 用于检测黄瓜枯萎病菌的lamp引物组合物及其应用
Chen et al. Development and evaluation of specific PCR and LAMP assays for the rapid detection of Phytophthora melonis
CN103484571B (zh) 传染性皮下及造血组织坏死病毒的lamp检测引物组、检测试剂盒及检测方法
CN110218804B (zh) 用于检测田间软腐果胶杆菌胡萝卜亚种的引物组及其dna提取检测试剂盒和方法
CN108060257A (zh) 一种基于环介导等温扩增技术检测强雄腐霉的引物组合物及其检测方法
CN105063187B (zh) 一种快速检测灰葡萄孢菌对sdhi类杀菌剂抗性的方法及引物组合物
Li et al. Specific and sensitive detection of Phytophthora nicotianae by nested PCR and loop‐mediated isothermal amplification assays
CN103276057B (zh) 一种基于lamp技术快速检测灰葡萄孢的方法
CN104313177B (zh) 一种快速鉴定灰葡萄孢菌对多菌灵抗性基因型f200y菌株的分子检测方法
CN103436628B (zh) 一种快速检测禾谷镰孢菌对多菌灵中等抗性水平菌株的方法
CN104293971B (zh) 一种基于lamp技术对多菌灵高抗灰葡萄孢菌株的快速检测方法
CN103820563B (zh) 一种基于lamp技术快速检测多菌灵高抗核盘菌菌株的方法
CN116516058A (zh) 可视化检测大豆疫霉菌的方法及试剂盒
CN108315473A (zh) 一种用于水稻稻曲病病菌lamp快速检测的引物组合物及其应用
CN111635959A (zh) 一种Fluoxapiprolin抗性基因型G700V辣椒疫霉的LAMP引物及应用
CN110878373A (zh) 一种致病疫霉菌的重组酶聚合酶扩增检测试剂盒及其应用
CN100402666C (zh) 鉴定入侵南美红火蚁的方法及所用的核酸序列、探针与试剂盒
CN104099413B (zh) 美国白蛾恒温核酸检测试剂盒及其检测方法
CN105132556B (zh) 一种快速检测灰葡萄孢菌对QoI类杀菌剂抗性的方法及引物组合物
KR101846182B1 (ko) 바실러스 세레우스, 황색포도상구균, 살모넬라균의 동시 검출을 위한 프라이머 세트 및 이를 포함하는 중합효소연쇄반응 키트
CN114164296B (zh) 一种用于检测寡雄腐霉菌的引物探针组合物、试剂盒及应用和检测方法
CN114164295B (zh) 一种用于检测畸雌腐霉菌的引物探针组合物、试剂盒及应用和检测方法
CN104928364A (zh) 基于环介导恒温扩增技术检测禾谷镰孢菌对多菌灵抗性基因型f200y的方法及引物组合物
CN108048534A (zh) 一种快速检测抗性杂草的Ile-2041-Asn突变的分子检测方法
Chaudhary et al. Morpho-genetic variability of Rhizoctonia solani population causing sheath blight disease in rice (Oryza sativa L.)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant