CN105062563A - 负载催化剂的煤组合物,制造方法和用途 - Google Patents
负载催化剂的煤组合物,制造方法和用途 Download PDFInfo
- Publication number
- CN105062563A CN105062563A CN201510527744.3A CN201510527744A CN105062563A CN 105062563 A CN105062563 A CN 105062563A CN 201510527744 A CN201510527744 A CN 201510527744A CN 105062563 A CN105062563 A CN 105062563A
- Authority
- CN
- China
- Prior art keywords
- coal
- catalyzer
- catalyst
- supported catalyst
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/48—Liquid treating or treating in liquid phase, e.g. dissolved or suspended
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/48—Apparatus; Plants
- C10J3/482—Gasifiers with stationary fluidised bed
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/54—Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L9/00—Treating solid fuels to improve their combustion
- C10L9/08—Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L9/00—Treating solid fuels to improve their combustion
- C10L9/10—Treating solid fuels to improve their combustion by using additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0903—Feed preparation
- C10J2300/0906—Physical processes, e.g. shredding, comminuting, chopping, sorting
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0903—Feed preparation
- C10J2300/0909—Drying
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/093—Coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0973—Water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0983—Additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1807—Recycle loops, e.g. gas, solids, heating medium, water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1807—Recycle loops, e.g. gas, solids, heating medium, water
- C10J2300/1823—Recycle loops, e.g. gas, solids, heating medium, water for synthesis gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
本发明涉及具有低于约6wt%的水分含量的负载催化剂的煤组合物,负载催化剂的煤组合物的制备方法,以及负载催化剂的煤组合物的气化的集成方法。负载催化剂的煤组合物能够通过扩散性催化剂负载方法来制备,该方法获得高度分散的催化剂,后者主要与煤基质相结合,如通过离子交换作用。
Description
本案是申请号为200880101382.X,申请日为2008-07-23,题目为“负载催化剂的煤组合物,制造方法和用途”的申请的分案。
本申请要求了美国临时申请序列号No.61/066,130(2007年8月2日申请)的优先权,它的公开内容对于所有目的被引入这里供参考,就象在这里充分阐述一样。
本发明的领域
本发明涉及从煤(coal)制造甲烷的集成方法(integratedprocesses)。本发明还涉及其中催化剂负载到煤上的方法。本发明进一步涉及改进的负载催化剂的煤组合物。
相关技术的背景叙述
从煤生产气体的方法在高能量价格的当前环境下受到了加倍重视。特别是在流化床反应器中使用蒸汽所进行的煤的催化增强的气化。此类方法具有能量有效和需要较低投资费用的潜力。
煤的气化典型地通过让蒸汽和煤在非常高的温度下,或在碱金属催化剂存在下在中等温度下来实现。早期的工作集中于负载于煤颗粒上的I和II族金属作为催化剂的用途。然而,这些方法在煤上负载催化剂时以及在催化剂从气化器排放的焦炭中的回收和再循环利用上会遇到缺点。US3828474描述了使用催化剂,如用碱金属改进的负载镍催化剂,从烃类生产甲烷的方法。US3958957公开了使用钾作为气化催化剂从煤生产甲烷的方法。US4092125公开了将催化剂引入在煤上的水热方法。US3998607和US4057512公开了碱金属回收的方法。US4094650公开了在碳-碱金属催化剂和添加的氢气和一氧化碳存在下从含碳原料生产甲烷和二氧化碳的方法。US4204843公开了其中同时使用碱金属和碱土金属催化剂的方法。US4468231公开了其中碱金属和碱土金属阳离子在氧化性气体存在下进行离子交换的方法。GB1599932公开了负载方法,它使用煤的空气氧化以增大氧含量并用钾或钠或碱土金属的氢氧化物的碱性溶液处理煤。
尽管已经建议通过煤与所选择的催化剂掺混改进煤的气化,但是在此以前建议的技术没有完全地成功。例如,用催化剂浸渍煤的已知方法包括:a)催化剂与煤的物理掺混,和b)初始润湿(“IW”)浸渍,其中含催化剂的溶液被添加到干燥煤中,溶液的体积没有过量,但是刚好足以完全地填充煤的孔隙。煤浸渍的这些方法遭遇到生产出具有不是高度分散的催化剂负载的煤,和因此(生产出)具有降低的气化效率的煤的缺点。现有技术很少强调具有高度分散的催化剂负载的负载催化剂的煤,以及制备它的方法。因此,本发明的目的是提供从煤生产甲烷的改进方法。本发明还有一个目的是提供将催化剂负载于煤上的改进方法,以便提供特别适合于煤气化成甲烷的煤组合物。
本发明的概述
本发明涉及负载催化剂的煤组合物,后者导致有效、高产的气化成甲烷,特别当用于稳态的集成气化方法中时。本发明的负载催化剂的煤组合物具有在整个煤基质中高度分散的催化剂,和在较低催化剂负载量下的高气化活性。本发明的负载催化剂的煤组合物特别可用于在约450℃到约750℃范围内的中等温度下的气化。本发明的一个方面是利用一个过程生产高度分散地负载催化剂的煤组合物的方法,该过程包括通过例如扩散和离子交换法负载催化剂。此类方法容易地与催化剂回收过程相结合,据此回收的催化剂能够以相对稀的溶液形式再循环利用。本发明的另一个方面是提供生产负载催化剂的煤组合物的方法,该组合物相对于催化剂负载的量和催化剂的分散度而言具有高度的可预测性和可再现性。本发明的又一个方面是提供负载催化剂的煤组合物以及制备该组合物的方法,该方法能够容易地引入到从煤-到-甲烷的气化过程中并且能够导致,与以前所已知的相比,甲烷气体的更高成本效率的、更高产率的生产。
根据本发明的负载催化剂的煤组合物一般包括煤和气化催化剂,其中(i)煤包括含有包括酸性官能团的离子交换位点的基质;(ii)组合物具有低于约6wt%的水分含量;(iii)气化催化剂是碱金属阳离子或它们的混合物;(iv)气化催化剂的存在量使得催化剂原子与碳原子的比率是在约0.01到约0.1范围内;和(v)负载催化剂的总量的约50%以上通过在煤的酸性官能团上的离子交换作用与煤基质相结合。该催化剂应该高度分散在整个煤基质中。
本发明的负载催化剂的煤组合物能够通过包括以下步骤的扩散性催化剂负载(“DCL”)方法来制备:(a)研磨煤,(b)在一定的接触时间和温度下将研磨的煤浸泡在过量的含催化剂的溶液中,以便提供实现相当大程度的和均匀的催化剂负载的充足机会,(c)将浸泡的负载催化剂的煤脱水,和(d)通过在干燥惰性气体流下的热处理来干燥已脱水的负载催化剂的煤。
附图的简述
图1显示了制备本发明的负载催化剂的煤组合物和生产甲烷的集成方法的示意图。
图2显示了通过比较从由本发明的DCL方法和由普通的IW方法制得的、具有相同的催化剂原子与碳原子的比率的负载催化剂的煤组合物生产的气体的压力所得到的相对气化效率。
图3显示了通过比较从由本发明的DCL方法和由普通的IW方法制得的、具有相同的催化剂原子与碳原子的比率的负载催化剂的煤组合物的%碳转化率所得到的相对气化效率。
图4显示了具有钾催化剂的亚沥青粉河盆地(PowderRiverBasin),即PRB)煤的吸附等温线。
详细说明
如果没有另外指定,在这里提及的全部出版物,专利申请,专利和其它参考文献,对于全部的目的以它们的全部内容被明确地引入这里供参考,就象充分阐述一样。
除非另外有规定,否则这里所使用的全部技术和科学术语具有本公开物所属于的技术领域的普通技术人员所通常理解的相同意义。在冲突的情况下,本说明书,包括定义,将起控制作用。
除特意指出的外,商标以大写体列出。
虽然与这里描述的那些类似或等同的方法和材料能够用于本公开物的实施或试验中,但是这里描述合适的方法和材料。
除非另有说明,否则全部百分数,份,比率等是按重量计。
当量,浓度,或其它值或参数是作为范围,或上下限值的列表给出时,这被理解为具体地公开了从任何的范围上下限值当中的任何一对所消除的全部范围,不考虑这些范围是否单独地公开。当数值的范围在这里列举时,除非另有说明,否则希望包括它的终点,以及在该范围内的全部整数和分数。不希望本公开物的范围限于所列举的具体值,当定义一个范围时。
当该术语“约”用于描述一个范围的值或端值时,该公开物应该理解为包括所指的特定值或端点。
在这里使用的,术语“包括(comprises)”,“包括(comprising)”,“包括(includes)”,“包括(包括)”,“具有(has)”,“具有(having)”或它们的任何其它变型,用于覆盖非排他的内含物。例如,包括要素的列表的一种工艺,方法,制品,或装置不一定限于仅仅这些要素,但能够包括没有特意为此类工艺、方法、制品或装置所列举或固有的其它要素。此外,除非特意有相反说明,否则“or”指包含或不指排除。例如,条件A或B通过下列的任何一种来满足:A是真实的(或存在)和B是假的(或不存在),A是假的(或不存在)和B是真实的(或存在),以及A和B两者都是真实的(或存在)。
用于描述这里的各种要素和组分的“a”和“an”的使用仅仅是为了方便起见并且给出了本公开物的一般含义。这一表述应该读起来包括一种或至少一种以及单数还包括复数,除非很明显它有另外含义。
这里的材料,方法和实施例仅仅是举例而已,除具体陈述之外,不希望是限制性的。
本发明的负载催化剂的煤组合物特别可用于从煤生产甲烷的集成方法,并且在较低的催化剂负载量下导致理想的更高%碳转化率,与先前已知的煤组合物如由IW方法制备的那些组合物相比。此外,当用于集成的气化方法中时,本发明的负载催化剂的煤组合物使碳转化率最大化,同时最大程度减少总催化剂。
在这里使用的术语“煤”指任何含碳材料,其中包括但不限于,亚沥青,沥青,褐煤,无烟煤或它们的混合物。含有大量的离子交换位点的煤特别适合作为本发明中的煤。在优选的实施方案中,使用亚沥青和褐煤。亚沥青煤是特别优选的。缺乏离子交换位点的含碳材料(例如,石油焦炭)也可考虑用作本发明的负载催化剂的煤组合物。在一个实施方案中,缺乏离子交换位点的原料进行预处理以产生附加的离子交换位点。在这一实施方案中,预处理能够通过产生能够进行离子交换的位点并且提高含碳原料的孔隙率的现有技术中已知的任何方法,例如描述在US4468231和GB1599932中的方法来进行。在优选的实施方案中,预处理通过使用现有技术中已知的任何氧化剂以氧化方式进行。在一个实施方案中,石油焦是缺乏离子交换位点的含碳材料,并且被预处理以供本发明使用。
与先前已知的煤组合物不同,本发明的负载催化剂的煤组合物特别可用于在约450℃到约750℃,优选约600℃到约700℃范围内的中等温度下的气化。负载催化剂的煤组合物特别可用于在约50psig到约1000psig,优选约200psig到约700psig,和更优选约400psig到约600psig范围内的压力下的气化。
负载催化剂的煤组合物的催化剂包括当在稳态集成气化过程中使用时在中等温度下增强煤气化活性的催化剂。该催化剂是金属阳离子。优选的催化剂包括I族碱金属阳离子催化剂。特别优选的催化剂包括钾,钠,锂或它们的混合物。更特别优选的催化剂是钾和钠。最特别优选的催化剂是钾。催化剂的源是催化剂盐。优选的催化剂盐包括碳酸盐,氢氧化物,硫酸盐,氯化物和硝酸盐。特别优选的催化剂盐是碳酸盐和氢氧化物盐。
在负载催化剂的煤组合物中,负载催化剂的总量当中的优选大于约50%,更优选大于约70%,甚至更优选大于约85%,和最优选大于约90%是与煤基质相结合,例如作为在煤的酸性官能团上的离子交换催化剂。与煤基质相结合(如通过离子交换)的总负载催化剂的百分数能够通过测定因为与催化剂盐抗衡离子缔合而不能计算在内的所负载催化剂的百分数(即按照抗衡离子的化学计量过量所计算)来测定。在负载催化剂的煤组合物内催化剂的总量能够通过感应耦合等离子体-原子发射光谱法(InductivelyCoupledPlasma-AtomicEmissionSpectroscopy)(“ICP-AES”)来测定。ICP-AES使用等离子体产生受激原子,后者在特殊元素的特征波长下发射电磁辐射。发射的强度与样品内元素的浓度相关。在其中盐抗衡离子是碳酸根的实施方案中,在煤样品内碳酸根的总量能够同时通过粉末X射线衍射法(“XRD”)和/或傅里叶转换红外(FT-IR)波谱法测定。XRD是以X射线针对样品的弹性散射(elasticscattering)为基础的,并且能够同时用于鉴定晶体物质(通过衍射峰)和测定晶体物质的丰度。无水碳酸钾显示出在2θ=31.635°和2θ=32.090°处的特征性强烈反射。FT-IR波谱法能够用于定量在样品中的碳酸根。碳酸根显示出在以1356cm-1,879cm-1,和704cm-1为中心的FT-IR波谱中的特征峰。峰的强度与样品中碳酸根的浓度相关。在给出了催化剂的总量(例如,由ICP-AES测定)和碳酸根的总量(例如,由XRD和/或FT-IR测定)之后,能够测定按碳酸根的化学计量过量所计算的催化剂的量。按照碳酸根的过量所测定的催化剂的百分数是与煤基质相结合的催化剂的最低百分数,例如作为在煤的酸性官能团上的离子交换催化剂。可以相信实际的百分数将是更高的,这归因于与煤样品内的其它元素(即钙)相结合的碳酸根。对于其它抗衡离子可以采用类似的程序。
本发明的负载催化剂的煤组合物包括主要与煤基质相结合(如通过离子交换)的催化剂。可以相信,因为催化剂主要与煤基质相结合(例如作为离子交换的物质),和因为提高的润湿性通过扩散过程获得,所以催化剂高度分散在整个煤基质中。还进一步相信,催化剂在整个煤中的更高度均匀分散和更高离子交换程度将导致得到更高活性的负载催化剂的煤组合物,并且当用于从煤制造甲烷的集成方法中时这些组合物因此是更高产率的原料。
没有与煤基质相结合的那一部分的催化剂另外作为未反应的“游离”催化剂存在。在其中金属催化剂作为碳酸盐负载的实施方案中,在负载催化剂的煤组合物之内的游离催化剂是作为碳酸盐存在的,并且,由FT-IR谱测定,该负载催化剂的煤组合物几乎不含有可测量到的碱金属碳酸氢盐。碳酸氢盐显示出在以2620cm-1,1300cm-1,和1000cm-1为中心的FT-IR谱中的特征峰。本发明的负载催化剂的煤组合物的FT-IR谱没有显示出碳酸氢盐的峰。
根据本公开物,在煤中存在的催化剂的总量是作为催化剂原子与煤中的碳原子的比率(“M/C”)给出的。本发明的负载催化剂的煤组合物的M/C比率是约0.01到约0.1,优选约0.025到约0.06,和最优选约0.03到约0.05。
在负载催化剂的煤组合物中特别优选的M/C比率取决于在组合物中的煤的类型。例如,在其中煤是亚沥青的实施方案中,优选的M/C比率是约0.025到约0.06,最优选约0.03到约0.05,而在其中煤是褐煤的实施方案中,优选的M/C比率是约0.02到约0.05,最优选约0.03到约0.04。
包括其含量在优选的M/C比率内的催化剂的、根据本发明的负载催化剂的煤组合物,在从煤制造甲烷的集成方法中比先前已知的煤组合物更具活性,并且同样地提供更加成本有效的、稳态的集成化的煤气化方法。
负载催化剂的煤组合物具有低于约6wt%,优选低于约4wt%的水分含量。根据本公开物的水分含量应该使用略微变化的ASTMD3173-03方法来测定,其中样品被干燥足以达到恒重的时间,典型地在干氮气流下在107℃下24小时。测定水分含量的这一改进ASTM方法的使用因为负载催化剂的煤组合物的一般吸湿性(hygroscopic)而是有用的,因为需要更长的时间达到恒重。
负载催化剂的煤组合物能够通过包括以下步骤的DCL方法来制备:(a)研磨煤,(b)在一定的接触时间和温度下将研磨的煤浸泡在过量的含催化剂的溶液中,以便提供实现相当大程度的和均匀的催化剂负载的充足机会,(c)将浸泡的负载催化剂的煤脱水,和(d)通过在干燥惰性气体流下的热处理来干燥已脱水的负载催化剂的煤。在优选的实施方案中,负载催化剂的煤组合物通过包括以下步骤的DCL方法来制备:(a)研磨原煤,(b)将研磨过的煤浸泡在包含该催化剂的盐的过量水溶液中形成淤浆,其中该淤浆处于在约10wt%到约25wt%固体的范围内的淤浆密度;(c)在一定的接触温度下将该淤浆保持一定的接触时间,以便提供实现相当大程度的和均匀的催化剂负载的充足机会;(d)将该淤浆脱水以形成负载催化剂的湿煤饼;和(e)在一定温度下在惰性干燥气体流下热处理该负载催化剂的湿煤饼,达到足以使水分含量减少到低于约6wt%的一段时间。
该DCL方法负载催化剂,要求催化剂主要与煤基质相结合,例如通过与在煤中的酸性官能团之间的离子交换。该DCL方法也通过液相扩散(即,表面润湿和孔隙溢流(poreflooding))来负载催化剂。可以相信,与先前已知的方法如IW方法相反,这一DCL方法最大化了与煤基质相结合的负载催化剂(例如作为离子交换的催化剂)的百分数。
在一个实施方案中,该煤被研磨成细粉末,它促进有效的催化剂负载。研磨过的煤具有优选在约25微米到约2500微米,更优选约45微米到约500微米的粒度。
该煤能够通过现有技术中已知的任何方法来研磨,其中包括但不限于,干磨和湿磨。在优选的实施方案中,该煤使用湿法即在水存在下研磨。湿磨的煤能够通过振动筛选或通过压滤机与水分离(即,脱水),以形成滤饼。由根据本公开物的一个实施方案的湿磨法所形成的滤饼具有约40%-约60%,优选约40%-约55%,和最优选低于50%的水分含量。本领域中的普通技术人员可以理解的是,脱水的湿磨煤的水分含量取决于煤的具体类型,粒度分布,和所使用的具体的脱水设备。
在各种实施方案中,煤被分离成两种级分(fraction)。两种级分,级分A和级分B,能够是在约50:50到约90:10范围内的比率,其中级分A是较大的级分。在第一个优选的实施方案中,煤在分离成级分A和B之前进行湿磨和脱水,然后总量的催化剂通过浸泡步骤被负载到仅仅级分A上。在催化剂负载后,级分A被脱水并与级分B彻底地混合,然后该掺混物被送到热干燥机中以得到负载催化剂的煤组合物。在第二个优选的实施方案中,煤被分离成级分A和B,其中级分A是湿磨的,级分B是干磨的,以及总量的催化剂通过浸泡步骤被负载到仅仅级分A上。在催化剂负载后,级分A被脱水并与级分B彻底地混合,然后该掺混物被送到热干燥机中以得到负载催化剂的煤组合物。本领域中的普通技术人员可以理解的是,第二个优选实施方案的掺混物将含有与第一个优选实施方案的掺混物相同量的催化剂,但含有更少的总水分。
根据本发明的DCL方法,细磨的煤作为淤浆被浸泡在过量的由催化剂盐的富含催化剂的流入溶液中。优选的催化剂盐包括,但不限于,碳酸盐,氢氧化物,硫酸盐,氯化物,和硝酸盐。在优选的实施方案中,使用碳酸盐或氢氧化物盐。在特别优选的实施方案中,使用碳酸钾。所负载的催化剂的总量是通过控制在该流入溶液中催化剂的浓度来控制的,虽然也可设想通过控制在残液(raffinate)溶液中催化剂的浓度来控制所负载的催化剂的总量。此外,在流入溶液中催化剂的浓度被加以控制,以使离子交换的催化剂的量最大化。该淤浆在合适的预定淤浆密度下维持足够的接触时间,以使得该催化剂的扩散驱动的离子交换负载达到所需水平。在各种实施方案中,在流入溶液中催化剂的浓度是在约0.3mol/kg到约3.0mol/kg,优选约0.5mol/kg到约2.2mol/kg,和更优选约0.7mol/kg到约1.7mol/kg范围内。
在优选的实施方案中,淤浆密度被维持在约5wt%至约40wt%固体,优选约10wt%到约25wt%固体,和最优选约12wt%到约18wt%固体的范围内。“淤浆密度”被定义为干煤固体与在体系中干煤固体和总水量的总和之间的重量百分比率。在溶液中所添加的催化剂盐的重量对于溶液的相对密度有较少影响,因此忽略不计。“总水量”指所添加的水和在研磨煤中所含的水的总和。在优选的实施方案,淤浆保持在约1小时到约48小时,优选约1小时到约8小时,就最优选约2小时到约3小时的接触时间。在优选的实施方案中,该淤浆保持在约20℃到约95℃,优选约30℃到约80℃,和最优选约35℃到约50℃范围的接触温度下。在DCL方法中,为实现平衡所需要的接触时间将随着提高的接触温度而减少。
在研磨煤在过量的含催化剂的溶液中浸泡之后,分离固体和液体(即,固体被脱水),得到负载催化剂的湿煤饼(即,固体)和含催化剂的残留溶液(即,液体)。在优选的实施方案中,该煤通过过滤被分离。在优选的实施方案中,在集成方法中,残留溶液被再循环到该流入流股(influentstream)中。负载催化剂的湿煤饼的水分含量一般是约40wt%到约55wt%。在湿煤饼内的水分中所含的催化剂的浓度与在残留溶液中催化剂的浓度相同。
根据DCL方法被负载到煤上的催化剂的总量在该方法的这一阶段中加以控制。通过吸附负载的催化剂的量是由吸附等温线(所给定的煤的固有性质)所决定的。通过吸附所负载的催化剂的量与在残液中催化剂的浓度相关。在这一阶段中所负载的催化剂的剩余部分被溶于该水分中,并且同样地与在残液中催化剂的浓度和湿煤饼的水分含量两者相关。不受机理的限制,可以相信,催化剂吸附到煤上是由离子交换机理所引起的。
在另一个实施方案中,少量的有机润湿剂能够被添加到该溶液中以促进孔隙润湿和扩散。在优选的实施方案中,当催化剂是钠时使用润湿剂。合适的润湿剂是不含元素如磷和硼的那些润湿剂,这些元素作为杂质积聚在再循环(recycled)的催化剂溶液中并因此有害于气化方法。合适的润湿剂包括,但不限于,非离子型表面活性剂(例如,DOWTritonCF-10和DOWTritonCF-21,烷基多葡萄糖甙),硫酸盐或磺酸盐阴离子表面活性剂(例如,TritonQS-15),烷基二苯基醚二磺酸盐(例如,DOWFAX-2A1),环氧乙烷/环氧丙烷共聚物,以及辛基苯酚乙氧基化物(例如,TRITONBG-10,TERGITOLL,或TRITONX)。
在浸泡和脱水的步骤之后,含催化剂的湿煤饼在干燥惰性气体的逆流股中热处理到低于约6wt%,优选低于约4wt%的水分含量,得到本发明的负载催化剂的煤组合物。在一个实施方案中,湿煤饼在热干燥机(14,图1)中在惰性干燥气体吹扫下逐渐加热和干燥。在优选的实施方案中,该惰性气体是氮气,氩气,CO/H2新鲜气体,CO/H2循环气体,或它们的混合物。在各种实施方案中,该热处理是在约90℃到约250℃,优选约105℃到约250℃,更优选约110℃到约230℃,甚至更优选约145℃到约220℃,和最优选约170℃至约210℃范围内的温度下进行。在其它实施方案中,热干燥可以通过使用在这些优选范围当中的任何一个范围之内的温度梯度来进行。热处理的最优选的温度范围取决于所使用的煤的等级。作为非限制性的例子,以上优选的温度范围最适合于亚沥青煤,例如,PRB煤。对于褐煤,较低的温度是优选的,以避免过度的分解。作为非限制性的例子,褐煤可以在约145℃到约175℃范围内的温度下热处理。为了实现所需的水分含量所需要的时间将取决于诸多因素,其中包括但不限于热干燥机的BTU额定值。在特别优选的实施方案中,该煤进行热处理的时间足以使固体达到最适的温度。
在其中含催化剂的浸泡液包括催化剂的碳酸盐时,可以相信,热处理步骤分解任何游离金属碳酸氢盐,得到二氧化碳和金属碳酸盐。由于在浸泡液中的碳酸盐与在煤基质内的酸性基团之间的离子交换的结果,游离金属碳酸氢盐可以存在于负载催化剂的湿煤饼中。不受机理限制,可以相信,碱金属碳酸氢盐的产生和后续分解是根据下列化学反应式发生的,其中M是催化剂原子和R-COOH是在煤基质内的代表性羧酸官能团:
R-COOH+M2CO3→R-COOM+MHCO3
2MHCO3→CO2+H2O+M2CO3
以上化学反应式可以一般适用于在煤基质中的全部酸性官能团(即,苯酚,硫醇,磺酸)。在这些实施方案中,根据红外光谱测定,在热处理后的负载催化剂的煤组合物能够基本上不含游离碳酸氢盐。
可以相信,热处理步骤用于逐渐增加作为离子交换催化剂存在的负载催化剂的百分比。作为离子交换的催化剂存在的催化剂的百分比能够通过控制固体的最终温度,热处理的时间,以及惰性气体的流速来控制(19,图1)。随着滤饼的水分含量减少,在滤饼中所含的水分(即,残液)中的催化剂的浓度会提高。结果,根据吸附等温线,负载在煤上的离子交换催化剂的平衡量转变到更高的值。此外,更高的温度一般提高煤的平衡离子交换负载容量。在优选的实施方案中,该热处理过程是从约90℃的温度进行到高达约250℃的温度。
负载催化剂的煤组合物特别可用于煤高效气化成甲烷,和更特别可用于稳态的集成气化方法,后者使碳转化率最大化,同时最小化所使用的催化剂的总量。在一个实施方案中,负载催化剂的煤组合物是在加热的蒸汽存在下被气化以产生甲烷,还有CO、CO2和H2。在优选的实施方案中,该气化方法是在约450℃到约700℃,优选约600℃到约700℃范围内的温度下进行的。在优选的实施方案中,该气化器是在约50psig到约1000psig,优选约200psig到约700psig,和更优选约400psig到约600psig范围内的压力下操作的。
图2和3比较负载催化剂的煤组合物的气化特性与由IW方法制备的先前已知的煤组合物的气化特性。图2和3表明,与由IW方法制备的负载催化剂的煤组合物相比,本发明的负载催化剂的煤组合物更有效地气化和导致更高的%碳转化率。图3的数据列于表1中。不希望受任何理论或机理的束缚,可以相信,本发明的负载催化剂的煤组合物比先前已知的煤组合物更好地发挥作用,因为大部分的催化剂高度分散在整个煤基质中并且与煤基质上的酸性官能团相结合。
表1.负载催化剂的PRB煤的气化
本发明的DCL方法能够用于将任何目标量的催化剂负载到煤上。在优选的实施方案中,负载到煤上的催化剂的量是足以获得优选的M/C比率的量。本发明的负载催化剂的煤组合物的优选的M/C比率是约0.01到约0.1,优选约0.025到约0.06,和最优选约0.03到约0.05。负载到煤上的催化剂的量通过控制在含催化剂的浸泡液中催化剂的量来控制。在集成DCL方法的一个实施方案中(图1),含催化剂的溶液是流入流股(9)并且由残液流股(来自DCL方法(12)的排放液)、再循环流股(含有在气化之后从焦炭中提取的催化剂(21))和补充流股(含有新鲜催化剂(24))组成,在蒸发器(25)中被蒸发到所需浓度。在集成的气化方法中,在流入流股(9)中催化剂的量通过监测在残液流股(12)中催化剂的量,监测在再循环流股(21)中催化剂的量,和调节在补充流股(24)中催化剂的量来控制。
根据本发明,已经发现更高的催化剂负载量不一定与更高%碳转化率相关。由本发明的DCL方法制得的本发明的负载催化剂的煤组合物,需要更少的催化剂并且实现与现有技术煤组合物相同或更高的%碳转化率。表2和3列出了在使用具有各种M/C比率的负载催化剂的煤组合物的最佳操作的稳态集成气化方法中可实现的%碳转化率的范围,其中催化剂是钾阳离子,和其中煤分别是亚沥青PRB煤和褐煤。
表2亚沥青PRB
表3.褐煤
根据本发明以及表2和3的特定例子,适合用于高效集成气化方法中的负载催化剂的煤组合物的优选M/C比率是约0.01到约0.1,优选约0.025到约0.06,和最优选约0.03到约0.05。本领域中的普通技术人员将会理解,优选的范围能够随着不同类型的煤和不同催化剂的使用而变化。作为非限制性的例子,亚沥青PRB煤和钾催化剂的优选的M/C比率是0.034,而褐煤和钾催化剂的优选的M/C比率是0.036。
根据DCL方法,负载的催化剂主要与煤基质相结合,如通过离子交换。催化剂高度分散负载到煤上被相信通过与在煤上的酸性官能团之间的离子交换得到促进,该酸性官能团包括但不限于羧酸,磺酸,苯酚和硫醇官能团。更高程度的离子交换据信进一步通过由扩散过程获得的增大的润湿性来促进。由离子交换法负载到煤上的催化剂的量是由给定的煤样品的吸附等温线决定的。该吸附等温线将由煤吸附的催化剂的量与在处于平衡状态下的含催化剂的溶液中催化剂的浓度相关联。吸附等温线是通过测量由离子交换法负载的催化剂的平衡量与在给定的温度下在负载溶液中催化剂的浓度的关系,以实验方法测定的(实施例2)。图4显示了在室温下亚沥青PRB煤与钾催化剂的代表性的实验测定的吸附等温曲线,和对实验数据的数学拟合。图4的吸附等温线表明,该煤具有约0.14摩尔的钾/每100克的干煤(对应于约5.5克钾/每100克干煤)的在室温下的饱和吸附催化剂负载能力(被认为由离子交换法所吸附),和在残留溶液中约0.9摩尔钾/每升(对应于约35.2克钾/每升)的平衡浓度。通过使用含有研磨煤和催化剂的不同浓度的过量水溶液的淤浆,在DCL负载条件下获得数据。在一个实施方案中,淤浆被混合大约24-48小时,或直至在负载溶液中催化剂的浓度变成恒定,以确保完全的平衡。在均衡状态下,负载的催化剂的量能够通过测量在水溶液中催化剂量的减少来推算。吸附等温线,和因此平衡离子交换催化剂负载能力是随温度而变的。一般,虽然不是唯一的,煤的离子交换催化剂负载能力随着提高温度而增大。
除了根据所给定样品的吸附等温线由离子交换法吸取的催化剂,该煤还通过表面润湿和孔隙溢流途径吸取作为残液形式的催化剂。也就是说,在DCL方法的浸泡和脱水步骤之后,一定量的含催化剂的浸泡液(即,残留液)保留在煤中。在吸附平衡的完成之后在浸泡液中催化剂的浓度以及由煤吸取的溶液的量(即,水分含量)决定了在煤中“游离”催化剂的量。如上所述,在热处理之后,水分含量减少到低于约6wt%,优选低于约4wt%,以及溶于在煤之内的残液中的催化剂因此变成“游离”催化剂。为了获得具有特殊的目标催化剂负载量的煤和优选的具有根据本发明的优选M/C比率的煤,在负载之后保留在残留溶液中的催化剂的浓度必须加以考虑和控制。在其中所希望的总催化剂负载量大于根据吸附等温线的饱和离子交换负载量的实施方案中,所需要的残液浓度Ck能够使用以下方程式测定:
CkxWs=Mk–L其中“Ws”表示脱水的负载催化剂的煤饼的水分含量,“Mk”表示所需的总催化剂负载量,和“L”表示饱和离子交换负载量。另外地,在其中所希望的总催化剂负载量接近饱和离子交换负载量的实施方案中,能够同时求解下列数学方程式以测定在残液中所需要的催化剂浓度:
Mx=f(Ck)或Mx=f(Mrs/Ws)
Mx+Mrs=Mk,
其中f是对实验吸附等温线数据的数学拟合,“Mx”表示离子交换催化剂(量),和“Mrs”表示超出了离子交换催化剂(量)的在湿饼中的催化剂的量。脱水的负载催化剂的湿煤饼的水含量,“Ws”,应该通过使用这里所述的改进ASTM水分含量方法来测定。
在集成气化方法的一个实施方案中,在回收装置(22)中从焦炭(char)(20)中回收催化剂并作为再循环料流(21)再循环到负载方法中。在流入流股(即含催化剂的浸泡液(9))中催化剂的量是通过监测和控制在排出流股(即,残夜流股(12))、再循环流股(21)和补充流股(24)中催化剂的浓度来控制的。在特别优选的实施方案中,排出流股用于催化剂回收过程中以进行催化剂补充和浓度调整。在本公开物的集成气化方法的一个实施方案中,每隔一定间隔从气化器床中除去焦炭,催化剂以可溶物形式从焦炭中提取,然后提取的催化剂再循环到含催化剂的流入溶液中。
在集成气化方法的特殊实施方案中,亚沥青PRB煤被湿磨以产生脱水的磨细的湿滤饼。湿滤饼被送到催化剂负载操作中并与含有碳酸钾和水的富含催化剂的流入溶液进行接触。流入溶液的一部分是由再循环的催化剂组成的。该淤浆在约40℃的接触温度下保持约2小时的接触时间。该催化剂淤浆通过使用振动筛或压滤机来脱水。负载催化剂的湿滤饼连续地送到热干燥设备中,后者经过设计使得固体物可以达到在140℃和210之间的温度。干燥的负载催化剂的煤组合物被连续地输送到气化反应器中。该气化器是在约700℃的温度和约500psig的压力下操作。反应物过热蒸汽和再循环的气体(主要是CO和H2)是利用气体分配器在反应器的较低部分被引入其中的。气化反应产生含有CH4、CO2、H2、CO和H2O且有少量H2S和NH3的气体产物。该床停留时间和/或床体积被调节到与进料速率和碳转化率率适应,这样保持特殊的床组成(bedcomposition)。该床组成与从反应器中排出的焦炭固体的组成相同以便保持物料平衡。从该过程中除去的焦炭被送至催化剂回收区段。回收的催化剂溶液作为催化剂再循环流股被送至催化剂负载区段并用于催化剂负载步骤中。
特定的实施方案
本发明的特定的实施方案包括但不限于下列这些。
本发明的一个实施方案是包括煤和气化催化剂的负载催化剂的煤组合物,该组合物具有低于约6wt%,或低于约4wt%的水分含量。煤的粒度能够是约25微米到约2500微米。气化催化剂能够是碱金属阳离子或它们的混合物,如钾阳离子,钠阳离子,锂阳离子或它们的混合物。该煤能够是亚沥青煤,沥青煤,褐煤,无烟煤或它们的混合物。该气化催化剂的存在量使得催化剂原子与碳原子的比率是在约0.01到约0.1,或约0.025到约0.06,或约0.03到约0.05的范围内。负载催化剂的总量当中的大于约50%可以在煤的酸性官能团上与煤基质相结合,该结合是通过离子交换实现的。
更特定的实施方案是其中该煤是亚沥青煤,气化催化剂是钾阳离子,以及气化催化剂的存在量使得催化剂原子与碳原子的比率是在约0.03到约0.05的范围内。另一个更特定的实施方案是其中该煤是褐煤,气化催化剂是钾阳离子,以及气化催化剂的存在量使得催化剂原子与碳原子的比率是在约0.03到约0.04的范围内。
本发明的另一个实施方案是包括以下步骤的制备负载催化剂的煤组合物的方法:(a)研磨原煤,(b)将研磨过的煤浸泡在包含该催化剂的盐的过量水溶液中形成淤浆,其中该淤浆处于在约10wt%到约25wt%固体的范围内的密度;(c)在一定的接触温度下将该淤浆保持一定的接触时间,以便提供实现相当大程度的和均匀的催化剂负载的充足机会;(d)将该淤浆脱水以形成负载催化剂的湿煤饼;和(e)在一定温度下在惰性干燥气体流下热处理该负载催化剂的湿煤饼,达到足以使水分含量减少到低于约6wt%或低于约4wt%的一段时间。
本发明的另一个实施方案是具有低于约6wt%的水分含量的负载催化剂的煤组合物,后者是通过包括以下步骤的方法制备的:(a)研磨原煤,(b)将研磨过的煤与包含该催化剂的盐的水溶液混合以形成淤浆,其中该淤浆处于在约10wt%到约25wt%固体的范围内的密度;(c)在一定的接触温度下将该淤浆保持一定的接触时间,以便提供实现相当大程度的和均匀的催化剂负载的充足机会;(d)通过过滤将该淤浆脱水以形成负载催化剂的湿煤饼;和(e)在惰性干燥气体流下热处理该负载催化剂的湿煤饼。
该催化剂能够是钾,钠,锂或它们的混合物。溶液能够进一步包括无磷和无硼的润湿剂。该煤能够是亚沥青煤,沥青煤,褐煤,无烟煤或它们的混合物。脱水煤滤饼能够具有约40%到约60%的水分含量。该淤浆能够在约20℃到约95℃,或约30℃到约80℃,或约35℃到约50℃范围的接触温度下,保持一段在约1小时到约48小时,或约1小时到约8小时,或约2小时到约3小时的接触时间。该热处理步骤能够在约90℃到约250℃,约110℃到约230℃,或约170℃到约210℃范围的温度下进行。惰性干燥气体能够包括氮气,氩气,二氧化碳,新鲜的CO/H2,再循环CO/H2,或它们的混合物。水溶液能够包括一定量的催化剂盐,该量足以获得具有在约0.01至约0.1,或约0.025到约0.06,或约0.03到约0.05范围内的催化剂原子与碳原子比率的负载催化剂的煤组合物。
在一个备选方案中,在步骤(b)之前的研磨煤能够被分离成第一级分和第二种级分,其中该第一级分大于该第二级分,和其中该第一级分和该第二级分按照大于50:50到90:10的比率,和其中该第一级分用于步骤(b)-(d)中,和该第二级分在步骤(b)-(d)之后和在步骤(e)之前与该第一级分彻底混合。
在另一个备选方案中,在步骤(a)之前的煤被分离成第一级分和第二种级分,其中该第一级分大于该第二级分,和其中该第一级分和该第二级分按照大于50:50到90:10的比率,和其中该第一级分用于步骤(a)-(d)中,和该第二级分进行研磨,和该研磨的该第二级分在步骤(a)-(d)之后和在步骤(e)之前与该第一级分彻底混合。
更特定的实施方案是其中原煤是亚沥青煤,该催化剂是钾阳离子,催化剂盐是碳酸钾,和该水溶液包括一定量的催化剂盐,该量足够获得具有在约0.03至约0.05范围内的催化剂原子与碳原子的比率的负载催化剂的煤组合物。
在另一个更特定的实施方案中,所得到的负载催化剂的煤组合物是如以上所述。
本发明的又一个实施方案是优化反应器进料(optimizedreactorfeed)负载催化剂的煤组合物的稳态气化的集成方法,该方法包括下列步骤:(a)将研磨的原煤固体料流提供到DCL接触器中;(b)将包括催化剂的盐的流入流股引入到DCL接触器中以产生淤浆,其中流入流股由残夜流股、再循环流股和补充流股组成;(c)控制在流入流股中催化剂的量;(d)在一定的接触温度下保持淤浆一段的接触时间,以便提供实现相当大程度的和均匀的催化剂负载的充足机会;(e)通过过滤将淤浆脱水以形成负载催化剂的湿煤饼和残留溶液;(f)将残留溶液再循环到该流入流股中;(g)在惰性干燥气体流下热处理该负载催化剂的湿煤饼,以便将水分含量降低到低于约6wt%;(h)在蒸汽和再循环气体的存在下,在约450℃到约750℃范围的温度和约50psig和约1000psig范围的压力下,将负载催化剂的热处理过的煤组合物在流化床反应器中气化;(i)排出包括甲烷的粗(raw)气体流;(j)从流化床反应器中排出焦炭;(k)从焦炭中提取催化剂;和(l)将提取的催化剂作为再循环流股再循环到流入流股中。
在流入流股中催化剂的量能够通过包括以下步骤的方法来控制:(a)监测在残液流股中催化剂的量;(b)监测在再循环流股中催化剂的量;和(c)调节在补充流股中催化剂的量。
在更特定的实施方案中,在流入流股中催化剂的浓度足以得到具有在约0.01至约0.1,或约0.025到约0.06,或约0.03到约0.05范围内的催化剂原子与碳原子比率的负载催化剂的煤组合物。
在另一个更特定的实施方案中,在流入流股中催化剂的量是约0.3mol/kg到约3.0mol/kg,或约0.5mol/kg到约2.2mol/kg,或约0.7mol/kg到约1.7mol/kg。
在上述集成方法中,气化步骤能够在约450℃到约750℃,或约600℃到约700℃范围内的温度下;和/或在约200psig到约700psig,或约400psig到约600psig范围内的压力下进行。
在集成方法的另一个特定的实施方案中,研磨原煤是亚沥青煤,催化剂是钾阳离子,催化剂的盐是碳酸钾,和流入流股包括一定浓度的催化剂盐,该浓度足以获得具有在约0.03至约0.05范围内的催化剂原子与碳原子比率的负载催化剂的煤组合物。
实施例
下列非限制性实施例用于着重描述本发明的各个方面和实施方案。本发明的全部范围和内容将会基于前述讨论和下面的实施例为本领域中的普通技术人员所理解。
实施例1-负载催化剂的煤组合物的制备
对于借助于碳酸钾浸泡液负载了钾催化剂的亚沥青级粉河盆地(PowderRiverBasin,即PRB)煤的具体样品,目标M/C比率被选择是0.036。PRB煤的碳含量被测得是69.55%,和因此负载在煤上的催化剂的所需量被计算是8.92g的钾/每100g的干煤。PRB煤的在室温下离子交换负载容量是通过吸收等温线(图4,实施例2)的实验测定来测定的,并且测得是约5.5g的钾/每100g的干煤。因此,游离催化剂的量将是8.92g-5.5g=3.42g的钾/每100g的干煤。在浸泡和脱水之后湿煤饼的水含量被测得是约46wt%(即,约95g水/每100g干煤)。因此,为了实现所预期的目标催化剂负载量,该残液应该具有36g/每升的钾浓度。为了实现该目标催化剂负载目标量,通过将37.25克的碳酸钾溶解在312克的水中来制备碳酸钾的溶液。细磨的煤被添加到锥形烧瓶中,将碳酸钾浸泡液添加到该烧瓶中形成淤浆。淤浆密度在烧瓶中维持在约20wt%。在烧瓶内的空气用氮气置换,该烧瓶用塞子密封。该烧瓶然后被放置在振荡浴上并在室温下搅拌4小时。该煤通过在具有约+325的筛孔尺寸的振动筛上过滤被脱水,得到充分过滤和排水(drained)的负载催化剂的湿煤饼。湿煤饼然后在干氮气流的流股下热处理(即,干燥)到恒重,同时以缓慢的升温幅度加热至约180℃的温度。组合物发现具有低于约4wt%的水分含量。干燥的负载催化剂的煤组合物在干氮气流下冷却至室温。最终的负载催化剂的煤组合物在干燥和惰性气氛下在环境温度下储存。
实施例2-吸附等温线的实验测定
将亚沥青级PRB煤的六个样品,各含有75克干重的湿研磨煤,添加到各自的锥形烧瓶中。通过将4克,7.7克,15.5克,23克,30.9克,70克的K2CO3溶解在400ml的蒸馏水中来制备一组的六个碳酸钾溶液。将六个溶液中的每一种的350ml添加到湿研磨煤的样品中,形成淤浆混合物。在淤浆混合物中的每一种中钾的起始浓度是通过使用在淤浆中水的总体积(它同时包括在湿研磨的煤中所含的水和所添加的水)和碳酸钾溶液来测定的。在本实施例中湿研磨煤含有约53.3wt%水,这大致对应于约65.7克的水。该淤浆混合物用惰性氮气流吹扫并在该惰性氮气流的氛围中密封,然后在室温下在振荡浴中在有轻微搅动的情况下平衡一夜。该淤浆混合物然后在具有+325的筛孔尺寸的振动筛上过滤。在滤液中碳酸钾的所得浓度然后通过XRD测定。碳酸钾浓度的差异等于吸附到煤的离子交换位点上的钾的量。这些实验和计算的结果针对起始浓度描绘曲线,得到吸附等温线。表4列出了以上六个数据点,以及类似地测定的一系列的附加数据点。图4是在表4中列出的数据的曲线图。图4提供了在亚沥青级PRB煤中钾的离子交换饱和负载量的评估,和在所形成的残留溶液中钾的相应平衡浓度。图4显示,离子交换饱和负载型钾催化剂负载容量是约5.5克钾/每100克干燥PRB煤。图4也举例说明对实验数据的数学拟合,拟合到对数函数Y=C+b*ln(X)。经验参数被测得是C=0.14056,b=0.03164和R2=0.95643。
表4
在溶液中的K(K mol/升) | 在固体上的K(K mol/100g煤) |
0.0256 | 0.0205 |
0.0532 | 0.037 |
0.1049 | 0.0731 |
0.1407 | 0.0716 |
0.179 | 0.0818 |
0.2685 | 0.109 |
0.2813 | 0.1023 |
0.3325 | 0.11 |
0.3964 | 0.1176 |
0.4859 | 0.126 |
0.5243 | 0.1279 |
0.6266 | 0.133 |
0.7545 | 0.1381 |
0.8951 | 0.1407 |
1.023 | 0.1419 |
1.2788 | 0.1419 |
1.5345 | 0.1419 |
1.7903 | 0.1432 |
实施例3-负载催化剂的煤的碳酸氢盐含量的测定
实施例1的负载催化剂的煤组合物是由FT-IR波谱进行分析。FTIR波谱是通过使用SmartOrbitATR附件,在ThermoNicolet380FTIR波谱仪上按照衰减全反射(ATR)模式获得的。样品被研磨成粉末,然后放置在ATR的金刚石晶体上,由砧压住在该晶体上。以4cm-1分辩率采集总共32次扫描。煤波谱没有进行基线矫正。负载催化剂的煤组合物的FT-IR谱没有显示在以归属于碳酸氢盐的1000cm-1,1300cm-1和2620cm-1为中心的峰。
Claims (13)
1.用于优化反应器进料负载催化剂的煤组合物的稳态气化的集成方法,该方法包括下列步骤:
(a)将研磨的原煤固体料流提供到扩散性催化剂负载接触器中,其中煤包括含有包括酸性官能团的离子交换位点的基质;
(b)将包括I族碱金属催化剂盐的流入流股引入到扩散性催化剂负载接触器中以产生淤浆,其中流入流股由残液流股、再循环料流和补充流股组成;
(c)控制在流入流股中催化剂的量使得在所述流入流股中的I族碱金属催化剂的量等于或大于为了实现煤的饱和离子交换负载所需要的量;
(d)在一定的接触温度下保持淤浆一段的接触时间,以便提供实现相当大程度的和均匀的催化剂负载的充足机会使得所述I族碱金属催化剂高度分散在整个煤基质中;
(e)通过过滤将淤浆脱水以形成负载催化剂的湿煤饼和残留溶液;
(f)将残留溶液再循环到该流入流股中;
(g)在约90℃到约250℃温度范围的惰性干燥气体流下热处理该负载催化剂的湿煤饼,以便通过离子交换提高与煤基质相结合的负载催化剂的百分数并将水分含量降低到低于约6wt%,从而产生负载催化剂的热处理过的煤组合物,其中在所述负载催化剂的热处理过的煤组合物上负载的催化剂的总量当中的大于约50%是通过煤的酸性官能团上的离子交换与煤基质相结合的I族碱金属催化剂;
(h)在蒸汽的存在下,在约450℃到约750℃范围的温度下和在约50psig至约1000psig范围的压力下,将负载催化剂的热处理过的煤组合物在流化床反应器中气化,以生产焦炭和包括甲烷的粗气体流;
(i)从流化床反应器中排出粗气体流;
(j)从流化床反应器中排出焦炭;
(k)从焦炭中提取催化剂;和
(l)将提取的催化剂作为再循环料流再循环到流入流股中。
2.根据权利要求1的集成方法,其特征在于在流入流股中催化剂的量是通过包括以下步骤的方法控制的:
(a)监测在残液流股中I族碱金属催化剂的量;
(b)监测在再循环料流中I族碱金属催化剂的量;和
(c)调节在补充流股中I族碱金属催化剂的量。
3.根据权利要求1-2中任一项所述的集成方法,其特征在于在流入流股中I族碱金属催化剂的浓度足以获得具有在约0.01至约0.1范围内的I族碱金属催化剂原子与碳原子比率的负载催化剂的煤组合物。
4.根据权利要求1-2中任一项所述的集成方法,其特征在于在流入流股中I族碱金属催化剂的量是约0.3mol/kg到约3.0mol/kg。
5.根据权利要求1的集成方法,其特征在于在加热的蒸汽和在循环气体的存在下,将负载催化剂的热处理过的煤组合物在流化床反应器中气化。
6.根据权利要求1-2或5中任一项所述的集成方法,其特征在于所述负载催化剂的热处理过的煤组合物包括煤和气化催化剂,其中气化催化剂的存在量使得催化剂原子与碳原子的比率是在0.01到0.1范围内。
7.根据权利要求6的集成方法,其特征在于该组合物具有约25微米到约2500微米的粒度。
8.根据权利要求6的集成方法,其中该煤是次烟煤,烟煤,褐煤,无烟煤或它们的混合物。
9.根据权利要求6的集成方法,其特征在于该煤是亚沥青煤,该气化催化剂是钾阳离子,该催化剂盐是碳酸钾,并且该流入流股溶液包括的催化剂盐的浓度足够获得具有在约0.03至约0.05范围内的催化剂原子与碳原子的比率的负载催化剂的煤组合物。
10.根据权利要求6的集成方法,其特征在于负载催化剂的总量当中的大于约70%是与煤基质相结合的I族碱金属催化剂。
11.根据权利要求6的集成方法,其中负载催化剂的总量当中的大于约50%是通过煤的酸性官能团上的离子交换与煤基质相结合的I族碱金属催化剂。
12.根据权利要求6的集成方法,其中负载催化剂的总量当中的大于约70%是通过煤的酸性官能团上的离子交换与煤基质相结合的I族碱金属催化剂。
13.根据权利要求6的集成方法,其中淤浆在约20℃到约95℃范围的接触温度下保持在约1小时到约48小时范围内的接触时间。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6613007P | 2007-08-02 | 2007-08-02 | |
US61/066,130 | 2007-08-02 | ||
CN200880101382A CN101795761A (zh) | 2007-08-02 | 2008-07-23 | 负载催化剂的煤组合物,制造方法和用途 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200880101382A Division CN101795761A (zh) | 2007-08-02 | 2008-07-23 | 负载催化剂的煤组合物,制造方法和用途 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105062563A true CN105062563A (zh) | 2015-11-18 |
Family
ID=40304750
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200880101382A Pending CN101795761A (zh) | 2007-08-02 | 2008-07-23 | 负载催化剂的煤组合物,制造方法和用途 |
CN201510527744.3A Pending CN105062563A (zh) | 2007-08-02 | 2008-07-23 | 负载催化剂的煤组合物,制造方法和用途 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200880101382A Pending CN101795761A (zh) | 2007-08-02 | 2008-07-23 | 负载催化剂的煤组合物,制造方法和用途 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8163048B2 (zh) |
KR (1) | KR101138096B1 (zh) |
CN (2) | CN101795761A (zh) |
AU (1) | AU2008282518B2 (zh) |
CA (1) | CA2697355C (zh) |
WO (1) | WO2009018053A1 (zh) |
Families Citing this family (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8114176B2 (en) * | 2005-10-12 | 2012-02-14 | Great Point Energy, Inc. | Catalytic steam gasification of petroleum coke to methane |
US7922782B2 (en) * | 2006-06-01 | 2011-04-12 | Greatpoint Energy, Inc. | Catalytic steam gasification process with recovery and recycle of alkali metal compounds |
US8163048B2 (en) | 2007-08-02 | 2012-04-24 | Greatpoint Energy, Inc. | Catalyst-loaded coal compositions, methods of making and use |
US20090090055A1 (en) * | 2007-10-09 | 2009-04-09 | Greatpoint Energy, Inc. | Compositions for Catalytic Gasification of a Petroleum Coke |
WO2009048724A2 (en) * | 2007-10-09 | 2009-04-16 | Greatpoint Energy, Inc. | Compositions for catalytic gasification of a petroleum coke and process for their conversion to methane |
US7897126B2 (en) * | 2007-12-28 | 2011-03-01 | Greatpoint Energy, Inc. | Catalytic gasification process with recovery of alkali metal from char |
WO2009086372A1 (en) * | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Carbonaceous fuels and processes for making and using them |
CA2709520C (en) * | 2007-12-28 | 2013-06-25 | Greatpoint Energy, Inc. | Petroleum coke compositions for catalytic gasification |
WO2009086377A2 (en) * | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Catalytic gasification process with recovery of alkali metal from char |
CA2713656C (en) | 2007-12-28 | 2014-07-08 | Greatpoint Energy, Inc. | Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock |
US20090165379A1 (en) * | 2007-12-28 | 2009-07-02 | Greatpoint Energy, Inc. | Coal Compositions for Catalytic Gasification |
CN101910371B (zh) | 2007-12-28 | 2014-04-02 | 格雷特波因特能源公司 | 用于制备合成气衍生产物的方法 |
WO2009086408A1 (en) * | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Continuous process for converting carbonaceous feedstock into gaseous products |
US20090165383A1 (en) * | 2007-12-28 | 2009-07-02 | Greatpoint Energy, Inc. | Catalytic Gasification Process with Recovery of Alkali Metal from Char |
US8366795B2 (en) | 2008-02-29 | 2013-02-05 | Greatpoint Energy, Inc. | Catalytic gasification particulate compositions |
WO2009111330A1 (en) * | 2008-02-29 | 2009-09-11 | Greatpoint Energy, Inc. | Processes for making adsorbents and processes for removing contaminants from fluids using them |
US8361428B2 (en) | 2008-02-29 | 2013-01-29 | Greatpoint Energy, Inc. | Reduced carbon footprint steam generation processes |
US8297542B2 (en) | 2008-02-29 | 2012-10-30 | Greatpoint Energy, Inc. | Coal compositions for catalytic gasification |
US20090260287A1 (en) * | 2008-02-29 | 2009-10-22 | Greatpoint Energy, Inc. | Process and Apparatus for the Separation of Methane from a Gas Stream |
US8652222B2 (en) | 2008-02-29 | 2014-02-18 | Greatpoint Energy, Inc. | Biomass compositions for catalytic gasification |
CA2716135C (en) | 2008-02-29 | 2013-05-28 | Greatpoint Energy, Inc. | Particulate composition for gasification, preparation and continuous conversion thereof |
US8114177B2 (en) | 2008-02-29 | 2012-02-14 | Greatpoint Energy, Inc. | Co-feed of biomass as source of makeup catalysts for catalytic coal gasification |
US7926750B2 (en) * | 2008-02-29 | 2011-04-19 | Greatpoint Energy, Inc. | Compactor feeder |
WO2009111331A2 (en) | 2008-02-29 | 2009-09-11 | Greatpoint Energy, Inc. | Steam generation processes utilizing biomass feedstocks |
US20090220406A1 (en) * | 2008-02-29 | 2009-09-03 | Greatpoint Energy, Inc. | Selective Removal and Recovery of Acid Gases from Gasification Products |
US8286901B2 (en) | 2008-02-29 | 2012-10-16 | Greatpoint Energy, Inc. | Coal compositions for catalytic gasification |
US8999020B2 (en) * | 2008-04-01 | 2015-04-07 | Greatpoint Energy, Inc. | Processes for the separation of methane from a gas stream |
KR101231444B1 (ko) | 2008-04-01 | 2013-02-18 | 그레이트포인트 에너지, 인크. | 일산화탄소를 가스 흐름으로부터 제거하기 위한 사우어 전환 방법 |
CN102076828A (zh) * | 2008-06-27 | 2011-05-25 | 格雷特波因特能源公司 | 用于合成气制备的四列催化气化体系 |
WO2009158583A2 (en) * | 2008-06-27 | 2009-12-30 | Greatpoint Energy, Inc. | Four-train catalytic gasification systems |
WO2009158582A2 (en) * | 2008-06-27 | 2009-12-30 | Greatpoint Energy, Inc. | Four-train catalytic gasification systems |
WO2009158576A2 (en) * | 2008-06-27 | 2009-12-30 | Greatpoint Energy, Inc. | Two-train catalytic gasification systems |
US20100120926A1 (en) * | 2008-09-19 | 2010-05-13 | Greatpoint Energy, Inc. | Processes for Gasification of a Carbonaceous Feedstock |
US8328890B2 (en) * | 2008-09-19 | 2012-12-11 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
CN102159687B (zh) | 2008-09-19 | 2016-06-08 | 格雷特波因特能源公司 | 使用炭甲烷化催化剂的气化方法 |
US8647402B2 (en) * | 2008-09-19 | 2014-02-11 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
WO2010048493A2 (en) * | 2008-10-23 | 2010-04-29 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
CN102272267A (zh) | 2008-12-30 | 2011-12-07 | 格雷特波因特能源公司 | 制备催化的碳质微粒的方法 |
WO2010078298A1 (en) | 2008-12-30 | 2010-07-08 | Greatpoint Energy, Inc. | Processes for preparing a catalyzed coal particulate |
US8268899B2 (en) * | 2009-05-13 | 2012-09-18 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
EP2430126A2 (en) | 2009-05-13 | 2012-03-21 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
WO2010132551A2 (en) | 2009-05-13 | 2010-11-18 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
CN102597181B (zh) | 2009-08-06 | 2014-04-23 | 格雷特波因特能源公司 | 碳质原料的氢化甲烷化方法 |
US20110062722A1 (en) | 2009-09-16 | 2011-03-17 | Greatpoint Energy, Inc. | Integrated hydromethanation combined cycle process |
JP5771615B2 (ja) * | 2009-09-16 | 2015-09-02 | グレイトポイント・エナジー・インコーポレイテッド | 炭素質フィードストックの水添メタン化方法 |
US20110062721A1 (en) * | 2009-09-16 | 2011-03-17 | Greatpoint Energy, Inc. | Integrated hydromethanation combined cycle process |
US20110064648A1 (en) * | 2009-09-16 | 2011-03-17 | Greatpoint Energy, Inc. | Two-mode process for hydrogen production |
WO2011049861A2 (en) | 2009-10-19 | 2011-04-28 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
WO2011049858A2 (en) | 2009-10-19 | 2011-04-28 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
AU2010339953A1 (en) * | 2009-12-17 | 2012-07-05 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process injecting nitrogen |
AU2010339952B8 (en) * | 2009-12-17 | 2013-12-19 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
US8669013B2 (en) * | 2010-02-23 | 2014-03-11 | Greatpoint Energy, Inc. | Integrated hydromethanation fuel cell power generation |
US8652696B2 (en) | 2010-03-08 | 2014-02-18 | Greatpoint Energy, Inc. | Integrated hydromethanation fuel cell power generation |
US8557878B2 (en) | 2010-04-26 | 2013-10-15 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with vanadium recovery |
AU2011258204B2 (en) | 2010-05-28 | 2013-11-07 | Greatpoint Energy, Inc. | Conversion of liquid heavy hydrocarbon feedstocks to gaseous products |
KR101424941B1 (ko) | 2010-08-18 | 2014-08-01 | 그레이트포인트 에너지, 인크. | 탄소질 공급원료의 히드로메탄화 |
CA2807072A1 (en) | 2010-09-10 | 2012-03-15 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
JP2013541622A (ja) | 2010-11-01 | 2013-11-14 | グレイトポイント・エナジー・インコーポレイテッド | 炭素質フィードストックの水添メタン化 |
JP6124795B2 (ja) | 2010-11-01 | 2017-05-10 | グレイトポイント・エナジー・インコーポレイテッド | 炭素質フィードストックの水添メタン化 |
CA2827916C (en) | 2011-02-23 | 2016-06-21 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with nickel recovery |
PL2865735T3 (pl) | 2011-03-29 | 2018-08-31 | Fuelina Technologies, Llc | Sposób i urządzenie do wytwarzania hybrydowego paliwa |
CN103492537A (zh) | 2011-04-22 | 2014-01-01 | 格雷特波因特能源公司 | 伴随焦炭选矿的碳质原料加氢甲烷化 |
WO2012166879A1 (en) | 2011-06-03 | 2012-12-06 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
WO2013025808A1 (en) | 2011-08-17 | 2013-02-21 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
WO2013025812A1 (en) | 2011-08-17 | 2013-02-21 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
US9012524B2 (en) | 2011-10-06 | 2015-04-21 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
CN104685038B (zh) | 2012-10-01 | 2016-06-22 | 格雷特波因特能源公司 | 附聚的颗粒状低煤阶煤原料及其用途 |
KR101534461B1 (ko) | 2012-10-01 | 2015-07-06 | 그레이트포인트 에너지, 인크. | 응집된 미립자 저등급 석탄 공급원료 및 그의 용도 |
US9273260B2 (en) | 2012-10-01 | 2016-03-01 | Greatpoint Energy, Inc. | Agglomerated particulate low-rank coal feedstock and uses thereof |
US9328920B2 (en) | 2012-10-01 | 2016-05-03 | Greatpoint Energy, Inc. | Use of contaminated low-rank coal for combustion |
CN104178221A (zh) * | 2013-05-24 | 2014-12-03 | 中国石油化工股份有限公司 | 一种煤催化气化催化剂的分散方法 |
CN104232237B (zh) * | 2013-06-07 | 2016-09-07 | 中国海洋石油总公司 | 煤催化气化反应料及其制备方法和应用 |
CN104232238B (zh) * | 2013-06-07 | 2016-09-07 | 中国海洋石油总公司 | 一种煤催化气化反应料及其制备方法和应用 |
CN103881755B (zh) * | 2014-03-31 | 2017-01-11 | 新奥科技发展有限公司 | 一种原料制备装置及方法 |
US11268038B2 (en) | 2014-09-05 | 2022-03-08 | Raven Sr, Inc. | Process for duplex rotary reformer |
CA2969688A1 (en) | 2014-12-03 | 2016-06-09 | Drexel University | Direct incorporation of natural gas into hydrocarbon liquid fuels |
BR112018016800A2 (pt) | 2016-02-18 | 2018-12-26 | 8 Rivers Capital Llc | sistema e método para produção de energia que inclui metanização |
WO2019025436A1 (de) * | 2017-07-31 | 2019-02-07 | Entrade Energiesysteme Ag | Verfahren zum aufbereiten von organischen feststoffen als brennstoff für festbettvergaser sowie ein verfahren zum betreiben eines festbettvergasers zum erzeugen eines produktgases mit solchen aufbereiteten organischen feststoffen |
US10464872B1 (en) | 2018-07-31 | 2019-11-05 | Greatpoint Energy, Inc. | Catalytic gasification to produce methanol |
BR102018016306B1 (pt) | 2018-08-09 | 2021-12-14 | Petróleo Brasileiro S.A. - Petrobras | Processo de gaseificação de matéria-prima carbonácea de baixo valor como combustível utilizando nanocatalisador |
US10344231B1 (en) | 2018-10-26 | 2019-07-09 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization |
CN111100720B (zh) | 2018-10-29 | 2021-08-06 | 中国石油化工股份有限公司 | 煤粉处理方法和煤粉产品及煤粉气化的方法 |
US10435637B1 (en) | 2018-12-18 | 2019-10-08 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation |
US10618818B1 (en) | 2019-03-22 | 2020-04-14 | Sure Champion Investment Limited | Catalytic gasification to produce ammonia and urea |
KR102307169B1 (ko) * | 2019-10-31 | 2021-09-30 | 건국대학교 산학협력단 | 물로 세척된 석탄재를 이용한 촉매 및 이의 제조방법 |
CN111203240B (zh) * | 2020-01-21 | 2023-04-21 | 新奥科技发展有限公司 | 催化剂负载方法及系统、煤粉添加方法和煤催化气化系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4193772A (en) * | 1978-06-05 | 1980-03-18 | Exxon Research & Engineering Co. | Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue |
US4204843A (en) * | 1977-12-19 | 1980-05-27 | Exxon Research & Engineering Co. | Gasification process |
US4292048A (en) * | 1979-12-21 | 1981-09-29 | Exxon Research & Engineering Co. | Integrated catalytic coal devolatilization and steam gasification process |
US4336034A (en) * | 1980-03-10 | 1982-06-22 | Exxon Research & Engineering Co. | Process for the catalytic gasification of coal |
Family Cites Families (238)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US421938A (en) * | 1890-02-25 | Card-punch | ||
GB593910A (en) | 1945-01-15 | 1947-10-29 | Standard Oil Dev Co | Improved process for the catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen |
FR797089A (fr) | 1935-10-30 | 1936-04-20 | Procédé de fabrication de combustibles solides spéciaux pour gazogènes produisant les gaz pour les moteurs de véhicules | |
GB676615A (en) | 1946-08-10 | 1952-07-30 | Standard Oil Dev Co | Improvements in or relating to processes involving the contacting of finely divided solids and gases |
GB640907A (en) | 1946-09-10 | 1950-08-02 | Standard Oil Dev Co | An improved method of producing normally gaseous fuels from carbon-containing materials |
GB701131A (en) | 1951-03-22 | 1953-12-16 | Standard Oil Dev Co | Improvements in or relating to gas adsorbent by activation of acid sludge coke |
GB798741A (en) | 1953-03-09 | 1958-07-23 | Gas Council | Process for the production of combustible gas enriched with methane |
BE529007A (zh) | 1953-05-21 | |||
US2813126A (en) | 1953-12-21 | 1957-11-12 | Pure Oil Co | Process for selective removal of h2s by absorption in methanol |
US2886405A (en) | 1956-02-24 | 1959-05-12 | Benson Homer Edwin | Method for separating co2 and h2s from gas mixtures |
US3114930A (en) | 1961-03-17 | 1963-12-24 | American Cyanamid Co | Apparatus for densifying and granulating powdered materials |
GB996327A (en) | 1962-04-18 | 1965-06-23 | Metallgesellschaft Ag | A method of raising the calorific value of gasification gases |
GB1033764A (en) | 1963-09-23 | 1966-06-22 | Gas Council | Improvements in or relating to the production of methane gases |
DE1494808B2 (de) | 1966-10-14 | 1976-05-06 | Verfahren zum reinigen von brenn- oder synthesegasen | |
US3435590A (en) | 1967-09-01 | 1969-04-01 | Chevron Res | Co2 and h2s removal |
US3615300A (en) | 1969-06-04 | 1971-10-26 | Chevron Res | Hydrogen production by reaction of carbon with steam and oxygen |
US3594985A (en) | 1969-06-11 | 1971-07-27 | Allied Chem | Acid gas removal from gas mixtures |
US3759036A (en) | 1970-03-01 | 1973-09-18 | Chevron Res | Power generation |
US3740193A (en) | 1971-03-18 | 1973-06-19 | Exxon Research Engineering Co | Hydrogen production by catalytic steam gasification of carbonaceous materials |
US3689240A (en) | 1971-03-18 | 1972-09-05 | Exxon Research Engineering Co | Production of methane rich gases |
US3915670A (en) | 1971-09-09 | 1975-10-28 | British Gas Corp | Production of gases |
US3746522A (en) | 1971-09-22 | 1973-07-17 | Interior | Gasification of carbonaceous solids |
US3969089A (en) | 1971-11-12 | 1976-07-13 | Exxon Research And Engineering Company | Manufacture of combustible gases |
US3779725A (en) | 1971-12-06 | 1973-12-18 | Air Prod & Chem | Coal gassification |
US3985519A (en) | 1972-03-28 | 1976-10-12 | Exxon Research And Engineering Company | Hydrogasification process |
CA1003217A (en) | 1972-09-08 | 1977-01-11 | Robert E. Pennington | Catalytic gasification process |
US3929431A (en) | 1972-09-08 | 1975-12-30 | Exxon Research Engineering Co | Catalytic reforming process |
US4094650A (en) | 1972-09-08 | 1978-06-13 | Exxon Research & Engineering Co. | Integrated catalytic gasification process |
US3920229A (en) | 1972-10-10 | 1975-11-18 | Pcl Ind Limited | Apparatus for feeding polymeric material in flake form to an extruder |
US3870481A (en) | 1972-10-12 | 1975-03-11 | William P Hegarty | Method for production of synthetic natural gas from crude oil |
GB1448562A (en) | 1972-12-18 | 1976-09-08 | British Gas Corp | Process for the production of methane containing gases |
US3828474A (en) | 1973-02-01 | 1974-08-13 | Pullman Inc | Process for producing high strength reducing gas |
US4021370A (en) | 1973-07-24 | 1977-05-03 | Davy Powergas Limited | Fuel gas production |
US3847567A (en) | 1973-08-27 | 1974-11-12 | Exxon Research Engineering Co | Catalytic coal hydrogasification process |
US3904386A (en) | 1973-10-26 | 1975-09-09 | Us Interior | Combined shift and methanation reaction process for the gasification of carbonaceous materials |
US4053554A (en) | 1974-05-08 | 1977-10-11 | Catalox Corporation | Removal of contaminants from gaseous streams |
US3958957A (en) | 1974-07-01 | 1976-05-25 | Exxon Research And Engineering Company | Methane production |
US3904389A (en) | 1974-08-13 | 1975-09-09 | David L Banquy | Process for the production of high BTU methane-containing gas |
US4104201A (en) | 1974-09-06 | 1978-08-01 | British Gas Corporation | Catalytic steam reforming and catalysts therefor |
US4046523A (en) | 1974-10-07 | 1977-09-06 | Exxon Research And Engineering Company | Synthesis gas production |
GB1508712A (en) | 1975-03-31 | 1978-04-26 | Battelle Memorial Institute | Treating solid fuel |
US3975168A (en) | 1975-04-02 | 1976-08-17 | Exxon Research And Engineering Company | Process for gasifying carbonaceous solids and removing toxic constituents from aqueous effluents |
US3998607A (en) | 1975-05-12 | 1976-12-21 | Exxon Research And Engineering Company | Alkali metal catalyst recovery process |
US4091073A (en) | 1975-08-29 | 1978-05-23 | Shell Oil Company | Process for the removal of H2 S and CO2 from gaseous streams |
US4005996A (en) | 1975-09-04 | 1977-02-01 | El Paso Natural Gas Company | Methanation process for the production of an alternate fuel for natural gas |
US4057512A (en) | 1975-09-29 | 1977-11-08 | Exxon Research & Engineering Co. | Alkali metal catalyst recovery system |
US4077778A (en) | 1975-09-29 | 1978-03-07 | Exxon Research & Engineering Co. | Process for the catalytic gasification of coal |
DE2551717C3 (de) | 1975-11-18 | 1980-11-13 | Basf Ag, 6700 Ludwigshafen | und ggf. COS aus Gasen |
US4069304A (en) | 1975-12-31 | 1978-01-17 | Trw | Hydrogen production by catalytic coal gasification |
US3999607A (en) | 1976-01-22 | 1976-12-28 | Exxon Research And Engineering Company | Recovery of hydrocarbons from coal |
US4330305A (en) | 1976-03-19 | 1982-05-18 | Basf Aktiengesellschaft | Removal of CO2 and/or H2 S from gases |
JPS5311893A (en) | 1976-07-20 | 1978-02-02 | Fujimi Kenmazai Kougiyou Kk | Catalysts |
US4159195A (en) | 1977-01-24 | 1979-06-26 | Exxon Research & Engineering Co. | Hydrothermal alkali metal recovery process |
US4211538A (en) | 1977-02-25 | 1980-07-08 | Exxon Research & Engineering Co. | Process for the production of an intermediate Btu gas |
US4118204A (en) | 1977-02-25 | 1978-10-03 | Exxon Research & Engineering Co. | Process for the production of an intermediate Btu gas |
US4100256A (en) | 1977-03-18 | 1978-07-11 | The Dow Chemical Company | Hydrolysis of carbon oxysulfide |
GB1599932A (en) | 1977-07-01 | 1981-10-07 | Exxon Research Engineering Co | Distributing coal-liquefaction or-gasifaction catalysts in coal |
US4152119A (en) | 1977-08-01 | 1979-05-01 | Dynecology Incorporated | Briquette comprising caking coal and municipal solid waste |
US4200439A (en) | 1977-12-19 | 1980-04-29 | Exxon Research & Engineering Co. | Gasification process using ion-exchanged coal |
US4617027A (en) | 1977-12-19 | 1986-10-14 | Exxon Research And Engineering Co. | Gasification process |
US4157246A (en) | 1978-01-27 | 1979-06-05 | Exxon Research & Engineering Co. | Hydrothermal alkali metal catalyst recovery process |
US4265868A (en) | 1978-02-08 | 1981-05-05 | Koppers Company, Inc. | Production of carbon monoxide by the gasification of carbonaceous materials |
US4193771A (en) | 1978-05-08 | 1980-03-18 | Exxon Research & Engineering Co. | Alkali metal recovery from carbonaceous material conversion process |
US4219338A (en) | 1978-05-17 | 1980-08-26 | Exxon Research & Engineering Co. | Hydrothermal alkali metal recovery process |
US4318712A (en) | 1978-07-17 | 1982-03-09 | Exxon Research & Engineering Co. | Catalytic coal gasification process |
GB2027444B (en) | 1978-07-28 | 1983-03-02 | Exxon Research Engineering Co | Gasification of ash-containing solid fuels |
US4211669A (en) | 1978-11-09 | 1980-07-08 | Exxon Research & Engineering Co. | Process for the production of a chemical synthesis gas from coal |
DE2852710A1 (de) | 1978-12-06 | 1980-06-12 | Didier Eng | Verfahren zur katalytischen vergasung von kunststoff in form von kohle oder koks |
US4235044A (en) | 1978-12-21 | 1980-11-25 | Union Carbide Corporation | Split stream methanation process |
US4243639A (en) | 1979-05-10 | 1981-01-06 | Tosco Corporation | Method for recovering vanadium from petroleum coke |
US4260421A (en) | 1979-05-18 | 1981-04-07 | Exxon Research & Engineering Co. | Cement production from coal conversion residues |
US4334893A (en) | 1979-06-25 | 1982-06-15 | Exxon Research & Engineering Co. | Recovery of alkali metal catalyst constituents with sulfurous acid |
US4315758A (en) | 1979-10-15 | 1982-02-16 | Institute Of Gas Technology | Process for the production of fuel gas from coal |
US4462814A (en) | 1979-11-14 | 1984-07-31 | Koch Process Systems, Inc. | Distillative separations of gas mixtures containing methane, carbon dioxide and other components |
US4284416A (en) | 1979-12-14 | 1981-08-18 | Exxon Research & Engineering Co. | Integrated coal drying and steam gasification process |
US4331451A (en) | 1980-02-04 | 1982-05-25 | Mitsui Toatsu Chemicals, Inc. | Catalytic gasification |
GB2072216A (en) | 1980-03-18 | 1981-09-30 | British Gas Corp | Treatment of hydrocarbon feedstocks |
DK148915C (da) | 1980-03-21 | 1986-06-02 | Haldor Topsoe As | Fremgangsmaade til fremstilling af hydrogen eller ammoniaksyntesegas |
GB2078251B (en) | 1980-06-19 | 1984-02-15 | Gen Electric | System for gasifying coal and reforming gaseous products thereof |
US4353713A (en) | 1980-07-28 | 1982-10-12 | Cheng Shang I | Integrated gasification process |
US4540681A (en) | 1980-08-18 | 1985-09-10 | United Catalysts, Inc. | Catalyst for the methanation of carbon monoxide in sour gas |
US4318715A (en) * | 1980-11-13 | 1982-03-09 | Allied Corporation | Process for sweeping methane from a physical solvent |
US4347063A (en) | 1981-03-27 | 1982-08-31 | Exxon Research & Engineering Co. | Process for catalytically gasifying carbon |
NL8101447A (nl) | 1981-03-24 | 1982-10-18 | Shell Int Research | Werkwijze voor de bereiding van koolwaterstoffen uit koolstofhoudend materiaal. |
DE3264214D1 (en) | 1981-03-24 | 1985-07-25 | Exxon Research Engineering Co | Apparatus for converting a fuel into combustible gas |
DE3113993A1 (de) | 1981-04-07 | 1982-11-11 | Metallgesellschaft Ag, 6000 Frankfurt | Verfahren zur gleichzeitigen erzeugung von brenngas und prozesswaerme aus kohlenstoffhaltigen materialien |
DE3268510D1 (en) | 1981-06-05 | 1986-02-27 | Exxon Research Engineering Co | An integrated catalytic coal devolatilisation and steam gasification process |
JPS6053730B2 (ja) | 1981-06-26 | 1985-11-27 | 康勝 玉井 | ニツケル精錬法 |
US4365975A (en) | 1981-07-06 | 1982-12-28 | Exxon Research & Engineering Co. | Use of electromagnetic radiation to recover alkali metal constituents from coal conversion residues |
US4500323A (en) | 1981-08-26 | 1985-02-19 | Kraftwerk Union Aktiengesellschaft | Process for the gasification of raw carboniferous materials |
US4348486A (en) | 1981-08-27 | 1982-09-07 | Exxon Research And Engineering Co. | Production of methanol via catalytic coal gasification |
US4432773A (en) | 1981-09-14 | 1984-02-21 | Euker Jr Charles A | Fluidized bed catalytic coal gasification process |
US4439210A (en) | 1981-09-25 | 1984-03-27 | Conoco Inc. | Method of catalytic gasification with increased ash fusion temperature |
US4348487A (en) | 1981-11-02 | 1982-09-07 | Exxon Research And Engineering Co. | Production of methanol via catalytic coal gasification |
US4397656A (en) | 1982-02-01 | 1983-08-09 | Mobil Oil Corporation | Process for the combined coking and gasification of coal |
DE3377360D1 (en) | 1982-03-29 | 1988-08-18 | Asahi Chemical Ind | Process for thermal cracking of carbonaceous substances which increases gasoline fraction and light oil conversions |
US4468231A (en) | 1982-05-03 | 1984-08-28 | Exxon Research And Engineering Co. | Cation ion exchange of coal |
DE3217366A1 (de) | 1982-05-08 | 1983-11-10 | Metallgesellschaft Ag, 6000 Frankfurt | Verfahren zur herstellung eines weitgehend inertfreien gases zur synthese |
US4407206A (en) | 1982-05-10 | 1983-10-04 | Exxon Research And Engineering Co. | Partial combustion process for coal |
US5630854A (en) | 1982-05-20 | 1997-05-20 | Battelle Memorial Institute | Method for catalytic destruction of organic materials |
DE3222653C1 (de) | 1982-06-16 | 1983-04-21 | Kraftwerk Union AG, 4330 Mülheim | Verfahren zum Umsetzen von kohlenstoffhaltigem Brennstoff zu einem brennbaren Produktgas |
US4436531A (en) | 1982-08-27 | 1984-03-13 | Texaco Development Corporation | Synthesis gas from slurries of solid carbonaceous fuels |
US4597776A (en) | 1982-10-01 | 1986-07-01 | Rockwell International Corporation | Hydropyrolysis process |
US4459138A (en) | 1982-12-06 | 1984-07-10 | The United States Of America As Represented By The United States Department Of Energy | Recovery of alkali metal constituents from catalytic coal conversion residues |
US4551155A (en) | 1983-07-07 | 1985-11-05 | Sri International | In situ formation of coal gasification catalysts from low cost alkali metal salts |
EP0134344A1 (en) | 1983-08-24 | 1985-03-20 | Exxon Research And Engineering Company | The fluidized bed gasification of extracted coal |
GB2147913A (en) | 1983-10-14 | 1985-05-22 | British Gas Corp | Thermal hydrogenation of hydrocarbon liquids |
US4515764A (en) | 1983-12-20 | 1985-05-07 | Shell Oil Company | Removal of H2 S from gaseous streams |
FR2559497B1 (fr) | 1984-02-10 | 1988-05-20 | Inst Francais Du Petrole | Procede de conversion de residus petroliers lourds en hydrogene et hydrocarbures gazeux et distillables |
GB2154600A (en) | 1984-02-23 | 1985-09-11 | British Gas Corp | Producing and purifying methane |
US4619864A (en) * | 1984-03-21 | 1986-10-28 | Springs Industries, Inc. | Fabric with reduced permeability to down and fiber fill and method of producing same |
US4597775A (en) | 1984-04-20 | 1986-07-01 | Exxon Research And Engineering Co. | Coking and gasification process |
US4558027A (en) | 1984-05-25 | 1985-12-10 | The United States Of America As Represented By The United States Department Of Energy | Catalysts for carbon and coal gasification |
US4704136A (en) | 1984-06-04 | 1987-11-03 | Freeport-Mcmoran Resource Partners, Limited Partnership | Sulfate reduction process useful in coal gasification |
DE3422202A1 (de) | 1984-06-15 | 1985-12-19 | Hüttinger, Klaus J., Prof. Dr.-Ing., 7500 Karlsruhe | Verfahren zur katalytischen vergasung |
DE3439487A1 (de) | 1984-10-27 | 1986-06-26 | M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen | Energieguenstiges verfahren zur erzeugung von synthesegas mit einem hohen methangehalt |
US4682986A (en) | 1984-11-29 | 1987-07-28 | Exxon Research And Engineering | Process for separating catalytic coal gasification chars |
US4854944A (en) | 1985-05-06 | 1989-08-08 | Strong William H | Method for gasifying toxic and hazardous waste oil |
US4690814A (en) | 1985-06-17 | 1987-09-01 | The Standard Oil Company | Process for the production of hydrogen |
US4668428A (en) | 1985-06-27 | 1987-05-26 | Texaco Inc. | Partial oxidation process |
US4668429A (en) | 1985-06-27 | 1987-05-26 | Texaco Inc. | Partial oxidation process |
US4720289A (en) | 1985-07-05 | 1988-01-19 | Exxon Research And Engineering Company | Process for gasifying solid carbonaceous materials |
IN168599B (zh) | 1985-11-29 | 1991-05-04 | Dow Chemical Co | |
US4675035A (en) | 1986-02-24 | 1987-06-23 | Apffel Fred P | Carbon dioxide absorption methanol process |
US4747938A (en) | 1986-04-17 | 1988-05-31 | The United States Of America As Represented By The United States Department Of Energy | Low temperature pyrolysis of coal or oil shale in the presence of calcium compounds |
US5223173A (en) | 1986-05-01 | 1993-06-29 | The Dow Chemical Company | Method and composition for the removal of hydrogen sulfide from gaseous streams |
CA1300885C (en) | 1986-08-26 | 1992-05-19 | Donald S. Scott | Hydrogasification of biomass to produce high yields of methane |
IT1197477B (it) | 1986-09-10 | 1988-11-30 | Eniricerche Spa | Processo per ottenere una miscela gassosa ad alto contenuto di metano dal carbone |
JPS6395292A (ja) | 1986-10-09 | 1988-04-26 | Univ Tohoku | 塩化物を利用した石炭の接触ガス化法 |
US4876080A (en) | 1986-12-12 | 1989-10-24 | The United States Of Americal As Represented By The United States Department Of Energy | Hydrogen production with coal using a pulverization device |
US4803061A (en) | 1986-12-29 | 1989-02-07 | Texaco Inc. | Partial oxidation process with magnetic separation of the ground slag |
US5132007A (en) | 1987-06-08 | 1992-07-21 | Carbon Fuels Corporation | Co-generation system for co-producing clean, coal-based fuels and electricity |
US5055181A (en) | 1987-09-30 | 1991-10-08 | Exxon Research And Engineering Company | Hydropyrolysis-gasification of carbonaceous material |
IT1222811B (it) | 1987-10-02 | 1990-09-12 | Eniricerche Spa | Procedimento per la liquefazione del carbone in un unico stadio |
US4781731A (en) | 1987-12-31 | 1988-11-01 | Texaco Inc. | Integrated method of charge fuel pretreatment and tail gas sulfur removal in a partial oxidation process |
US5093094A (en) | 1989-05-05 | 1992-03-03 | Shell Oil Company | Solution removal of H2 S from gas streams |
US4960450A (en) | 1989-09-19 | 1990-10-02 | Syracuse University | Selection and preparation of activated carbon for fuel gas storage |
JPH075895B2 (ja) | 1989-09-29 | 1995-01-25 | 宇部興産株式会社 | ガス化炉壁へのアッシュ分の付着防止法 |
US5057294A (en) | 1989-10-13 | 1991-10-15 | The University Of Tennessee Research Corporation | Recovery and regeneration of spent MHD seed material by the formate process |
US5059406A (en) | 1990-04-17 | 1991-10-22 | University Of Tennessee Research Corporation | Desulfurization process |
US5094737A (en) | 1990-10-01 | 1992-03-10 | Exxon Research & Engineering Company | Integrated coking-gasification process with mitigation of bogging and slagging |
US5277884A (en) | 1992-03-02 | 1994-01-11 | Reuel Shinnar | Solvents for the selective removal of H2 S from gases containing both H2 S and CO2 |
US5250083A (en) | 1992-04-30 | 1993-10-05 | Texaco Inc. | Process for production desulfurized of synthesis gas |
CA2137261C (en) | 1992-06-05 | 2003-08-19 | Douglas C. Elliott | Method for the catalytic conversion of organic materials into a product gas |
US5865898A (en) | 1992-08-06 | 1999-02-02 | The Texas A&M University System | Methods of biomass pretreatment |
US5733515A (en) | 1993-01-21 | 1998-03-31 | Calgon Carbon Corporation | Purification of air in enclosed spaces |
US5720785A (en) | 1993-04-30 | 1998-02-24 | Shell Oil Company | Method of reducing hydrogen cyanide and ammonia in synthesis gas |
US5435940A (en) | 1993-11-12 | 1995-07-25 | Shell Oil Company | Gasification process |
US5536893A (en) | 1994-01-07 | 1996-07-16 | Gudmundsson; Jon S. | Method for production of gas hydrates for transportation and storage |
US5964985A (en) | 1994-02-02 | 1999-10-12 | Wootten; William A. | Method and apparatus for converting coal to liquid hydrocarbons |
US6506349B1 (en) | 1994-11-03 | 2003-01-14 | Tofik K. Khanmamedov | Process for removal of contaminants from a gas stream |
US5855631A (en) | 1994-12-02 | 1999-01-05 | Leas; Arnold M. | Catalytic gasification process and system |
US5641327A (en) | 1994-12-02 | 1997-06-24 | Leas; Arnold M. | Catalytic gasification process and system for producing medium grade BTU gas |
US5496859A (en) | 1995-01-28 | 1996-03-05 | Texaco Inc. | Gasification process combined with steam methane reforming to produce syngas suitable for methanol production |
US6132478A (en) * | 1996-10-25 | 2000-10-17 | Jgc Corporation | Coal-water slurry producing process, system therefor, and slurry transfer mechanism |
US6028234A (en) | 1996-12-17 | 2000-02-22 | Mobil Oil Corporation | Process for making gas hydrates |
US6090356A (en) | 1997-09-12 | 2000-07-18 | Texaco Inc. | Removal of acidic gases in a gasification power system with production of hydrogen |
US6180843B1 (en) | 1997-10-14 | 2001-01-30 | Mobil Oil Corporation | Method for producing gas hydrates utilizing a fluidized bed |
US6187465B1 (en) | 1997-11-07 | 2001-02-13 | Terry R. Galloway | Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions |
US6168768B1 (en) | 1998-01-23 | 2001-01-02 | Exxon Research And Engineering Company | Production of low sulfer syngas from natural gas with C4+/C5+ hydrocarbon recovery |
US6015104A (en) | 1998-03-20 | 2000-01-18 | Rich, Jr.; John W. | Process and apparatus for preparing feedstock for a coal gasification plant |
JP2979149B1 (ja) | 1998-11-11 | 1999-11-15 | 財団法人石炭利用総合センター | 熱化学的分解による水素の製造方法 |
US6389820B1 (en) | 1999-02-12 | 2002-05-21 | Mississippi State University | Surfactant process for promoting gas hydrate formation and application of the same |
CA2300521C (en) | 1999-03-15 | 2004-11-30 | Takahiro Kimura | Production method for hydrate and device for proceeding the same |
JP4006560B2 (ja) | 1999-04-09 | 2007-11-14 | 大阪瓦斯株式会社 | 燃料ガスの製造方法 |
JP4054934B2 (ja) | 1999-04-09 | 2008-03-05 | 大阪瓦斯株式会社 | 燃料ガスの製造方法 |
US6641625B1 (en) | 1999-05-03 | 2003-11-04 | Nuvera Fuel Cells, Inc. | Integrated hydrocarbon reforming system and controls |
AUPQ118899A0 (en) | 1999-06-24 | 1999-07-22 | Woodside Energy Limited | Natural gas hydrate and method for producing same |
US6790430B1 (en) | 1999-12-09 | 2004-09-14 | The Regents Of The University Of California | Hydrogen production from carbonaceous material |
US6506361B1 (en) | 2000-05-18 | 2003-01-14 | Air Products And Chemicals, Inc. | Gas-liquid reaction process including ejector and monolith catalyst |
KR100347092B1 (ko) | 2000-06-08 | 2002-07-31 | 한국과학기술원 | 하이드레이트 촉진제를 이용한 혼합가스의 분리방법 |
JP2002105467A (ja) | 2000-09-29 | 2002-04-10 | Osaka Gas Co Ltd | 水素−メタン系燃料ガスの製造方法 |
US7074373B1 (en) | 2000-11-13 | 2006-07-11 | Harvest Energy Technology, Inc. | Thermally-integrated low temperature water-gas shift reactor apparatus and process |
JP3989838B2 (ja) | 2000-12-21 | 2007-10-10 | ジョー・エンタープライジズ・リミテッド・ライアビリティ・カンパニー | バイオマスガス化システムおよび方法 |
US6894183B2 (en) | 2001-03-26 | 2005-05-17 | Council Of Scientific And Industrial Research | Method for gas—solid contacting in a bubbling fluidized bed reactor |
WO2002079355A1 (fr) | 2001-03-29 | 2002-10-10 | Mitsubishi Heavy Industries, Ltd. | Dispositif de production d'hydrate de gaz et dispositif de deshydratation d'hydrate de gaz |
JP4259777B2 (ja) | 2001-07-31 | 2009-04-30 | 井上 斉 | バイオマスのガス化方法 |
JP5019683B2 (ja) | 2001-08-31 | 2012-09-05 | 三菱重工業株式会社 | ガスハイドレートスラリーの脱水装置及び脱水方法 |
US6797253B2 (en) | 2001-11-26 | 2004-09-28 | General Electric Co. | Conversion of static sour natural gas to fuels and chemicals |
US6955695B2 (en) | 2002-03-05 | 2005-10-18 | Petro 2020, Llc | Conversion of petroleum residua to methane |
US7132183B2 (en) | 2002-06-27 | 2006-11-07 | Intellergy Corporation | Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions |
US7220502B2 (en) | 2002-06-27 | 2007-05-22 | Intellergy Corporation | Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions |
JP2004292200A (ja) | 2003-03-26 | 2004-10-21 | Ube Ind Ltd | セメントクリンカーの焼成工程における可燃性燃料の燃焼性改良方法 |
JP2004298818A (ja) | 2003-04-01 | 2004-10-28 | Tokyo Gas Co Ltd | 有機物の超臨界水処理における前処理方法及び装置 |
CN1477090A (zh) | 2003-05-16 | 2004-02-25 | 中国科学院广州能源研究所 | 生物质间接液化一步法合成二甲醚的方法 |
JPWO2004109517A1 (ja) * | 2003-06-09 | 2006-07-20 | 富士通株式会社 | ストレージ管理プログラムおよびファイル処理プログラム |
US7312752B2 (en) * | 2003-10-22 | 2007-12-25 | Awarepoint Corporation | Wireless position location and tracking system |
US7205448B2 (en) | 2003-12-19 | 2007-04-17 | Uop Llc | Process for the removal of nitrogen compounds from a fluid stream |
CN100473447C (zh) | 2004-03-22 | 2009-04-01 | 巴布考克及威尔考克斯公司 | 用于从烟气中除汞的吸附剂的动态卤化 |
US7309383B2 (en) | 2004-09-23 | 2007-12-18 | Exxonmobil Chemical Patents Inc. | Process for removing solid particles from a gas-solids flow |
US7575613B2 (en) | 2005-05-26 | 2009-08-18 | Arizona Public Service Company | Method and apparatus for producing methane from carbonaceous material |
US20070000177A1 (en) | 2005-07-01 | 2007-01-04 | Hippo Edwin J | Mild catalytic steam gasification process |
AT502064A2 (de) | 2005-07-04 | 2007-01-15 | Sf Soepenberg Compag Gmbh | Verfahren zur gewinnung von kaliumkarbonat aus asche |
DE102005042640A1 (de) | 2005-09-07 | 2007-03-29 | Future Energy Gmbh | Verfahren und Vorrichtung zur Erzeugung von Synthesegasen durch Partialoxidation von aus aschehaltigen Brennstoffen erzeugten Slurries mit Teilquenchung und Abhitzegewinnung |
US8114176B2 (en) | 2005-10-12 | 2012-02-14 | Great Point Energy, Inc. | Catalytic steam gasification of petroleum coke to methane |
US7758663B2 (en) | 2006-02-14 | 2010-07-20 | Gas Technology Institute | Plasma assisted conversion of carbonaceous materials into synthesis gas |
US7922782B2 (en) | 2006-06-01 | 2011-04-12 | Greatpoint Energy, Inc. | Catalytic steam gasification process with recovery and recycle of alkali metal compounds |
US8163048B2 (en) | 2007-08-02 | 2012-04-24 | Greatpoint Energy, Inc. | Catalyst-loaded coal compositions, methods of making and use |
US20090090055A1 (en) | 2007-10-09 | 2009-04-09 | Greatpoint Energy, Inc. | Compositions for Catalytic Gasification of a Petroleum Coke |
WO2009048724A2 (en) | 2007-10-09 | 2009-04-16 | Greatpoint Energy, Inc. | Compositions for catalytic gasification of a petroleum coke and process for their conversion to methane |
CA2709520C (en) | 2007-12-28 | 2013-06-25 | Greatpoint Energy, Inc. | Petroleum coke compositions for catalytic gasification |
WO2009086367A1 (en) | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Petroleum coke compositions for catalytic gasification and preparation process thereof |
CA2713656C (en) | 2007-12-28 | 2014-07-08 | Greatpoint Energy, Inc. | Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock |
CN101910371B (zh) | 2007-12-28 | 2014-04-02 | 格雷特波因特能源公司 | 用于制备合成气衍生产物的方法 |
WO2009086408A1 (en) | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Continuous process for converting carbonaceous feedstock into gaseous products |
WO2009086366A1 (en) | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Processes for making synthesis gas and syngas-derived products |
US20090165379A1 (en) | 2007-12-28 | 2009-07-02 | Greatpoint Energy, Inc. | Coal Compositions for Catalytic Gasification |
WO2009086377A2 (en) | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Catalytic gasification process with recovery of alkali metal from char |
WO2009086374A2 (en) | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Catalytic gasification process with recovery of alkali metal from char |
US20090165383A1 (en) | 2007-12-28 | 2009-07-02 | Greatpoint Energy, Inc. | Catalytic Gasification Process with Recovery of Alkali Metal from Char |
US7897126B2 (en) | 2007-12-28 | 2011-03-01 | Greatpoint Energy, Inc. | Catalytic gasification process with recovery of alkali metal from char |
WO2009086372A1 (en) | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Carbonaceous fuels and processes for making and using them |
WO2009111331A2 (en) | 2008-02-29 | 2009-09-11 | Greatpoint Energy, Inc. | Steam generation processes utilizing biomass feedstocks |
US8366795B2 (en) | 2008-02-29 | 2013-02-05 | Greatpoint Energy, Inc. | Catalytic gasification particulate compositions |
US8297542B2 (en) | 2008-02-29 | 2012-10-30 | Greatpoint Energy, Inc. | Coal compositions for catalytic gasification |
US8114177B2 (en) | 2008-02-29 | 2012-02-14 | Greatpoint Energy, Inc. | Co-feed of biomass as source of makeup catalysts for catalytic coal gasification |
US7926750B2 (en) | 2008-02-29 | 2011-04-19 | Greatpoint Energy, Inc. | Compactor feeder |
US8361428B2 (en) | 2008-02-29 | 2013-01-29 | Greatpoint Energy, Inc. | Reduced carbon footprint steam generation processes |
CA2716135C (en) | 2008-02-29 | 2013-05-28 | Greatpoint Energy, Inc. | Particulate composition for gasification, preparation and continuous conversion thereof |
WO2009111330A1 (en) | 2008-02-29 | 2009-09-11 | Greatpoint Energy, Inc. | Processes for making adsorbents and processes for removing contaminants from fluids using them |
US20090260287A1 (en) | 2008-02-29 | 2009-10-22 | Greatpoint Energy, Inc. | Process and Apparatus for the Separation of Methane from a Gas Stream |
US20090220406A1 (en) | 2008-02-29 | 2009-09-03 | Greatpoint Energy, Inc. | Selective Removal and Recovery of Acid Gases from Gasification Products |
US8652222B2 (en) | 2008-02-29 | 2014-02-18 | Greatpoint Energy, Inc. | Biomass compositions for catalytic gasification |
US8286901B2 (en) | 2008-02-29 | 2012-10-16 | Greatpoint Energy, Inc. | Coal compositions for catalytic gasification |
US8999020B2 (en) | 2008-04-01 | 2015-04-07 | Greatpoint Energy, Inc. | Processes for the separation of methane from a gas stream |
KR101231444B1 (ko) | 2008-04-01 | 2013-02-18 | 그레이트포인트 에너지, 인크. | 일산화탄소를 가스 흐름으로부터 제거하기 위한 사우어 전환 방법 |
WO2009158583A2 (en) | 2008-06-27 | 2009-12-30 | Greatpoint Energy, Inc. | Four-train catalytic gasification systems |
CN102076828A (zh) | 2008-06-27 | 2011-05-25 | 格雷特波因特能源公司 | 用于合成气制备的四列催化气化体系 |
WO2009158582A2 (en) | 2008-06-27 | 2009-12-30 | Greatpoint Energy, Inc. | Four-train catalytic gasification systems |
US20090324459A1 (en) | 2008-06-27 | 2009-12-31 | Greatpoint Energy, Inc. | Three-Train Catalytic Gasification Systems |
WO2009158576A2 (en) | 2008-06-27 | 2009-12-30 | Greatpoint Energy, Inc. | Two-train catalytic gasification systems |
US8647402B2 (en) | 2008-09-19 | 2014-02-11 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
US8328890B2 (en) | 2008-09-19 | 2012-12-11 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
US20100120926A1 (en) | 2008-09-19 | 2010-05-13 | Greatpoint Energy, Inc. | Processes for Gasification of a Carbonaceous Feedstock |
CN102159687B (zh) | 2008-09-19 | 2016-06-08 | 格雷特波因特能源公司 | 使用炭甲烷化催化剂的气化方法 |
WO2010048493A2 (en) | 2008-10-23 | 2010-04-29 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
WO2010078298A1 (en) | 2008-12-30 | 2010-07-08 | Greatpoint Energy, Inc. | Processes for preparing a catalyzed coal particulate |
CN102272267A (zh) | 2008-12-30 | 2011-12-07 | 格雷特波因特能源公司 | 制备催化的碳质微粒的方法 |
-
2008
- 2008-07-23 US US12/178,380 patent/US8163048B2/en active Active
- 2008-07-23 CA CA2697355A patent/CA2697355C/en not_active Expired - Fee Related
- 2008-07-23 CN CN200880101382A patent/CN101795761A/zh active Pending
- 2008-07-23 CN CN201510527744.3A patent/CN105062563A/zh active Pending
- 2008-07-23 WO PCT/US2008/070888 patent/WO2009018053A1/en active Application Filing
- 2008-07-23 AU AU2008282518A patent/AU2008282518B2/en not_active Ceased
- 2008-07-23 KR KR1020107004380A patent/KR101138096B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4204843A (en) * | 1977-12-19 | 1980-05-27 | Exxon Research & Engineering Co. | Gasification process |
US4193772A (en) * | 1978-06-05 | 1980-03-18 | Exxon Research & Engineering Co. | Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue |
US4292048A (en) * | 1979-12-21 | 1981-09-29 | Exxon Research & Engineering Co. | Integrated catalytic coal devolatilization and steam gasification process |
US4336034A (en) * | 1980-03-10 | 1982-06-22 | Exxon Research & Engineering Co. | Process for the catalytic gasification of coal |
Also Published As
Publication number | Publication date |
---|---|
WO2009018053A1 (en) | 2009-02-05 |
US8163048B2 (en) | 2012-04-24 |
KR20100072173A (ko) | 2010-06-30 |
CN101795761A (zh) | 2010-08-04 |
AU2008282518B2 (en) | 2012-03-01 |
CA2697355C (en) | 2012-10-02 |
US20090048476A1 (en) | 2009-02-19 |
KR101138096B1 (ko) | 2012-04-25 |
CA2697355A1 (en) | 2009-02-05 |
AU2008282518A1 (en) | 2009-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105062563A (zh) | 负载催化剂的煤组合物,制造方法和用途 | |
Miura et al. | Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity | |
Frey et al. | Water-oxidation catalysis by synthetic manganese oxides–systematic variations of the calcium birnessite theme | |
Hashemzehi et al. | Application of response surface methodology to optimize high active Cu-Zn-Al mixed metal oxide fabricated via microwave-assisted solution combustion method | |
Topcu et al. | Evaluation of poultry manure: combination of phosphorus recovery and activated carbon production | |
Yan et al. | Evaluation of engineered hydrochar from KMnO4 treated bamboo residues: physicochemical properties, hygroscopic dynamics, and morphology | |
Shao et al. | Synthesis, characterization, and methanol steam reforming performance for hydrogen production on perovskite-type oxides SrCo1-xCuxO3-δ | |
Zheng et al. | Oriented Isomorphous Substitution: An Efficient and Alternative Route to Fabricate the Zn Rich Phase Pure (Cu1− x, Znx) 2 (OH) 2CO3 Precursor Catalyst for Methanol Synthesis | |
Torres-Garcia et al. | Influence of surface phenomena in oxidative desulfurization with WO x/ZrO 2 catalysts | |
Sronsri et al. | Optimization of biodiesel production using magnesium pyrophosphate | |
Gao et al. | CO Binding Energy is an Incomplete Descriptor of Cu‐Based Catalysts for the Electrochemical CO2 Reduction Reaction | |
Xu et al. | Effects of vitrinite in low-rank coal on the structure and combustion reactivity of pyrolysis chars | |
Li et al. | Novel synthesis of a NiMoP phosphide catalyst in a CH 4–CO 2 gas mixture | |
Yan et al. | Intensified effect of phosphorus doping to La-Fe-O perovskite-type oxygen carrier in microalgae chemical looping gasification for enhanced syngas production | |
Ren et al. | Quantitative evaluation of the activity of low-spin tetravalent nickel ion sites for the oxygen evolution reaction | |
Zhang et al. | Conductive Metal‐Organic Frameworks Bearing M− O4 Active Sites as Highly Active Biomass Valorization Electrocatalysts | |
Zhang et al. | Effective Additives of A (Ce, Pr) in Modified Hexaaluminate La x A 1− x NiAl 11 O 19 for Carbon Dioxide Reforming of Methane | |
Ducousso et al. | 110th Anniversary: Syngas Production Enhancement Using Calcium-and Potassium-Impregnated Chars | |
Siang et al. | Dendritic mesoporous Ni/KCC-1 for partial oxidation of methane to syngas | |
Saeed et al. | Zn/HY-Zeolite as a catalyst for upgrading Iraqi heavy crude oil using aquathermolysis method | |
Bhattacharyya et al. | Thermo-catalytic pyrolysis of sawdust by a synthesized NiO/Al2O3 composite catalyst: investigation on its reaction mechanism, kinetics, and thermodynamics | |
Tan et al. | Solid base pretreatment to improve the accessibility of lignocellulosic molecules for biomass recovery | |
Özbay et al. | Production of Si-doped biomass-derived materials: effect of support type, activation and doping conditions | |
Lestariningsih et al. | Study of LiBOB compound synthesis by vacuum process as lithium ion battery electrolytes | |
Balan et al. | Conversion of oil recovered from palm oil mill effluent (Pome) into biodiesel using electrolysed carbon catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151118 |