CN105035076B - 用于具有高混合度的混合动力车辆的控制系统 - Google Patents
用于具有高混合度的混合动力车辆的控制系统 Download PDFInfo
- Publication number
- CN105035076B CN105035076B CN201510147853.2A CN201510147853A CN105035076B CN 105035076 B CN105035076 B CN 105035076B CN 201510147853 A CN201510147853 A CN 201510147853A CN 105035076 B CN105035076 B CN 105035076B
- Authority
- CN
- China
- Prior art keywords
- vehicle
- power
- prediction
- hybrid vehicle
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002156 mixing Methods 0.000 title claims abstract description 8
- 230000008859 change Effects 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000000446 fuel Substances 0.000 claims description 49
- 230000015556 catabolic process Effects 0.000 claims description 5
- 238000006731 degradation reaction Methods 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 claims description 4
- 230000000712 assembly Effects 0.000 claims description 3
- 238000000429 assembly Methods 0.000 claims description 3
- 238000004146 energy storage Methods 0.000 description 24
- 230000001133 acceleration Effects 0.000 description 19
- 238000007600 charging Methods 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 11
- 230000006399 behavior Effects 0.000 description 10
- 230000007613 environmental effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 230000009194 climbing Effects 0.000 description 6
- 230000005611 electricity Effects 0.000 description 6
- 230000001172 regenerating effect Effects 0.000 description 6
- 238000005457 optimization Methods 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000000750 progressive effect Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000005138 cryopreservation Methods 0.000 description 3
- 238000013178 mathematical model Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 241000283986 Lepus Species 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008450 motivation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000012952 Resampling Methods 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000005183 dynamical system Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/15—Control strategies specially adapted for achieving a particular effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/11—Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
- B60W10/26—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/12—Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/0097—Predicting future conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/06—Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
- B60W2050/146—Display means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/10—Historical data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/45—External transmission of data to or from the vehicle
- B60W2556/50—External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/84—Data processing systems or methods, management, administration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/93—Conjoint control of different elements
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
- Navigation (AREA)
Abstract
本文公开了用于控制和操作具有高混合度的混合动力车辆的系统和方法。动力流控制系统基于混合动力车辆运行中的变化情况预测驱动混合动力车辆的车辆动力需求。动力流控制系统基于所预测的车辆动力需求控制动力流,以便提供驱动混合动力车辆的动力,其中,所预测的车辆动力需求大于最大值。
Description
技术领域
本发明涉及一种用于具有高混合度的混合动力车辆的控制系统。
发明内容
一些实施例涉及具有燃料消耗发动机和能量储存装置的混合动力车辆,所述能量储存装置被配置成供应驱动混合动力车辆的动力。所述混合动力车辆包括预测处理器和控制器,所述预测处理器预测驱动车辆的车辆动力需求,所述控制器基于预测的动力需求自动地控制从所述发动机和从所述能量储存装置到混合动力车辆的传动系的动力流,以便提供驱动混合动力车辆的动力。预测的车辆动力需求大于在混合动力车辆运行期间的至少一点所述发动机可用的最大动力。
一些实施例涉及用于由燃料消耗发动机和联接到混合动力车辆的传动系的能量储存装置驱动的混合动力车辆的控制系统。所述控制系统包括预测处理器,所述预测处理器基于在混合动力车辆运行期间的变化情况预测驱动混合动力车辆的动力需求。所述控制系统还包括动力流控制器,所述动力流控制器被配置成至少部分基于预测的动力需求自动地控制所述发动机和所述传动系、所述能量储存装置和所述传动系、所述发动机和所述能量储存装置中的至少一种情况之间的动力流,以便提供驱动车辆的动力。驱动车辆的动力需求大于在混合动力车辆运行期间至少一个时间点发动机可用的最大动力。
一些实施例涉及用于控制混合动力车辆中的动力流的方法。所述方法包括预测由燃料消耗发动机和能量储存装置驱动混合动力车辆的车辆动力需求,以及基于预测的车辆动力需求控制动力流以便提供驱动混合动力车辆的动力。预测的车辆的动力需求大于在车辆运行期间的至少一个时间点发动机可用的最大动力。
附图说明
图1A是混合动力车辆的实施例的框图表示;
图1B是根据一些实施例车辆动力流控制系统的更加详细的框图表示;
图1C是图1A的混合动力车辆具有机械能量储存装置的框图表示;
图1D是图1A的混合动力车辆具有电能量储存装置的框图表示;
图2图解说明混合动力车辆的驾驶员接口的实施例;
图3图解说明预测图1A-1D的混合动力车辆的多条潜在路线的预测处理器的实施例;
图4图解说明预测图1A-1D的混合动力车辆的多条潜在路线的预测处理器的另一实施例;
图5图解说明被配置成预测图1A-1D的混合动力车辆的多条潜在路线和路线特定的驾驶参数的预测处理器的实施例;
图6图解说明由图5的预测处理器使用的数据的实施例;以及
图7图解说明用于图5的预测处理器的传感器系统的实施例。
具体实施方式
在以下的描述中,参照形成说明书的一部分的附图,图中通过图示示出几个具体的实施例。要理解,其它实施例也被考虑,并且可以在不偏离本申请的范围下做出。因此,以下详细描述不是在限制性意义上进行的。
本申请一般涉及具有“高混合度”的混合动力车辆(本文中还称作“高DoH车辆”)。高DoH车辆是一种包括燃料消耗发动机和为与能量储存装置连接的车辆提供动力的至少一个其它装置的车辆,以致发动机通过其自身不能够在典型使用下传送车辆所需的最大动力。典型使用是车辆预期或被设计成使用的路线资料和驾驶员行为的集合。
高DOH车辆是与传统的电池混合动力车辆相比,相对于车辆的相对高动力的能量储存装置,具有相对低动力的燃料发动机的车辆。尽管对高DOH没有精确定义,但出于本申请的目的,能量储存装置可以被认为在一些实施例中具有提供发动机的至少一半动力的能力。在一些实施例中,燃料消耗发动机不能基于典型的车辆使用提供车辆的预期峰值动力需求。在某些实施例中,燃料消耗发动机被配置成在DoH车辆的典型使用期间提供驱动高DoH车辆所需的至少平均的但小于峰值动力的动力。在一些情况下,内燃发动机在如预期或设计运行的额定运行时不能够基于预期的车辆使用模式提供车辆的预期峰值动力需求。
限制发动机的动力输出可以允许发动机在最大效率范围内运行,以及降低发动机的成本和质量。在额定运行情况下,发动机可以具有足够大的动力以在相对平坦的道路上维持合理的速度,以低速爬山,并且以相对低的速率加速。因为高DOH车辆中的石油燃料发动机相对于车辆尺寸和性能需求是动力不足的,本文中公开的高DOH车辆可以使用各种能量储存装置来提供动力。
通过限制燃料消耗发动机的动力输出,高DoH车辆可以以更高的效率运行相对更长的时段和/或距离。在一些实施例中,动力输出可以通过使用相对更小的燃料消耗发动机来限制,从而降低成本、有害排放和车辆的质量。在额定运行情况下,燃料消耗发动机可以具有足够大的动力以在相对平坦的道路上维持合理的速度,以低速爬山,并且以相对低的速率加速。因为高DoH车辆中的燃料消耗发动机相对于车辆尺寸和性能需求是动力不足的,所以,本文中公开的高DoH车辆可以使用各种能量储存装置提供动力,实现更快速的加速和改进的性能。
一般来说,附图图解说明高DoH车辆以及车辆运行的潜在模式的各个实施例。这些模式例如包括具有能量储存装置(例如机械或电能量储存装置)的串联混合动力模式,具有能量储存装置的并联混合动力模式,具有能量储存装置的动力分配串联-并联混合动力模式以及各种穿行道路(through-the-road)混合动力模式。控制系统控制高DoH车辆的各个组件的运行模式。控制系统可以包括控制电路,诸如一个或多个微处理器、计算机、计算机系统、离散组件、相关软件、算法、组件的分析模拟模型等。
在各个实施例中,能量储存装置可以是机械储存装置,例如飞轮,或电能量储存装置,例如超级电容器(也称作超级型电容器)或电化学电池组。飞轮或超级电容器具有高动力密度,相同量的动力可以用比电池组更小、更轻和/或费用不太高的单元获得。然而,高动力密度飞轮和超级电容器具有低能量密度。例如,在全动力下,超级电容器一般在几秒内放电,飞轮一般在几十秒或分钟内放电。这意味着超级电容器可以向车辆提供足够的动力,使得车辆只在有限的时段能够高效地加速,提高速度或爬山,或保持高速率。如果驾驶员想在能量储存装置耗尽时加速,则可用动力会局限制于燃料消耗发动机的动力,如之前讨论的它是动力不足的,所以动力是不够的。
图1A是高DoH车辆10的实施例的框图表示。高DoH车辆10包括可选的驾驶员接口12、燃料消耗发动机14、能量储存装置18、控制系统20、传动系24和诸如车轮28a和28b的运动系统。混合动力车辆可以包括用于对能量储存装置18充电的一个或多个充电系统。
燃料消耗发动机14被配置成生成用于驱动车辆10的机械动力。操作燃料消耗发动机14使用的燃料可以包括汽油、柴油、甲醇、乙醇、丙烷、氢、甲烷(例如天然气或来自煤汽化)等中的一个或多个,包括替代燃料(化石或其它)。在某些实施例中,燃料消耗发动机14可以是多燃料发动机。在一些实施例中,燃料消耗发动机14可以是内燃发动机。
传动系24可以包括变速器、差速器和轴,传动系24向混合动力车辆的车轮28(或其它机械运动系统)提供机械能。如图1A中所示,传动系24联接于动力提供组件(能量储存装置10和发动机14)和运动系统之间。传动系24可以联接到能量储存装置10和燃料消耗发动机14中的一个或两个。例如,传动系24可以设置成通过使用差速器(图1A中未显示)向车轮28a、28b传送机械动力从而操作车轮28a和28b。车轮28a和28b可以联接成与差速器通过一个或多个轴成转矩和动力传递关系。每个车轮28a和28b可以是单个车轮,诸如前面乘客侧车轮和前面驾驶员侧车轮,或者诸如高DOH车辆的前车轮和后车轮的一组车轮。类似地,轴可以是单个轴的一部分,诸如前轴或两个或多个轴。差速器允许相对的轮(诸如左前轮和右前轮)以不同的旋转速度旋转,促进无轮胎滑动地转向和转弯。差速器可以是单个差速器或两个或多个差速器,并不是在所有实施例中都使用。
控制系统20联接到燃料消耗发动机14和能量储存装置18。在图1B中更加详细地显示的控制系统20包括预测处理器22和动力流控制器23。预测处理器22可以包括车辆动力需求预测和环境预测子系统22a、22b。动力流控制器23可以包括发动机控制器23a、能量储存装置控制器23b和/或再生控制器23c,发动机控制器23a被配置成控制燃料消耗发动机14的操作,能量储存装置控制器23b被配置成控制能量储存装置的操作,再生控制器23c被配置成控制能量储存装置的再生。可选地,动力流控制器23响应于从预测处理器22接收的一个或多个信号控制能量储存装置10和/或发动机14的操作,从而控制传送到传动系24的机械动力。在一些实施例中,动力流控制器23可以基于来自预测处理器22的信号控制发动机14和能量储存装置10之间的动力流,以控制能量储存装置的充电。控制所传送的动力
在一些实现中,混合动力车辆可以包括再生制动器或动能恢复系统。在一些实现中,来自制动器的能量储存在能量储存装置中。控制器23可以例如超前预测的动力需求控制一个或多个再生过程。
根据一些方面,控制器23可以基于电子装置(或其它车辆组件)的电流或功率的限制通过限制驱动车辆的动力控制再生过程。超前于相对高的预测动力需求,控制器23可以限制从能量储存装置汲取的动力,或者可以提供来自发动机的附加动力,以对能量储存装置充电。控制再生过程的另一示例涉及限制来自制动器的动力,使得发动机可以传送实际用于制动的动力,从而更加高效地操作车辆。这可以出现在发动机的速度或转矩或动力变化得不太多或不太快时,发动机运行得更好的情况下。
在一些情形下,可能不需要装载来自制动器的能量储存。例如,(若干)车轮和/或(若干)动力轴可以由电动机-发电机组直接加载以产生电或由联接的飞轮直接加载。因此,制动动作可以在再生过程和实际制动之间分开。在一些情况下,通过制动器耗尽的动能丢失。控制器然后可以被配置成根据车辆速度、驾驶员的制动踏板输入、驾驶员的制动响应预期和/或前方障碍的雷达数据和/或其它变量确定有多少能量要恢复和/或有多少能量通过制动器流出。例如,控制器可以包括能量储存装置的充电/能量状态和/或变量列表的预期动力需求,以考虑控制再生过程。
在一些实现中,预测处理器22可以基于GPS数据和/或以往的驾驶员习惯,预测其中会发生制动的位置或时间间隔,使得来自再生制动的能量可以在这些位置或在这些时间间隔中提供给能量储存装置。在这些情况下,控制器可以从能量储存装置汲取附加动力,或者限制从发动机传送到能量储存装置的动力,使得来自再生制动系统的预测动力可以被更完全地利用。
预测处理器22可以基于历史信息、经验信息、感测信息、驾驶员输入、源于大众的信息和/或其它信息预测车辆动力需求和/或其它运行参数。在一些实施例中,可以基于驾驶员操作车辆时的历史习惯或模式进行车辆动力需求的预测。在一些实施例中,可以部分基于车辆的环境运行情况进行车辆动力需求的预测,其中,环境运行情况可以包括当前运行情况和历史运行情况两者。预测处理器22可以包括能够在未来的一个时间(例如在时间或距离的移动窗口内)提供车辆的运行情况的环境预测的电路22b。作为环境预测的一个示例,环境预测电路22b可以基于驾驶员过去采用的路线预测驾驶员将要选择的路线。作为另一示例,环境预测电路22b可以基于退化模型预测发动机组件的退化。
由环境预测电路产生的预测信息通知使用一个或多个车辆动力需求预测模型操作的车辆动力需求预测电路22a。例如,车辆动力需求预测模型可以体现为(若干)建模方程式和/或(若干)查询表。车辆动力需求预测模型可以对来自各种来源的信息进行操作,诸如由环境预测子系统预测的信息,驾驶员输入的信息,经验信息,感测信息和/或由混合动力车辆外部的来源提供的信息(例如源于人群的信息、天气信息、交通信息、位置信息),以预测混合动力车辆的动力需求。
在高DoH车辆中,预测的车辆动力需求可以大于在混合动力车辆运行中的至少一个时间点发动机可用的最大动力。在各种情形下,预测的车辆动力需求可以大于在混合动力车辆运行中的至少一个时间点能量储存装置可用的最大动力。在一些情形下,预测的车辆动力需求可以大于在混合动力车辆运行中的至少一个时间点一起操作的能量储存装置和发动机可用的最大动力。当预测的车辆动力需求大于发动机、能量储存装置或其两者可用的动力时,控制器可以采取各种动作以确保动力可用,诸如改变来自发动机和/或能量储存装置的动力流,使得所需动力在未来的时间点可用和/或向驾驶员建议允许动力可用以操作车辆的替代路线。
在一些实施例中,控制系统20基于如由预测处理器22确定的车辆的动力需求将来自燃料消耗发动机14或来自能量储存装置18的动力引导到传动系24。在一些实现中,动力流控制系统20被配置成使用来自燃料消耗发动机14的机械动力,以操作用于能量储存装置18的充电系统。在一些实例中,动力流控制器20控制机械动力向用于能量储存装置18的充电系统的流动(例如再生制动)。在一些实施例中,车辆10包括用于对能量储存装置18充电的一个或多个附加或替代系统。
如在其它地方描述的,预测处理器22确定和/或预测车辆10的运行参数。在一些实施例中,预测处理器22设置于混合动力车辆10内。在某些实施例中,预测处理器22可以设置于远离车辆10的位置处,例如物理上位于与车辆10相隔远距离的数据中心,可以被配置成与动力流控制系统20通过无线通信链路通信。预测处理器22被配置成基于许多信息来源,包括通过驾驶员接口12提供的驾驶员输入参数,多个已知的发动机特征(例如发动机配置和/或已知的静态或长期的发动机特征),感测的发动机情况(例如动态变化的发动机特征、摩擦、发动机状态、能量储存装置的状态等)以及感测的或外部获得的信息(例如车辆位置、地形、天气、交通等)预测车辆动力需求,以确定预测的动力需求。
出于简洁考虑,用于操作车辆10的附加机械和/或电装置、组件、系统等是本领域众所周知的,因此在附图中不显示在文中也没有描述。例如,没有图示也没有描述用于与传动系24来回转移机械动力的诸如离合器、自动变速器或其它转矩传递装置的啮合机构。
图1C是高DoH车辆40的实施例的框图表示,其中,高DoH车辆10的能量储存装置18是机械能量储存装置42。在高DoH车辆40的一些实施例中,机械能量储存装置42包括一个或多个飞轮,所述一个或多个飞轮被配置成产生10千瓦和200千瓦之间的机械动力以驱动车辆40。
在一些实现中,机械能量储存装置42联接到电动机/发电机17。来自储存装置42的机械能量通过电动机/发电机的发电部分转换成电,用来给电动机17提供动力。电动机17联接成向传动系24提供动力。在一些实现中,发动机14驱动电动机/发电机17以对能量储存装置42充电。在一些配置中,电动机/发电机17充当机械能量储存装置42(例如飞轮)的电力传输。
图1D是高DoH车辆50的实施例的框图表示,其中,DoH车辆10的能量储存装置18是电能量储存装置52,电能量储存装置52被配置成操作联接于其上的电动机54。在一些实施例中,电储存装置52是可再充电电池组、超级电容器、燃料电池或其它(若干)可再充电电能量储存装置中的一个或多个。在某些实施例中,电动机54被配置成生成用于驱动车辆50的机械动力。在一些实施例中,电动机54还被配置为发电机,以将输入的机械动力转换成电功率以对电能量储存装置52充电(例如储存)。发动机14可以设置成驱动发电机(可以是与电动机相同的组件(例如电动机/发电机54))以对能量储存装置52充电。在车辆50的一些实施例中,发电机被配置成将输入的机械动力转换成电功率以对与电动机隔开并相距很远的电能量储存装置52充电。在某些实施例中,操作发电机所需的至少一部分机械动力由燃料消耗发动机14提供。在一些实施例中,操作发电机所需的至少一部分机械动力源于车辆50的再生制动。
电动机/发电机54可以是一个或多个装置、组件、系统等中的任何一个。例如,电动机和/或发电机可以是AC装置、DC装置(例如永磁铁)、开关磁阻装置、排斥感应装置、感应装置等中的一个或多个。
图2图解说明根据高DoH车辆(诸如车辆10、40和50)的一些实施例的驾驶员接口12和驾驶员接口12的示例性功能的实施例。驾驶员接口12设计成与驾驶员交互,并且可以被配置成获得来自车辆10的驾驶员的信息并向其显示信息。驾驶员接口12可以被配置成提示驾驶员输入某些信息,以给驾驶员提供可选择选项,和/或向驾驶员中继信息。动力流控制系统20接收驾驶员特定的输入79,例如驾驶员提供的信息和/或驾驶员通过驾驶员接口12的选择,并且可以基于驾驶员输入的信息建议路线,进行预测以及执行任务。如图2中所示,驾驶员接口12可以输入或输出的信息的示例性和非限制性列表包括选择路线96、预期或实际车辆行为76、车辆的当前位置64、到达目的地的时间70、目的地位置62、燃料消耗74(例如瞬时或平均)、车辆排放72(例如瞬时或平均)、其它DoH情况80、驾驶员特定的信息79和/或任何其它信息81,例如驾驶员或车辆参数值或与混合动力车辆的运行相关的情况。
例如,驾驶员接口12可以由驾驶员使用以指定目的地62。在一些实施例中,目的地62可以包括最终目的地和/或在车辆10的当前位置64和最终目的地之间的多个临时目的地。如图2-6中图示的,来自驾驶员接口12和/或来自其它来源的信息可以用来进行关于车辆运行的预测。在一些实施例中,车辆10包括一个或多个历史数据库66、67(例如驾驶员和/或车辆特定的数据库),预测处理器22的环境预测电路可以通过历史数据库猜测(例如预测)车辆的环境运行情况,诸如目的地62和/或其它环境信息。例如,在某些实施例中,驾驶员的身份和日期可以用来预测驾驶员的临时和/或最终目的地。例如,行驶是在平日的早上,则预测处理器可以假设驾驶员行驶去上班。此外,或者作为替代,驾驶员的身份和当前位置64可以用来预测驾驶员的目的地。在一些实施例中,驾驶员特定的历史数据库66可以在车辆10上。在某些实施例中,驾驶员特定的历史数据库66可以在距离车辆10很远的位置,可以被配置成通过诸如蜂窝通信链路的无线通信链路与预测处理器22通信。在一些实施例中,GPS接口68可以用来确定车辆10的当前位置64。
在一些实施例中,驾驶员接口12可以用来指定和/或对一个或多个驾驶员特定的驾驶参数排序。排序指示驾驶员给驾驶员特定的驾驶参数中的每一个分配的重要性。示例性驾驶员特定的驾驶参数可以包括但不限于到达目的地的时间70、到达目的地的可接受排放72、到达目的地的可接受燃料消耗74、车辆行为76和加速时间78中的一个或多个。在一些实施例中,到达目的地的时间70可以包括驾驶员想要到达目的地的时间和/或上下班时间(例如持续时间)中的一个或多个。在某些实施例中,一个或多个驾驶员特定的驾驶参数可以存储在驾驶员特定的历史数据库66中。在一些实现中,可能不要求驾驶员指定驾驶参数。在一些实施例中,驾驶员可变的默认(例如出厂设置或之前由驾驶员设置的)驾驶参数可以包括于历史数据库66中。在某些实施例中,驾驶员可以在需要时通过驾驶员接口12指定/或改变一个或多个驾驶参数。
在一些实施例中,驾驶员接口可以被配置成提示驾驶员输入一个或多个驾驶参数的排序信息。排序的驾驶参数用来建议显示于驾驶员接口上的一个或多个路线。排序的驾驶参数可以替代或另外由预测处理器使用,以预测动力需求,和/或由控制器使用来控制驱动混合动力车辆的动力流。在各个实施例中,控制器可以被配置成自动地控制发动机和传动系、能量储存装置和传动系以及发动机和能量储存装置中的至少一个之间的动力流,以便提供驱动车辆的动力。动力流的控制至少部分基于预测的动力需求。
在一些实施例中,车辆行为76涉及驾驶员期望车辆如何表现。因此,车辆行为76可以是“学习的”驾驶员特定的驾驶参数。例如,驾驶员的驾驶习惯可以被连续地或在一个或多个时间间隔上监控,可以在历史数据库66中包括或更新驾驶员的习惯。在一些实施例中,关于车辆行为76的信息可以包括定量和/或定性的驾驶员特定的数据和/或诸如加速习惯(例如“长腿大野兔(jack rabbit)”、渐进的等)、减速习惯(例如渐进的、突然的等)及其它的资料。车辆行为76还可以包括驾驶员对车辆的驾驶性或其它参数(诸如期望的或预期的驾驶“平稳”、响应、加速时间78)的预期。车辆行为76还可以包括驾驶员特定的车辆操作特征,诸如驾驶员特定的车辆排放、驾驶员特定的燃料消耗及其它。
在一些实施例中,预测处理器22的环境预测部分被配置成确定在当前位置64和目的地62之间可以由驾驶员采用的多条潜在路线80a-80n。在某些实施例中,预测处理器22被配置成确定在当前位置64和多个临时目的地82a-82n中的每一个之间可以由驾驶员采用的多条潜在路线80a-80n。在一些实施例中,多条潜在路线80a-80n可以由预测处理器基于当前位置64、目的地62和与多个潜在目的地80a-80n中的每一个关联的一个或多个驾驶员特定的驾驶参数预测。临时目的地82a-82n可以基于道路系统的地图被预测。例如,临时目的地可以是下一个十字路口。在某些实施例中,预测处理器22被配置成避免有大于预定坡度的坡度或斜度的路线。因此,多个潜在目的地80a-80n可以包括与其它潜在路线相比具有更渐进的高度增加的至少一个潜在路线。
多条潜在路线80a-80n可以显示于驾驶员接口12上。在一些实施例中,路线信息可以与由预测处理器22确定的多条潜在路线80a-80n中每一个的一个或多个路线特定的驾驶参数84一起显示于驾驶员接口12上。在某些实施例中,路线特定的驾驶参数84可以与驾驶员特定的驾驶参数相同,不过是以路线特定的信息显示的。示例性的路线特定的驾驶参数84可以包括但不限于车辆动力需求86、到达目的地的时间延迟88(例如由于交通、天气、道路施工等)、燃料消耗的增加(或降低)90、燃料费用(例如相对于其它路线所节约或增加的燃料费用)92和相对于其它路线增加(或降低的)车辆排放94中的一个或多个。在一些实施例中,驾驶参数84可以包括当动力需求未被满足时,从瞬时情况(诸如但不限于瞬时动力和预测的累积时间)得到的那些参数。路线特定的驾驶参数84可以以绝对值、相对于其它潜在路线的那些路线的值和/或以与驾驶员特定的驾驶参数的偏离(例如以差值)显示。
在一些实施例中,驾驶员可以从显示于驾驶员接口12上的多条潜在路线80a-80n中选择路线96。在某些实施例中,预测处理器22可以预测驾驶员想要在多条潜在路线80a-80n中的一条路线上行驶,因为在路线特定的驾驶参数84和驾驶员特定的驾驶参数之间存在“紧密匹配”。在一些实施例中,驾驶员可以指定或选择与驾驶员接口12上显示的多条潜在路线80a-80n不同的路线96。例如,所选择(由用户指定或由预测处理器预测)的路线96可以是驾驶员想在其行驶的风景路线。
在一些实施例中,预测处理器22被配置成基于关于驾驶员选择的路线96的信息预测车辆动力需求86。在某些实施例中,预测处理器22被配置成基于关于驾驶员提供的最终目的地的信息预测车辆动力需求86。在一些实施例中,预测处理器22被配置成在没有任何驾驶员提供或选择的路线和/或目的地的信息时预测车辆动力需求86。例如,在某些实施例中,预测处理器22被配置成预测在车辆10运行中的移动的时间间隔时序的车辆动力需求86。在一些实施例中,预测处理器22被配置成预测在车辆10运行中到达临时路线的许多个临时位置所需的车辆动力需求86。
图6图解说明车辆10的实施例,其中,预测处理器22被配置成基于车辆的环境运行情况预测车辆动力需求86。环境运行情况可以包括但不限于外部情况(车辆外部的情况)、内部情况(车辆内部的情况)、感测情况(外部或内部)、预测情况(外部或内部)和以前描述的诸如驾驶员参数和路线或目的地信息的驾驶员特定的情况中的一个或多个。在一些实施例中,外部情况可以包括交通98、GPS信息68、天气100、道路情况102和地形104中的一个或多个。感测情况可以包括交通98、天气100、道路情况102、交通事故106、发动机情况、能量储存装置情况和传动系情况108中的一个或多个。感测的发动机情况可以包括最大可用动力110、转矩112、发动机速度和燃料效率114。感测的能量储存装置情况可以包括能量储存装置的充电状态116、可用动力、最小和最大充电(例如储存容量)118。预测情况可以包括天气100、路线94、交通、目的地62和组件退化。
图7图解说明具有联接到预测处理器22的传感器系统120的车辆10的实施例,其中,传感器系统120被配置成感测一个或多个情况,预测处理器22被配置成基于一个或多个感测情况预测车辆动力需求86。在一些实施例中,一个或多个感测的车辆参数可以包括指示以下当中的一个或多个退化的感测情况:润滑油122、轴承124、飞轮126、电池128、电容器130、发动机磨损132、发动机压缩134、发动机传输136、能量储存装置传输138和/或车辆内部或外部的各种其它情况131。
在一些实施例中,预测处理器22被配置成预测一个或多个车辆组件的变化,相应地基于一个或多个车辆组件的预测变化预测车辆动力需求86的变化。例如,预测的组件变化可以基于组件的年龄、行驶距离、旋转或周期数等中的一个或多个。在某些实施例中,预测处理器22被配置成基于一个或多个退化模型预测变化,其中,退化模型由方程式和/或查询表表征。在一些实施例中,退化模型可基于一个或多个感测情况修改。在某些实施例中,预测处理器22可以包括表示混合动力车辆10的每个组件的一个或多个数学模型。例如,预测处理器22可以包括用于燃料消耗发动机14和/或能量储存装置18的一个或多个数学模型。预测处理器22可以被配置成基于一个或多个数学模型确定或预测车辆动力需求86。在某些实施例中,预测处理器22被配置成基于组件性能的感测和/或预测变化,修订一个或多个车辆组件的数学模型。
在某些实施例中,预测处理器22被配置成预测交通情况98,并基于预测的交通情况或交通情况98的变化预测车辆动力需求86。例如,预测处理器22可以被配置成基于时间和/或所选择的路线96预测交通情况。预测处理器22可以包括线性或非线性自回归模型以应对用于预测车辆动力需求86的预测的和实际的交通时间演化的不同。
在一些实施例中,预测处理器22可以被配置成实时预测车辆动力需求86。因此,预测处理器22可以被配置成基于实时情况(例如实时天气、道路情况和/或交通情况)向驾驶员建议替代路线。所建议的路线可以显示于驾驶员接口12上,驾驶员可以被允许接受或拒绝所建议的替代路线。如果被驾驶员接受,则预测处理器22可以执行所建议的替代路线。在某些实施例中,预测处理器22可以被配置成最大化来自能量储存装置18的能量使用,并最小化燃料消耗发动机14的能量使用。
在一些实施例中,预测处理器22可以被配置成在模型预测控制架构中使用蒙特卡洛算法以预测车辆动力需求86。在某些实施例中,预测处理器22可以被配置成在模型预测控制架构中使用随机编程以预测车辆动力需求86。本领域技术人员会认识到随机编程可以包括称作数学编程或数学优化算法的一类算法。例如,这些算法可以包括整数编程、线性编程和非线性编程。在一些实施例中,预测处理器22包括用于操作车辆的自适应优化控制算法,其中,一个或多个控制参数可以使用实时感测或预测的数据修改。在一些实施例中,实时感测的数据可以包括通过检测液压润滑系统中的碎片颗粒检测发动机磨损。例如,车辆可以包括早期警告系统,早期警告系统具有用于监控油清洁度以指示变速器系统中轴承和齿轮损坏和/或发动机磨损的一个或多个传感器。在某些实施例中,感测数据可以用于校准用于预测组件退化(诸如可能降低输出动力的活塞环和孔中的摩擦磨损)的磨损模型。
在一些实施例中,本文中公开的车辆动力流控制系统提供专用的例如优化的动力流,使得受最大程度提供足够大的加速动力的约束,燃料消耗和/或有害物排放或这些(或其它变量)的一些组合被减小,例如被最小化。
控制系统基于在不同的运行机制(例如,基于发动机速度和转矩的发动机地图)下负责发动机的效率和排放产生的内部模型预测排放和/或燃料消耗。对于给定的发动机输出动力,可以通过例如争取在其最高效的运行点操作发动机来降低燃料消耗和/或排放的这些值。
动力流控制系统试图通过预测何时可能需要多少加速度,以及在此时提供能量储存装置中的足够的能量来提供足够的加速动力。这是通过基于驾驶情况的预测的静态分析,控制沿着例如从发动机到运动系统、从发动机到能量储存装置、从能量储存装置到运动系统和/或从再生系统(例如再生制动)到能量储存装置的能量流方向的能量储存元件的充电和放电来实现的。
几种技术可以用作该预测的基础。例如,车辆、驾驶员或控制机制可以是从与车辆类型(例如小型货车、小轿车等)和通常的驾驶情况(例如城市出差、通勤等)相关的一组类别中选择的。每个类别与典型的“驾驶周期”或根据时间变化的速度的集合有关,他们是通过在该情况下典型的或平均驾驶周期的随机组合得到的。驾驶周期然后可以用来基于当前和过去的速度近似可能需要多少特定量的加速。
车辆的驾驶历史、驾驶员或与驾驶员结合的车辆可以用来预测可能的加速需求。例如,在停车或进入限制进入的高速公路之后,驾驶员的历史加速速率可以并入到历史数据库中,并用来预测驾驶员未来的驾驶特征。如果可用,驾驶员特定的信息可以用地图或GPS数据和/或天气情况增强。
如果路线、地图或可能包括坡度/高度的GPS数据可用,则动力流控制系统可以使用这些数据来预测可能的加速需求。例如,给定路线和当前的车辆位置,则可以预测加速到高速公路上或上山的需求。在特定的示例中,如果车辆正接近高速公路入口,则控制系统可以计算需要加速的增加的可能性。这还可以通过实时和/或历史交通或道路速度数据来加强。在一种变形中,控制系统可以用作帮助增强或优化路线推荐的组件。例如,避免长期爬坡的路线可能对高DoH车辆是优选的。作为另一示例,替代更长、更渐进爬坡的路线可能对更短、更陡峭的爬坡是优选的。
控制系统预测处理器的算法使用一个输入或上述输入集合的组合来确定高DoH车辆的加速需求,计算所需的储存能量,然后引导能量流,提供受该需求约束的特定的或最优的燃料消耗或排放。
根据传动系配置,与优化变量有关的其它控制变量可以被控制系统输出。例如,在具有无级变速的车辆中,发动机运行点(即发动机速度)可以被控制以最大化发动机效率。
动力流控制可以在整个路线或更短的时间(或距离)窗口(例如移动的时间或距离窗口中)实现。各种预测和优化例程可以用来实现动力流控制过程。在一种变形中,车辆动力需求预测和动力流控制模型用时间作为独立变量操作,以速度-距离曲线作为输入(例如,与计算机生成的路线对应)。在这种变形中,模型计算车辆在给定的距离下达到目标速度所需的牵引力。如果预测的可用动力(物理上可能受可用发动机和/或能量储存装置动力的限制,或受控制系统限制)小于达到目标速度所需的动力,则计算与可用动力对应的速度(例如,基于对动力计负载方程求逆,加速度根据仿真的时间步长被线性化),计算产生的减小的行驶距离。在下一时间步长,此距离与速度-距离曲线一起使用,以计算期望的速度。对于与该模型一起使用的速度-时间曲线,速度-距离曲线可以通过速度-时间曲线经由积分和重采样预先计算。预测算法可以实时由控制器运行或在计算路线时预先执行。
作为示意性示例,考虑预计车辆从停止在10秒内加速度到60英里小时的路线的一部分。这对应于6英里小时/秒的加速速率和0.083英里的行驶距离。现在,假设控制器以1秒为时基,确定可用动力只允许在路线开始时以4英里/秒的加速。给定此加速度,在1秒内,可以行驶0.0005英里。在此距离下,原始路线会使车辆以4.9英里小时行驶,使得此速度用作1秒时间步长的目标速度。类似地,在第二个1秒的间隔中,车辆又行驶了0.0017英里,总距离达0.0022英里。在原始路线上,车辆此时以9.8英里小时行驶,使得这用作第2秒时间步长的目标速度。以此方式,如由预测模型最佳确定的,以由车辆实际加速确定的速度相对时间的曲线上,渐进地重新计算路线。
预测处理器还可以基于通常的驾驶模式或在特定的位置学习的此驾驶员的特定的先前驾驶模式,使用基于GPS的预测系统来预测驾驶员可能在哪里使用制动器。通过预测驾驶员可能在哪里制动,控制处理器可以在来自能量储存元件的动力需要用于加速之前,选择在预期制动时不通过燃料消耗发动机给能量储存元件充电。GPS可以学习以往制动发生的地方和/或可以由地图信息预测制动可能在哪里发生(例如停车标志、十字路口、交通灯、陡峭的下山道路等)。这些可以被特定的汽车学习,或者大量源于许多的车辆并下载到车辆动力流控制器中。除了学习制动行为之外,控制系统可以学习并且利用其它基于位置的驾驶员特定的行为。一个示例是驾驶员在限制进入的高速公路的入口匝道加速。此信息可以用来提高预测驾驶员在该位置驾驶车辆所需的动力的准确度。
除了提高例如最大化加速的能力之外,控制系统可以优化驾驶员体验的一致性。例如,驾驶员可能宁愿每次在加速器踏板在相似的驾驶情况下按下时车辆表现出相似的方式。使用历史数据或固定约束的集合,控制系统可以选择不传送全部可用的动力,以有利于向车辆传送可预测的牵引力。
在一些情况下,控制系统可以在预期有可能会耗尽飞轮,导致驾驶员丢失大量动力的长期、大量需求时,降低或限制从飞轮(或其它能量储存装置)传送的动力。例如,假定长时间的爬山,飞轮只有足够的能量给驾驶员一部分(例如爬山的一半)所需的全部动力,控制系统可能限制从飞轮传送到一部分(例如所需的全部动力的一半)的动力,使得所传送的动力持续爬山的全部时段。结果,驾驶员在上山中途不会经历突然的减速。
一些实施例针对爬山时段的恒定能量储存装置动力输出(即在所需动力预期超过可以由相对小的发动机单独传送的动力时驾驶的距离)。在另一实施例中,控制处理器特别地涉及维持恒定车辆速度-首先只用尽额外的动能和发动机动力(没有能量储存装置输入,保存能量储存装置的能量),直到车辆减速到在给定的剩余能量储存装置动力和发动机动力下对整个爬山可以维持的速度。一些实施例可以传送可能最高的最小速度,因此降低由驾驶员经历的不利因素。
本文中描述的实施例涉及用于高DoH混合的车辆动力流控制系统,其服从于确保有用于加速的足够的动力可用,优化一些变量(例如燃料经济)。在一些实施例中,车辆动力流控制系统被配置成提供足够的动力和可预测响应的混合。车辆动力流控制系统可以被配置成控制从发动机到能量储存装置和/或发动机运行点的动力流。混合动力车辆可以包括各种类型(串行、并行等)和/或储存类型(飞轮、超级电容器、电池等)。车辆的控制可以基于各种类型的信息,例如如上文描述的预测的,感测的,学习的,经验,源于大众的信息。
各种类型的预测控制算法可以用来控制动力流和/或运行点。在动力流控制系统的实施例中,预测控制算法可以包括多目标优化架构中的动力系和路线的剩余部分的预期动力曲线的模型,以推导出这些组件之间的动力流的控制输入。这种优化必须在性能和效率之间进行折衷。根据路线的动力曲线,控制器可能必须在短期性能(例如上山前加速)和长期性能(例如在整个路线上维持合理的速度)之间折衷。所考虑的预测水平还可以因全部的剩余路线到下几英里或者甚至更短的距离不同,这取决于能量储存装置和它被耗尽的速率。这种控制策略的一些示例是模型预测控制或后退水平控制。一些实施例可以包括用于将行驶路线与存储的路线历史(可能由时间来参数化,以考虑交通和天气)比较的算法,以估计未来的动力需求并优化该估计的控制输入。基于现有的交通模式的所有道路的随机估计还可以由控制器预先计算并使用。
一些实现涉及在预期有可能会耗尽飞轮,导致驾驶员丢失大量动力的长期、大量需求时,降低或限制从飞轮(或其它能量储存装置)传送的动力。一些配置使用基于GPS的预测控制系统基于通常的驾驶模式或在特定位置学习的这个驾驶员的特定的先前驾驶模式进行预测。作为示例,基于GPS的预测控制系统可以使用在特定位置学习的驾驶员的特定的先前驾驶模式,预测驾驶员可能在哪里使用制动器。作为另一示例,基于GPS的预测控制系统可以预料高的动力需求,诸如在高速公路匝道,控制从发动机和能量储存装置和/或从动力再生系统到能量储存装置(例如电池、电容器或飞轮)的动力流,以在需要时提供足够的充电。
Claims (10)
1.一种混合动力车辆,包括:
燃料消耗发动机,所述燃料消耗发动机被配置成供应驱动所述车辆的动力;
能量储存装置,所述能量储存装置设置于所述混合动力车辆内,所述能量储存装置被配置成供应驱动所述车辆的动力;
预测处理器,所述预测处理器被配置成基于所述车辆运行中的变化情况预测驱动所述车辆的动力需求;
传动系,所述传动系被联接以引起所述车辆的运动;以及
控制器,所述控制器被配置成在以下中的至少一种情况之间自动地控制动力流:
所述发动机和所述传动系,
所述能量储存装置和所述传动系,以及
所述发动机和所述能量储存装置,以便至少部分基于所预测的动力需求提供驱动所述车辆的动力,其中,驱动所述车辆的所述动力需求大于在所述混合动力车辆的运行中的至少一个时间点所述发动机可用的最大动力。
2.根据权利要求1所述的混合动力车辆,其中,所述能量储存装置包括以下当中的至少一个:
飞轮;
电池;以及
电容器。
3.根据权利要求1所述的混合动力车辆,其中,所述变化情况包括以下中的一个或多个:
所述混合动力车辆外部的感测情况;
所述混合动力车辆的感测情况;
一个或多个车辆组件中的预测变化;
所述车辆外部的预测情况;
驾驶员特定的情况;
来自所述能量储存装置的能量使用;
所述燃料消耗发动机的能量使用;
历史数据;
预测目的地;以及
预测路线。
4.根据权利要求1所述的混合动力车辆,还包括传感器系统,所述传感器系统联接到所述预测处理器,其中,所述传感器系统被配置成感测一个或多个所述变化情况,以及所述预测处理器被配置成基于所感测的情况预测驱动所述车辆的所述动力需求。
5.根据权利要求1所述的混合动力车辆,还包括驾驶员接口,所述驾驶员接口被配置成:
使驾驶员能够输入目的地或路线信息;
基于实时情况显示一个或多个建议替代路线;
显示与所述一个或多个建议替代路线中的每一个关联的至少一个驾驶参数。
6.根据权利要求1所述的混合动力车辆,还包括驾驶员接口,所述驾驶员接口被配置成:
使驾驶员能够输入第一路线和第二路线之间的选择,所述第一路线会引起到达目的地的时间延迟,所述第二路线会引起与所述第一路线相比燃料消耗增加和与所述第一路线相比车辆排放增加中的至少一个;以及
其中,所述预测处理器被配置成使用所述选择预测所述动力需求。
7.一种混合动力车辆控制系统,包括:
预测处理器,所述预测处理器被配置成基于所述混合动力车辆运行中的变化情况预测驱动混合动力车辆的动力需求,所述混合动力车辆包括燃料消耗发动机和联接到所述混合动力车辆的传动系的能量储存装置;以及
控制器,所述控制器被配置成自动地控制以下至少一个之间的动力流:
所述发动机和所述传动系,
所述能量储存装置和所述传动系,以及
所述发动机和所述能量储存装置,以便至少部分基于所预测的动力需求提供驱动所述车辆的动力,其中,驱动所述车辆的所述动力需求大于在所述混合动力车辆的运行中的至少一个时间点所述发动机可用的最大动力。
8.一种混合动力车辆控制方法,包括:
基于混合动力车辆运行中的变化情况,预测由燃料消耗发动机和能量储存装置驱动所述混合动力车辆的车辆动力需求;以及
基于所预测的车辆动力需求,控制动力流,以便提供驱动所述混合动力车辆的动力,其中,所预测的车辆动力需求大于在所述车辆的运行中的至少一个时间点所述发动机可用的最大动力。
9.根据权利要求8所述的方法,其中,基于变化情况预测所述车辆动力需求包括基于以下中的一个或多个进行预测:
所述混合动力车辆的感测情况;
所述混合动力车辆外部的感测情况;
车辆情况的退化模型;
驾驶员特定的情况;以及
历史数据库中存储的信息。
10.根据权利要求8所述的方法,包括:
识别到达目的地的一个或多个替代路线;
预测与所述一个或多个替代路线中的每一个关联的路线特定的车辆动力需求;
确定与所述替代路线中的每一个关联的至少一个驾驶参数,所述至少一个驾驶参数包括到达目的地的时间、到达目的地的排放和到达目的地的燃料消耗中的一个或多个。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/255091 | 2014-04-17 | ||
US14/255,091 US9751521B2 (en) | 2014-04-17 | 2014-04-17 | Control system for hybrid vehicles with high degree of hybridization |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105035076A CN105035076A (zh) | 2015-11-11 |
CN105035076B true CN105035076B (zh) | 2019-06-14 |
Family
ID=53015506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510147853.2A Active CN105035076B (zh) | 2014-04-17 | 2015-03-31 | 用于具有高混合度的混合动力车辆的控制系统 |
Country Status (5)
Country | Link |
---|---|
US (2) | US9751521B2 (zh) |
EP (1) | EP2933157B1 (zh) |
JP (1) | JP6758025B2 (zh) |
KR (1) | KR102238858B1 (zh) |
CN (1) | CN105035076B (zh) |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9789756B2 (en) * | 2014-02-12 | 2017-10-17 | Palo Alto Research Center Incorporated | Hybrid vehicle with power boost |
US9676382B2 (en) | 2014-04-17 | 2017-06-13 | Palo Alto Research Center Incorporated | Systems and methods for hybrid vehicles with a high degree of hybridization |
US9751521B2 (en) | 2014-04-17 | 2017-09-05 | Palo Alto Research Center Incorporated | Control system for hybrid vehicles with high degree of hybridization |
US9517764B2 (en) * | 2014-10-23 | 2016-12-13 | Ford Global Technologies, Llc | Methods and system for operating a hybrid vehicle in cruise control mode |
US20160258765A1 (en) * | 2015-03-02 | 2016-09-08 | Lenovo (Singapore) Pte, Ltd. | Apparatus, method, and program product for reducing road travel costs |
US10245972B2 (en) | 2015-05-01 | 2019-04-02 | Hyliion Inc. | Trailer-based energy capture and management |
US9694712B2 (en) | 2015-05-01 | 2017-07-04 | Hyliion Inc. | Motor vehicle accessory to increase power supply and reduce fuel requirements |
US12024029B2 (en) | 2015-05-01 | 2024-07-02 | Hyliion Inc. | Trailer-based energy capture and management |
US10596913B2 (en) | 2015-05-01 | 2020-03-24 | Hyliion Inc. | Trailer-based energy capture and management |
WO2017027332A1 (en) | 2015-08-07 | 2017-02-16 | Cummins, Inc. | Systems and methods of battery management and control for a vehicle |
US10118603B2 (en) * | 2015-10-30 | 2018-11-06 | Toyota Motor Engineering & Manufacturing North America, Inc. | Systems and methods for traffic learning |
JP2017173898A (ja) * | 2016-03-18 | 2017-09-28 | グローリー株式会社 | 貨幣処理装置及び貨幣処理システム |
WO2018064619A2 (en) | 2016-09-30 | 2018-04-05 | Hyliion, Inc. | Vehicle energy management system and related methods |
US10500975B1 (en) | 2016-09-30 | 2019-12-10 | Hyliion Inc. | Vehicle weight estimation system and related methods |
US10336334B2 (en) * | 2016-11-23 | 2019-07-02 | Ford Global Technologies, Llc | Regenerative braking downshift control using predictive information |
US10665039B2 (en) * | 2016-12-09 | 2020-05-26 | Traffilog Ltd. | Distributed monitoring and control of a vehicle |
US10126139B2 (en) | 2017-01-12 | 2018-11-13 | Ford Global Technologies, Llc | Route selection method and system for a vehicle having a regenerative shock absorber |
CN106828127A (zh) * | 2017-02-17 | 2017-06-13 | 风度(常州)汽车研发院有限公司 | 插电式混合动力车型的动力匹配方法及系统 |
US10766478B2 (en) | 2017-02-17 | 2020-09-08 | Hyliion Inc. | Tractor unit with on-board regenerative braking energy storage for stopover HVAC operation without engine idle |
US11062536B2 (en) | 2017-02-21 | 2021-07-13 | Ford Global Technologies, Llc | Method and apparatus for statistical vehicle element failure analysis |
JP6763317B2 (ja) * | 2017-02-22 | 2020-09-30 | トヨタ自動車株式会社 | 燃料電池車両およびその制御方法 |
CN107839700B (zh) * | 2017-09-14 | 2019-05-17 | 中车工业研究院有限公司 | 轨道交通用柴电混合动力系统的能量分配方法及装置 |
SE1751528A1 (en) * | 2017-12-12 | 2019-06-13 | Scania Cv Ab | Method and system for propelling a vehicle |
US11351979B2 (en) | 2017-12-31 | 2022-06-07 | Hyliion Inc. | Supplemental electric drive with primary engine recognition for electric drive controller adaptation |
US10889288B2 (en) | 2017-12-31 | 2021-01-12 | Hyliion Inc. | Electric drive controller adaptation to through-the-road (TTR) coupled primary engine and/or operating conditions |
US11091133B2 (en) | 2017-12-31 | 2021-08-17 | Hyliion Inc. | Vehicle immobilization mechanism |
US11046302B2 (en) | 2017-12-31 | 2021-06-29 | Hyliion Inc. | On-vehicle characterization of primary engine with communication interface for crowdsourced adaptation of electric drive controllers |
US11046192B2 (en) | 2017-12-31 | 2021-06-29 | Hyliion Inc. | Electric vehicle energy store with fuel tank form factor and mounting configuration |
US11094988B2 (en) | 2017-12-31 | 2021-08-17 | Hyliion Inc. | Regenerative electrical power system with state of charge management in view of predicted and-or scheduled stopover auxiliary power requirements |
US10953864B2 (en) * | 2018-02-13 | 2021-03-23 | Ford Global Technologies, Llc | System and method for a range extender engine of a hybrid electric vehicle |
US10960873B2 (en) * | 2018-02-13 | 2021-03-30 | Ford Global Technologies, Llc | System and method for a range extender engine of a hybrid electric vehicle |
US10829104B2 (en) * | 2018-02-19 | 2020-11-10 | Ge Global Sourcing Llc | Hybrid vehicle control system |
US11107002B2 (en) * | 2018-06-11 | 2021-08-31 | Traxen Inc. | Reinforcement learning based ground vehicle control techniques |
DE102018203975A1 (de) * | 2018-03-15 | 2019-09-19 | Bayerische Motoren Werke Aktiengesellschaft | Fahrerassistenzverfahren für ein Fahrzeug, Fahrerassistenzsystem und Fahrzeug mit einem derartigen Fahrerassistenzsystem |
CN111936365B (zh) * | 2018-04-02 | 2023-09-26 | 卡明斯公司 | 发动机摩擦监测器 |
US11027736B2 (en) * | 2018-04-27 | 2021-06-08 | Honda Motor Co., Ltd. | Systems and methods for anticipatory lane change |
US11794757B2 (en) * | 2018-06-11 | 2023-10-24 | Colorado State University Research Foundation | Systems and methods for prediction windows for optimal powertrain control |
CN108860132A (zh) * | 2018-06-25 | 2018-11-23 | 北京理工大学 | 一种増程器动态协调控制方法 |
US10906553B2 (en) * | 2018-07-30 | 2021-02-02 | Toyota Motor Engineering & Manufactuiring North America, Inc. | Systems and methods for vehicle acceleration event prediction inhibit |
US11015480B2 (en) * | 2018-08-21 | 2021-05-25 | General Electric Company | Feed forward load sensing for hybrid electric systems |
JP7430055B2 (ja) * | 2018-12-28 | 2024-02-09 | トランスポーテーション アイピー ホールディングス,エルエルシー | ハイブリッド推進システム及びこれを制御する方法 |
DE102019200653A1 (de) * | 2019-01-18 | 2020-07-23 | Hyundai Motor Company | Verfahren zum Betreiben eines Hybridelektrofahrzeugs und Hybridelektrofahrzeug |
US11325494B2 (en) | 2019-02-25 | 2022-05-10 | Toyota Research Institute, Inc. | Systems, methods, and storage media for determining a target battery charging level for a drive route |
CN110265996B (zh) * | 2019-02-26 | 2023-04-07 | 国网吉林省电力有限公司 | 一种适于光伏/风电功率预测的时间特征尺度建模方法 |
DE102019205520A1 (de) * | 2019-04-16 | 2020-10-22 | Robert Bosch Gmbh | Verfahren zum Ermitteln von Fahrverläufen |
JP7501250B2 (ja) * | 2019-11-12 | 2024-06-18 | トヨタ自動車株式会社 | 走行制御装置、方法およびプログラム |
JP7238750B2 (ja) * | 2019-12-11 | 2023-03-14 | トヨタ自動車株式会社 | 走行制御装置、方法、プログラムおよび車両 |
KR20210076223A (ko) * | 2019-12-13 | 2021-06-24 | 현대자동차주식회사 | 하이브리드 차량 및 그 제어 방법 |
JP7256141B2 (ja) * | 2020-03-30 | 2023-04-11 | 日立Astemo株式会社 | 車両制御装置、および、車両制御方法 |
WO2022056486A1 (en) * | 2020-09-14 | 2022-03-17 | Bia Power Llc | Electrochemical energy storage system for high-energy and high-power requirements |
US11718298B2 (en) | 2020-10-21 | 2023-08-08 | Cummins Inc. | Methods and systems for coordinating predictive cruise control, engine-off coasting, and hybrid power split |
JP7342843B2 (ja) * | 2020-11-17 | 2023-09-12 | トヨタ自動車株式会社 | 走行制御装置、方法およびプログラム |
US11440532B2 (en) * | 2021-01-04 | 2022-09-13 | Ford Global Technologies, Llc | Method and system for controlling vehicle engine pull-down |
CN112896171B (zh) * | 2021-02-19 | 2022-07-22 | 联合汽车电子有限公司 | 车辆的控制方法、装置、设备、车辆和存储介质 |
CN113492827A (zh) * | 2021-06-23 | 2021-10-12 | 东风柳州汽车有限公司 | 一种混合动力汽车能量管理方法及装置 |
CN113759755B (zh) * | 2021-09-24 | 2024-05-10 | 上海汽车集团股份有限公司 | 基于混动系统的动力学仿真方法、装置、设备和存储介质 |
DE102021212315A1 (de) | 2021-11-02 | 2023-05-04 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Überwachung und Steuerung eines Batteriepacks, System zur Überwachung und Steuerung eines Batteriepacks, Batteriemanagementsystem |
EP4365042A1 (en) * | 2022-11-04 | 2024-05-08 | Volvo Truck Corporation | Method for controlling a vehicle driveline comprising a first driving mode and a second driving mode |
CN117002472B (zh) * | 2023-08-02 | 2024-04-19 | 中汽研汽车检验中心(广州)有限公司 | 一种混合动力电动汽车能量管理优化方法及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101888943A (zh) * | 2007-11-12 | 2010-11-17 | 雷诺股份公司 | 用于根据行驶条件管理机动车辆的运转的方法和系统 |
CN102889992A (zh) * | 2011-07-22 | 2013-01-23 | 通用电气公司 | 用于个性化的设备退化预测的基于模型的途径 |
CN103010206A (zh) * | 2011-09-27 | 2013-04-03 | 爱信精机株式会社 | 混合动力车辆的控制装置 |
CN103129408A (zh) * | 2011-11-25 | 2013-06-05 | 本田技研工业株式会社 | 蓄电池管理系统 |
CN103575285A (zh) * | 2012-08-09 | 2014-02-12 | 本田技研工业株式会社 | 路径搜索装置 |
Family Cites Families (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2153961A1 (de) | 1971-10-29 | 1973-05-03 | Volkswagenwerk Ag | Hybrid-antrieb |
US3870116A (en) | 1973-08-15 | 1975-03-11 | Joseph Seliber | Low pollution and fuel consumption flywheel drive system for motor vehicles |
US4309620A (en) | 1979-12-03 | 1982-01-05 | Calspan Corporation | Flywheel electric transmission apparatus |
US4423794A (en) | 1981-03-12 | 1984-01-03 | The Garrett Corporation | Flywheel assisted electro-mechanical drive system |
US4625823A (en) | 1984-09-17 | 1986-12-02 | Aisin Seiki Kabushiki Kaisha | Control system and method for a flywheel type power delivery system |
JPS6251729A (ja) | 1985-08-30 | 1987-03-06 | Isuzu Motors Ltd | 内燃機関のタ−ボチヤ−ジヤの制御装置 |
JPH0211822A (ja) | 1988-06-29 | 1990-01-16 | Isuzu Motors Ltd | 回転電機付ターボチャージャの駆動装置 |
JPH02223627A (ja) | 1989-02-27 | 1990-09-06 | Isuzu Motors Ltd | 車両のエネルギー回収装置 |
GB9318591D0 (en) | 1993-09-08 | 1993-10-27 | Ellis Christopher W H | Kinetic energy storage system |
US5427194A (en) | 1994-02-04 | 1995-06-27 | Miller; Edward L. | Electrohydraulic vehicle with battery flywheel |
US6443125B1 (en) | 1995-05-17 | 2002-09-03 | Charles Mendler | High efficiency vehicle and engine |
US5636509A (en) | 1995-10-20 | 1997-06-10 | Abell; Irwin R. | Flywheel engine improvements |
US5713426A (en) | 1996-03-19 | 1998-02-03 | Jeol Ltd. | Hybrid vehicle |
JP3861321B2 (ja) | 1996-05-02 | 2006-12-20 | トヨタ自動車株式会社 | ハイブリッド車 |
US6018694A (en) | 1996-07-30 | 2000-01-25 | Denso Corporation | Controller for hybrid vehicle |
US5877414A (en) | 1997-07-11 | 1999-03-02 | Ford Motor Company | Vehicle road load simulation using effective road profile |
JP3216082B2 (ja) | 1997-09-17 | 2001-10-09 | 本田技研工業株式会社 | ハイブリッド車両の制御装置 |
JPH11125328A (ja) | 1997-10-27 | 1999-05-11 | Honda Motor Co Ltd | ハイブリッド車両 |
JP3447937B2 (ja) | 1997-11-18 | 2003-09-16 | 本田技研工業株式会社 | ハイブリッド車両 |
JP3456624B2 (ja) * | 1997-11-28 | 2003-10-14 | 本田技研工業株式会社 | ハイブリッド車両の制御装置 |
JP3847438B2 (ja) | 1998-02-03 | 2006-11-22 | 本田技研工業株式会社 | ハイブリッド車両の制御装置 |
US6205379B1 (en) | 1998-09-04 | 2001-03-20 | Toyota Jidosha Kabushiki Kaisha | Controller for hybrid vehicle wherein one and the other of front and rear wheels are respectively driven by engine and electric motor |
US6554088B2 (en) | 1998-09-14 | 2003-04-29 | Paice Corporation | Hybrid vehicles |
US6242873B1 (en) | 2000-01-31 | 2001-06-05 | Azure Dynamics Inc. | Method and apparatus for adaptive hybrid vehicle control |
JP3909641B2 (ja) | 2000-04-05 | 2007-04-25 | スズキ株式会社 | ハイブリッド車両の制御装置 |
DE10022113A1 (de) | 2000-05-06 | 2001-11-15 | Daimler Chrysler Ag | Hybridantrieb für Kraftfahrzeuge |
US6500089B2 (en) | 2000-10-31 | 2002-12-31 | Ford Global Technologies, Inc. | Method and arrangement in a hybrid vehicle for maximizing efficiency by operating the engine at sub-optimum conditions |
IL160823A0 (en) | 2001-09-13 | 2004-08-31 | Lewis B Sibley | Flywheel energy storage systems |
EP1300562A1 (en) | 2001-10-04 | 2003-04-09 | Visteon Global Technologies, Inc. | Control system for an internal combustion engine boosted with an electronically controlled compressor |
EP1357275A1 (en) | 2002-04-26 | 2003-10-29 | Visteon Global Technologies, Inc. | Modelling of the thermal behaviour of a switched reluctance motor driving a supercharger of an internal combustion engine |
JP4104406B2 (ja) | 2002-09-20 | 2008-06-18 | 本田技研工業株式会社 | ハイブリッド車両 |
JP3866202B2 (ja) | 2003-01-22 | 2007-01-10 | 本田技研工業株式会社 | ハイブリッド車両の制御装置 |
US6962223B2 (en) | 2003-06-26 | 2005-11-08 | George Edmond Berbari | Flywheel-driven vehicle |
US6931850B2 (en) | 2003-09-10 | 2005-08-23 | The Regents Of The Univesity Of California | Exhaust gas driven generation of electric power and altitude compensation in vehicles including hybrid electric vehicles |
US7870802B2 (en) | 2004-10-29 | 2011-01-18 | Lass Stanley E | Rotary start stop mechanism |
US20070144175A1 (en) | 2005-03-31 | 2007-06-28 | Sopko Thomas M Jr | Turbocharger system |
US7076954B1 (en) | 2005-03-31 | 2006-07-18 | Caterpillar Inc. | Turbocharger system |
EP1869609A2 (en) | 2005-04-08 | 2007-12-26 | Ricardo, Inc. | Vehicle chassis and powertrain set up tool for track trajectory and speed optimization |
US20070012493A1 (en) | 2005-06-21 | 2007-01-18 | Jones Steven M | Dual hybrid propulsion system |
US8972161B1 (en) * | 2005-11-17 | 2015-03-03 | Invent.Ly, Llc | Power management systems and devices |
US20070150174A1 (en) | 2005-12-08 | 2007-06-28 | Seymour Shafer B | Predictive navigation |
US7654355B1 (en) | 2006-01-17 | 2010-02-02 | Williams Kevin R | Flywheel system for use with electric wheels in a hybrid vehicle |
JP2007253715A (ja) * | 2006-03-22 | 2007-10-04 | Fujitsu Ten Ltd | 車両制御装置および車両制御方法 |
EP1842757B1 (en) * | 2006-04-03 | 2009-08-26 | Harman Becker Automotive Systems GmbH | Method for controlling a hybrid vehicle and system thereof |
DE102006019031A1 (de) | 2006-04-25 | 2007-10-31 | Volkswagen Ag | Verfahren zur Momentensteuerung einer Hybridantriebseinheit sowie Hybridantriebseinheit |
US20080022686A1 (en) | 2006-07-31 | 2008-01-31 | Caterpillar Inc. | Powertrain and method including HCCI engine |
EP2054596B1 (en) | 2006-08-23 | 2011-10-12 | The Timken Company | Variable speed supercharger with electric power generation |
JP4314257B2 (ja) * | 2006-09-28 | 2009-08-12 | トヨタ自動車株式会社 | 車両の表示装置および車両の表示装置の制御方法、プログラム、およびプログラムを記録した記録媒体 |
EP2070788B1 (en) * | 2006-09-28 | 2013-01-09 | Toyota Jidosha Kabushiki Kaisha | Vehicle control device |
CN101784774A (zh) | 2007-01-31 | 2010-07-21 | 涡轮动力技术公司 | 集中气流的产生和管理 |
US7454285B2 (en) | 2007-03-13 | 2008-11-18 | Ricardo, Inc. | Optimized flex fuel powertrain |
GB0707280D0 (en) | 2007-04-16 | 2007-05-23 | Ricardo Uk Ltd | Flywheel arrangement for vehicles |
US8050856B2 (en) | 2007-04-18 | 2011-11-01 | Chrysler Group Llc | Methods and systems for powertrain optimization and improved fuel economy |
US8265813B2 (en) | 2007-09-11 | 2012-09-11 | GM Global Technology Operations LLC | Method and control architecture for optimization of engine fuel-cutoff selection and engine input torque for a hybrid powertrain system |
US8043194B2 (en) | 2007-10-05 | 2011-10-25 | Ford Global Technologies, Llc | Vehicle creep control in a hybrid electric vehicle |
US8095254B2 (en) | 2007-10-29 | 2012-01-10 | GM Global Technology Operations LLC | Method for determining a power constraint for controlling a powertrain system |
US8897975B2 (en) | 2007-11-04 | 2014-11-25 | GM Global Technology Operations LLC | Method for controlling a powertrain system based on penalty costs |
US8195349B2 (en) | 2007-11-07 | 2012-06-05 | GM Global Technology Operations LLC | Method for predicting a speed output of a hybrid powertrain system |
US7691027B2 (en) | 2007-11-29 | 2010-04-06 | Ford Global Technologies, Llc | Idle speed control of a hybrid electric vehicle |
US8091659B2 (en) | 2007-12-27 | 2012-01-10 | Byd Co. Ltd. | Hybrid vehicle having engageable clutch assembly coupled between engine and traction motor |
JP4697247B2 (ja) * | 2008-03-03 | 2011-06-08 | 日産自動車株式会社 | ハイブリッド車両 |
US8374781B2 (en) * | 2008-07-09 | 2013-02-12 | Chrysler Group Llc | Method for vehicle route planning |
DE102008036284B4 (de) | 2008-08-04 | 2013-09-12 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Antriebsstrang für ein Kraftfahrzeug |
GB2466429B8 (en) | 2008-12-16 | 2014-08-06 | Ford Global Tech Llc | A flywheel driveline and control arrangement |
EP2387699B1 (en) | 2009-01-16 | 2015-03-04 | Tomtom Global Content B.V. | Method for computing an energy efficient route |
US7931107B2 (en) | 2009-02-02 | 2011-04-26 | Jones Jr John | Vehicle kinetic energy utilization transmission system |
US8126684B2 (en) | 2009-04-10 | 2012-02-28 | Livermore Software Technology Corporation | Topology optimization for designing engineering product |
DE102009034510A1 (de) | 2009-07-24 | 2011-04-14 | Bayerische Motoren Werke Aktiengesellschaft | Fahrzeug mit aufgeladenem Verbrennungsmotor sowie Verfahren zum Betreiben eines Fahrzeugs mit aufgeladenem Verbrennungsmotor |
US8142329B2 (en) | 2009-09-18 | 2012-03-27 | Ford Global Technologies, Llc | Controlling torque in a flywheel powertrain |
EP2491606A1 (en) | 2009-10-20 | 2012-08-29 | Ricardo Uk Limited | Energy control |
US20110100735A1 (en) | 2009-11-05 | 2011-05-05 | Ise Corporation | Propulsion Energy Storage Control System and Method of Control |
WO2011066468A1 (en) | 2009-11-24 | 2011-06-03 | Telogis, Inc. | Vehicle route selection based on energy usage |
JP2011126321A (ja) * | 2009-12-15 | 2011-06-30 | Mitsubishi Fuso Truck & Bus Corp | ハイブリッド電気自動車の制御装置 |
US7996344B1 (en) | 2010-03-08 | 2011-08-09 | Livermore Software Technology Corporation | Multi-objective evolutionary algorithm based engineering design optimization |
US20110295433A1 (en) | 2010-06-01 | 2011-12-01 | Caterpillar, Inc. | System and method for providing power to a hydraulic system |
DE112011102036B4 (de) | 2010-06-15 | 2019-05-29 | Honda Motor Co., Ltd. | Fahrzeugantriebssystem und Steuerverfahren für Fahrzeugantriebssystem |
US8942919B2 (en) * | 2010-10-27 | 2015-01-27 | Honda Motor Co., Ltd. | BEV routing system and method |
US8930123B2 (en) * | 2010-11-19 | 2015-01-06 | International Business Machines Corporation | Systems and methods for determining traffic intensity using information obtained through crowdsourcing |
EP2463496A1 (en) | 2010-12-10 | 2012-06-13 | Perkins Engines Company Limited | Multiple turbocharger control |
US8790215B2 (en) * | 2011-01-13 | 2014-07-29 | Cummins Inc. | System, method, and apparatus for controlling power output distribution in a hybrid power train |
US9028362B2 (en) | 2011-02-01 | 2015-05-12 | Jing He | Powertrain and method for a kinetic hybrid vehicle |
WO2012135258A2 (en) | 2011-03-29 | 2012-10-04 | Glacier Bay, Inc. | Generator |
US9108528B2 (en) | 2011-04-06 | 2015-08-18 | Gm Global Technoogy Operations Llc | Open modular electric powertrain and control architecture |
US8990005B2 (en) | 2011-04-22 | 2015-03-24 | Bayerische Motoren Werke Aktiengesellschaft | System and method for providing georeferenced predictive information to motor vehicles |
US8386091B2 (en) | 2011-05-09 | 2013-02-26 | Ford Global Technologies, Llc | Methods and apparatus for dynamic powertrain management |
US20120290149A1 (en) * | 2011-05-09 | 2012-11-15 | Ford Global Technologies, Llc | Methods and Apparatus for Selective Power Enablement with Predictive Capability |
US20130046526A1 (en) | 2011-08-18 | 2013-02-21 | Sermet Yücel | Selecting a Vehicle to Optimize Fuel Efficiency for a Given Route and a Given Driver |
JP2013160522A (ja) * | 2012-02-01 | 2013-08-19 | Toyota Motor Corp | 車両の運転支援装置 |
US9315178B1 (en) * | 2012-04-13 | 2016-04-19 | Google Inc. | Model checking for autonomous vehicles |
DE102013203042A1 (de) | 2012-04-17 | 2013-10-17 | Ford Global Technologies, Llc | Turbolader für einen Verbrennungsmotor und Verfahren zum Betreiben eines turbogeladenen Verbrennungsmotors |
US8892290B2 (en) * | 2012-05-04 | 2014-11-18 | Ford Global Technologies, Llc | Methods and systems for providing uniform driveline braking |
US8562484B1 (en) | 2012-05-07 | 2013-10-22 | Ford Global Technologies, Llc | Method and apparatus for starting a turbocharged engine in a hybrid vehicle |
JP5538475B2 (ja) * | 2012-05-25 | 2014-07-02 | 本田技研工業株式会社 | 外部診断装置、車両診断システム及び車両診断方法 |
US8615336B1 (en) | 2012-05-31 | 2013-12-24 | Rockwell Collins, Inc. | System and method for controlling power in a hybrid vehicle using cost analysis |
DE102012015961A1 (de) * | 2012-08-11 | 2014-02-13 | Udo Sorgatz | Vorrichtung zum Antrieb einer Maschine mit instationärem Leistungsbedarf |
KR20140044686A (ko) | 2012-10-05 | 2014-04-15 | 현대자동차주식회사 | 하이브리드 자동차 및 하이브리드 자동차의 구동 제어 방법 |
FR2996510B1 (fr) * | 2012-10-08 | 2016-03-25 | Peugeot Citroen Automobiles Sa | Procede et dispositif d’aide aux decisions de couplage/ decouplage d'une machine d'un vehicule hybride, en fonction du couple offert par le moteur thermique |
JP5811107B2 (ja) | 2013-01-16 | 2015-11-11 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両、ならびにハイブリッド車両の制御方法 |
US9952600B2 (en) * | 2013-02-03 | 2018-04-24 | Michael H Gurin | Systems for a shared vehicle |
JP5646003B2 (ja) | 2013-05-23 | 2014-12-24 | 三菱電機株式会社 | 車両の電源供給装置 |
US9188505B2 (en) * | 2013-06-21 | 2015-11-17 | Ford Global Technologies, Llc | Method and system for cylinder compression diagnostics |
US9587954B2 (en) * | 2013-07-10 | 2017-03-07 | Ford Global Technologies, Llc | System and method for vehicle routing using stochastic optimization |
US9789756B2 (en) | 2014-02-12 | 2017-10-17 | Palo Alto Research Center Incorporated | Hybrid vehicle with power boost |
US9751521B2 (en) | 2014-04-17 | 2017-09-05 | Palo Alto Research Center Incorporated | Control system for hybrid vehicles with high degree of hybridization |
US9676382B2 (en) | 2014-04-17 | 2017-06-13 | Palo Alto Research Center Incorporated | Systems and methods for hybrid vehicles with a high degree of hybridization |
-
2014
- 2014-04-17 US US14/255,091 patent/US9751521B2/en active Active
-
2015
- 2015-03-30 JP JP2015068835A patent/JP6758025B2/ja active Active
- 2015-03-31 CN CN201510147853.2A patent/CN105035076B/zh active Active
- 2015-03-31 EP EP15162123.2A patent/EP2933157B1/en active Active
- 2015-04-03 KR KR1020150047459A patent/KR102238858B1/ko active IP Right Grant
-
2017
- 2017-08-30 US US15/690,967 patent/US10625729B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101888943A (zh) * | 2007-11-12 | 2010-11-17 | 雷诺股份公司 | 用于根据行驶条件管理机动车辆的运转的方法和系统 |
CN102889992A (zh) * | 2011-07-22 | 2013-01-23 | 通用电气公司 | 用于个性化的设备退化预测的基于模型的途径 |
CN103010206A (zh) * | 2011-09-27 | 2013-04-03 | 爱信精机株式会社 | 混合动力车辆的控制装置 |
CN103129408A (zh) * | 2011-11-25 | 2013-06-05 | 本田技研工业株式会社 | 蓄电池管理系统 |
CN103575285A (zh) * | 2012-08-09 | 2014-02-12 | 本田技研工业株式会社 | 路径搜索装置 |
Also Published As
Publication number | Publication date |
---|---|
US10625729B2 (en) | 2020-04-21 |
US9751521B2 (en) | 2017-09-05 |
JP2015205682A (ja) | 2015-11-19 |
EP2933157A1 (en) | 2015-10-21 |
US20170361832A1 (en) | 2017-12-21 |
KR20150120286A (ko) | 2015-10-27 |
JP6758025B2 (ja) | 2020-09-23 |
KR102238858B1 (ko) | 2021-04-12 |
US20150298684A1 (en) | 2015-10-22 |
EP2933157B1 (en) | 2022-06-22 |
CN105035076A (zh) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105035076B (zh) | 用于具有高混合度的混合动力车辆的控制系统 | |
US20210086658A1 (en) | Systems And Methods For Optimizing Travel Time Using Route Information | |
US9792736B1 (en) | Telemetry device for capturing vehicle environment and operational status history | |
CN104859660B (zh) | 利用过去能量消耗中的变量预测电动车辆能量消耗 | |
CN102991503B (zh) | 用于控制车辆的方法 | |
CN104340218B (zh) | 实时燃料消耗估算 | |
US10850616B2 (en) | Using vehicle systems to generate a route database | |
JP4918076B2 (ja) | ハイブリッド車両の制御装置およびハイブリッド車両 | |
CN104185584B (zh) | 混合动力车辆的驱动力控制装置以及混合动力车辆的驱动力控制方法 | |
CN103661385A (zh) | 确定车辆行驶的生态驾驶指标的方法 | |
CN105383304A (zh) | 使用能量消耗数据划分估计可用行驶距离的系统和方法 | |
Chacko et al. | Optimization & validation of Intelligent Energy Management System for pseudo dynamic predictive regulation of plug-in hybrid electric vehicle as donor clients | |
CN104105627A (zh) | 混合动力车辆的管理系统、混合动力车辆的控制装置以及混合动力车辆的控制方法 | |
Gao et al. | Comprehensive powertrain modeling for heavy-duty applications: A study of plug-in hybrid electric bus | |
Das et al. | Eco-routing navigation systems in electric vehicles: A comprehensive survey | |
Jiang et al. | A PHEV power management cyber-physical system for on-road applications | |
Alzorgan | Look-ahead information based optimization strategy for hybrid electric vehicles | |
JP2013169915A (ja) | ハイブリッド車両の制御装置 | |
JP2022167878A (ja) | Socチャートを用いた計画発電蓄電制御技術 | |
Al-Samari | Impact of intelligent transportation systems on parallel hybrid electric heavy duty vehicles | |
WO2024084712A1 (ja) | Socチャートを用いた計画発電蓄電制御技術 | |
Khanra et al. | Driving Assistance for Optimal Trip Planning of Electric Vehicle Using Multi-objective Evolutionary Algorithms | |
Rajan | Plug in hybrid electric vehicle energy management system for real world driving | |
Jegede et al. | Evaluation of Optimal State of Charge Planning Using MPC | |
Janković et al. | Simulation model for rendering and analyzing the prediction of electric vehicle energy consumption in Matlab/Simulink |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |