JP2015205682A - 高いハイブリッド化度を有するハイブリッド車両のための制御システム - Google Patents

高いハイブリッド化度を有するハイブリッド車両のための制御システム Download PDF

Info

Publication number
JP2015205682A
JP2015205682A JP2015068835A JP2015068835A JP2015205682A JP 2015205682 A JP2015205682 A JP 2015205682A JP 2015068835 A JP2015068835 A JP 2015068835A JP 2015068835 A JP2015068835 A JP 2015068835A JP 2015205682 A JP2015205682 A JP 2015205682A
Authority
JP
Japan
Prior art keywords
vehicle
power
hybrid vehicle
engine
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015068835A
Other languages
English (en)
Other versions
JP2015205682A5 (ja
JP6758025B2 (ja
Inventor
ディヴィッド・イー・シュワルツ
E Schwartz David
ショーン・ガーナー
Sean Garner
バスカ・サハ
Saha Bhaskar
サイモン・バーバ
Barber Simon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palo Alto Research Center Inc
Original Assignee
Palo Alto Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palo Alto Research Center Inc filed Critical Palo Alto Research Center Inc
Publication of JP2015205682A publication Critical patent/JP2015205682A/ja
Publication of JP2015205682A5 publication Critical patent/JP2015205682A5/ja
Application granted granted Critical
Publication of JP6758025B2 publication Critical patent/JP6758025B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Navigation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

【課題】高いハイブリッド化度を有するハイブリッド車両を制御し動作させるためのシステムおよび方法を開示する。
【解決手段】動力フロー制御システム20が、ハイブリッド車両の動作中に変化する状態に基づいてハイブリッド車両を駆動するための車両動力需要を予測する。動力フロー制御システムは、予測される車両動力需要に基づいてハイブリッド車両を駆動するための動力を提供するように、動力フローを制御し、予測される車両動力需要は、最大値よりも大きい。
【選択図】図1A

Description

いくつかの実施形態は、ハイブリッド車両であって、ハイブリッド車両を駆動するための動力を供給するように構成されている燃料消費エンジンおよびエネルギー貯蔵デバイスを有する、ハイブリッド車両に関する。ハイブリッド車両は、車両を駆動するための車両動力需要を予測する予測プロセッサと、予測動力需要に基づいてハイブリッド車両を駆動するための動力を提供するように、エンジンおよびエネルギー貯蔵デバイスからハイブリッド車両のドライブトレーンへの動力フローを自動的に制御するコントローラとを含む。予測車両動力需要は、ハイブリッド車両の動作中の少なくとも1時点において、エンジンから利用可能な最大動力よりも大きい。
いくつかの実施形態は、ハイブリッド車両であって、ハイブリッド車両のドライブトレーンに結合されている、燃料消費エンジンと、エネルギー貯蔵デバイスとによって駆動される、ハイブリッド車両のための制御システムを含む。制御システムは、ハイブリッド車両の動作中に変化する状態に基づいてハイブリッド車両を駆動するための動力需要を予測する予測プロセッサを含む。制御システムはまた、予測動力需要に少なくとも部分的に基づいて、車両を駆動するための動力を提供するように、エンジンとドライブトレーン、エネルギー貯蔵デバイスとドライブトレーン、およびエンジンとエネルギー貯蔵デバイスのうちの少なくとも1つの間の動力フローを自動的に制御するように構成されている動力フローコントローラをも含む。車両を駆動するための動力需要は、ハイブリッド車両の動作中の少なくとも1時点において、エンジンから利用可能な最大動力よりも大きい。
いくつかの実施形態は、ハイブリッド車両内の動力フローを制御するための方法を含む。方法は、燃料消費エンジンおよびエネルギー貯蔵デバイスによってハイブリッド車両を駆動するための車両動力需要を予測するステップと、予測車両動力需要に基づいてハイブリッド車両を駆動するための動力を提供するように、動力フローを制御するステップとを含む。予測車両動力需要は、車両の動作中の少なくとも1時点において、エンジンから利用可能な最大動力よりも大きい。
図1Aは、ハイブリッド車両の一実施形態のブロック図である。 図1Bは、いくつかの実施形態による、車両動力フロー制御システムのより詳細なブロック図である。 図1Cは、力学的エネルギー貯蔵デバイスを有する図1Aのハイブリッド車両のブロック図である。 図1Dは、電気エネルギー貯蔵デバイスを有する図1Aのハイブリッド車両のブロック図である。 図2は、ハイブリッド車両の運転者インターフェースの一実施形態を示す図である。 図1A〜図1Dのハイブリッド車両の複数の可能性のある経路を予測するための予測プロセッサの一実施形態を示す図である。 図1A〜図1Dのハイブリッド車両の複数の可能性のある経路を予測するための予測プロセッサの別の実施形態を示す図である。 図1A〜図1Dのハイブリッド車両の複数の可能性のある経路および経路特有の運転パラメータを予測するように構成されている予測プロセッサの一実施形態を示す図である。 図5の予測プロセッサによって使用されるデータの一実施形態を示す図である。 図5の予測プロセッサのためのセンサシステムの一実施形態を示す図である。
以下の説明において、本明細書の一部を形成し、例示としていくつかの特定の実施形態が示されている添付の図面セットを参照する。本開示の範囲から逸脱することなく、他の実施形態が企図されており、為すことができることは理解されたい。それゆえ、以下の詳細な説明は限定の意味にとられるべきではない。
本開示は、概して、「高ハイブリッド化度」を有するハイブリッド車両(本明細書においてさらに「高DoH車両」と称される)に関する。高DoH車両は、エンジン自体が、一般的な使用状況下にある車両によって要求される最大動力を送達することが可能でないように、燃料消費エンジンと、エネルギー貯蔵デバイスに接続されている車両に給電するための少なくとも1つの他の手段とを含む車両である。一般的な使用状況とは、車両が使用されることになると予測またはそのように設計される経路プロファイルおよび運転者挙動の集合である。
高DoH車両は、従来のバッテリハイブリッド車両と比較して、車両の相対的に高出力のエネルギー貯蔵デバイスに対して相対的に低出力の燃料エンジンを有する車両である。高DoHの正確な定義は存在しないが、本開示の目的のために、エネルギー貯蔵デバイスは、いくつかの実施形態において、エンジンの少なくとも半分の動力を提供する能力を有すると考えられてもよい。いくつかの実施形態において、燃料消費エンジンは、一般的な車両使用状況に基づく車両の予測ピーク動力需要を提供することが可能でなくてもよい。特定の実施形態において、燃料消費エンジンは、DoH車両の一般的な車両使用状況の間に高DoH車両を駆動するのに必要とされる動力の、少なくとも平均であるが、ピーク動力よりも少ない動力を提供するように構成されている。いくつかの事例において、内燃エンジンは、内燃エンジンが動作すると予測またはそのように設計されるように通常どおり動作されるとき、予測車両使用パターンに基づく車両の予測ピーク動力需要を提供することが可能でない。
エンジンの動力出力を制限することによって、エンジンが最大効率範囲内で動作することを可能にし、エンジンの費用および質量を低減することができる。通常動作状態の間、エンジンは、相対的に平坦な道路上で妥当な速度を維持し、低速度で勾配を上り、相対的にゆるやかに加速するのに十分な動力を有し得る。高DoH車両内の石油系燃料エンジンは、車両サイズおよび性能需要に対して動力不足であるため、本明細書において開示されている高DoH車両は、動力を提供するために様々なエネルギー貯蔵デバイスを使用することができる。
燃料消費エンジンの動力出力を制限することによって、高DoH車両は、相対的により長い期間および/または距離にわたってより高い効率で動作することができる。いくつかの実施形態において、動力出力は、使用される燃料消費エンジンを相対的により小さくすることによって制限されてもよく、それによって、車両の費用、有害な排出物、および質量が低減される。通常動作状態の間、燃料消費エンジンは、相対的に平坦な道路上で妥当な速度を維持し、低速度で勾配を上り、相対的にゆるやかに加速するのに十分な動力を有し得る。高DoH車両内の燃料消費エンジンは、車両サイズおよび性能需要に対して動力不足であるため、本明細書において開示されている高DoH車両は、より速い加速および性能の増強を可能にするために、様々なエネルギー貯蔵デバイスを使用して動力を提供することができる。
概して、図面は、高DoH車両の様々な実施形態および可能な車両動作モードを示す。これらのモードは、たとえば、エネルギー貯蔵デバイス(たとえば、力学的または電気エネルギー貯蔵デバイス)とのシリーズハイブリッド動力モード、エネルギー貯蔵デバイスとのパラレルハイブリッド動力モード、エネルギー貯蔵デバイスとのパワースプリットシリーズ−パラレルハイブリッド動力モード、および様々なスルー・ザ・ロードハイブリッド動力モードを含む。制御システムが、高DoH車両の様々な構成要素の動作モードを制御する。制御システムは、1つまたは複数のマイクロプロセッサ、コンピュータ、コンピュータシステム、個別部品、関連ソフトウェア、アルゴリズム、構成要素の解析的シミュレーションモデルなどのような制御回路を含んでもよい。
様々な実施形態において、エネルギー貯蔵デバイスは、力学的貯蔵デバイス、たとえば、フライホイール、または、電気エネルギー貯蔵デバイス、たとえば、ウルトラキャパシタ(スーパーキャパシタとも呼ばれる)もしくは電気化学電池パックであってもよい。フライホイールおよびウルトラキャパシタは、高い電力密度を有し、電池パックを用いるよりも小さく、軽量で、かつ/または安価なユニットを用いて同じ量の電力を得ることができる。しかしながら、高電力密度フライホイールおよびウルトラキャパシタは、エネルギー密度が低い。たとえば、最大出力において、ウルトラキャパシタは一般的に数秒で放電し、フライホイールは一般的に数十秒または数分で放電する。これは、車両が効率的に加速すること、加速するかもしくは勾配を上ること、または、高速を維持することを可能にするのに十分な動力を提供することができるが、継続時間が限られていることを意味する。エネルギー貯蔵要素が枯渇したときに運転者が加速しようとしている場合、利用可能な動力が燃料消費エンジンの動力に限られることになり、これは、前述のように動力不足であるために不十分である場合がある。
図1Aは、高DoH車両10の一実施形態のブロック図である。高DoH車両10は、任意選択の運転者インターフェース12と、燃料消費エンジン14と、エネルギー貯蔵デバイス18と、制御システム20と、ドライブトレーン24と、車輪28aおよび28bのような運動系とを含む。ハイブリッド車両は、エネルギー貯蔵デバイス18を充電するための1つまたは複数の充電システムを含むことができる。
燃料消費エンジン14は、車両10を駆動するための機械力を生成するように構成されている。燃料消費エンジン14を動作させるために使用される燃料は、代替燃料(化石その他)を含む、ガソリン、ディーゼル、メタノール、エタノール、プロパン、水素、メタン(たとえば、天然ガスまたは石炭ガス化からのもの)などのうちの1つまたは複数を含んでもよい。特定の実施形態において、燃料消費エンジン14は、多燃料エンジンであってもよい。いくつかの実施形態において、燃料消費エンジン14は、内燃エンジンであってもよい。
伝動装置、差動装置、および車軸を含んでもよいドライブトレーン24は、ハイブリッド車両の車輪28(または他の機械運動系)に力学的エネルギーを提供する。ドライブトレーン24は、図1Aに示すように、動力供給構成要素(エネルギー貯蔵デバイス10およびエンジン14)と運動系との間に結合される。ドライブトレーン24は、エネルギー貯蔵デバイス10および燃料消費エンジン14の一方または両方に結合されてもよい。たとえば、ドライブトレーン24は、差動装置(図1Aには示さず)を使用して車輪28a、28bに機械力を伝達することによって車輪28aおよび28bを動作させるように構成されてもよい。車輪28aおよび28bは、1つまたは複数の車軸を介して差動装置に、トルクおよび動力を伝達する関係において結合され得る。各車輪28aおよび28bは、高DoH車両の前部乗客側車輪および前部運転者側車輪のような単一の車輪、または、前部車輪および後部車輪のような車輪セットであってもよい。同様に、車軸は、前車軸のような単一の車軸の一部、または2つ以上の車軸であってもよい。差動装置は、タイヤが滑らずに方向転換してカーブを切ることを容易にするために、異なる回転速度において左前部車輪および右前部車輪のような、対向する車輪の回転を可能にする。差動装置は、単一の差動装置または2つ以上の差動装置であってもよく、すべての実施形態において利用されなくてもよい。
制御システム20は、燃料消費エンジン14およびエネルギー貯蔵デバイス18に結合される。図1Bにより詳細に示す制御システム20は、予測プロセッサ22と、動力フローコントローラ23とを含む。予測プロセッサ22は、車両動力需要予測サブシステム22aと、コンテキスト的予測サブシステム22bとを含んでもよい。動力フローコントローラ23は、燃料消費エンジン14の動作を制御するように構成されているエンジンコントローラ23a、エネルギー貯蔵デバイスの動作を制御するように構成されているエネルギー貯蔵デバイスコントローラ23b、および/または、エネルギー貯蔵デバイスの再生を制御するように構成されている再生コントローラ23cを含んでもよい。操作上、動力フローコントローラ23が、エネルギー貯蔵デバイス10および/またはエンジン14の動作を制御し、それによって、予測プロセッサ22から受信される1つまたは複数の信号に応答してドライブトレーン24に送達される機械力が制御される。いくつかの実施形態において、動力フローコントローラ23は、予測プロセッサ22からの信号に基づいてエネルギー貯蔵デバイスの充電を制御するために、エンジン14とエネルギー貯蔵デバイス10との間の動力フローを制御してもよい。
送達される動力の制御
いくつかの実施態様において、ハイブリッド車両は、回生ブレーキまたは運動エネルギー回生システムを含んでもよい。いくつかの実施態様において、ブレーキからのエネルギーがエネルギー貯蔵デバイス内に貯蔵される。コントローラ23は、たとえば、予測動力需要に先立って、1つまたは複数の再生過程を制御してもよい。
いくつかの態様によれば、コントローラ23は、電子機器(または他の車両構成要素)の電流または電力の制限に基づいて車両を駆動するための動力を制限することによって、再生過程を制御してもよい。相対的に高い予測動力需要に先立って、コントローラ23は、エネルギー貯蔵デバイスから引き込まれる電力を制限してもよく、または、エネルギー貯蔵デバイスを充電するためにエンジンからさらなる動力が提供されてもよい。再生過程の制御の別の例は、エンジンが代わりにブレーキのための動力を送達し、それによって車両をより効率的に動作させることができるように、ブレーキからの動力を制限することを含む。これは、その速度またはトルクまたは動力がそれほど多くまたはそれほど急速に変更されないときにより良好に動作するエンジンの場合に起こり得る。
いくつかのシナリオにおいて、エネルギー貯蔵をブレーキから充電することは必要ない場合がある。たとえば、車輪(複数の場合もあり)および/または動力付き車軸(複数の場合もあり)は、電気を生成するためのモータ−発電機セットまたは結合されているフライホイールによって直接装荷されてもよい。したがって、ブレーキ作用が、再生過程と実際のブレーキとの間で分割され得る。いくつかの事例において、ブレーキを通じて散逸される運動エネルギーは失われる。コントローラは、車両の速度、運転者のブレーキペダル入力、運転者のブレーキ応答予期、および/もしくは前方の障害物のレーダデータ、ならびに/または他の変数に応じて、どの程度のエネルギーを回収すべきか、および/または、ブレーキを通じてどの程度のエネルギーを出すかを判定するように構成することができる。たとえば、コントローラは、エネルギー貯蔵デバイスの充電/エネルギー状態、および/または、再生過程を制御するのに考慮すべき変数のリストに対する予測動力需要を含んでもよい。
いくつかの実施態様において、予測プロセッサ22は、GPSデータおよび/または過去の運転者の習慣に基づいて、ブレーキがかけられる位置または時間間隔を予測することができ、それによって、回生ブレーキからのエネルギーを、これらの位置においてまたはこれらの時間間隔の間にエネルギー貯蔵デバイスに提供することができる。これらの状況において、コントローラは、エネルギー貯蔵デバイスからさらなる電力を引き込んでもよく、またはエンジンからエネルギー貯蔵デバイスに送達される動力を制限してもよく、それによって、回生ブレーキシステムからの予測動力をより十分に利用することができる。
予測プロセッサ22は、履歴情報、経験的情報、検知される情報、運転者入力、クラウドソースの情報および/または他の情報に基づいて車両動力需要および/または他の動作パラメータの予測を行ってもよい。いくつかの実施形態において、車両動力需要の予測は、車両を動作させるときの運転者のこれまでの習慣またはパターンに基づいて行われてもよい。いくつかの実施形態において、車両動力需要の予測は、一部には、車両のコンテキスト的動作状態に基づいて行われてもよく、コンテキスト的動作状態は、現在の動作状態およびこれまでの動作状態の両方を含むことができる。予測プロセッサ22は、将来の一時点における、たとえば、移動する時間窓または距離窓内での車両の動作状態のコンテキスト的予測をもたらすことが可能な回路22bを含んでもよい。コンテキスト的予測の一例として、コンテキスト的予測回路22bは、運転者が過去にとった以前の経路に基づいて、運転者が選択する経路を予測してもよい。別の例として、コンテキスト的予測回路22bは、劣化モデルに基づいてエンジン構成要素の劣化を予測してもよい。
コンテキスト的予測回路によって生成される予測情報は、1つまたは複数の車両動力需要予測モデルを使用して動作する車両動力需要予測回路22aに情報を与える。たとえば、車両動力需要予測モデルは、モデル化方程式(複数の場合もあり)および/またはルックアップテーブル(複数の場合もあり)として具現化されてもよい。車両動力需要予測モデルは、コンテキスト的予測サブシステムによって予測される情報、運転者入力情報、経験的情報、検知される情報、および/または、ハイブリッド車両の動力需要を予測するためにハイブリッド車両の外部のソースによって提供される情報(たとえば、クラウドソースの情報、気象情報、交通情報、位置情報)のような、様々なソースからの情報を受けて動作し得る。
高DoH車両において、予測車両動力需要は、ハイブリッド車両の動作中の少なくとも1時点において、エンジンから利用可能な最大動力よりも大きくなり得る。様々なシナリオにおいて、予測車両動力需要は、ハイブリッド車両の動作中の少なくとも1時点において、エネルギー貯蔵デバイスから利用可能な最大動力よりも大きくなり得る。いくつかのシナリオにおいて、予測車両動力需要は、ハイブリッド車両の動作中の少なくとも1時点において、ともに動作するエネルギー貯蔵デバイスおよびエンジンから利用可能な最大動力よりも大きくなり得る。予測車両動力需要がエンジン、エネルギー貯蔵デバイスまたはその両方から利用可能な動力よりも大きいとき、コントローラは、必要とされている動力が将来のその時点において利用可能になるようにエンジンおよび/もしくはエネルギー貯蔵デバイスからの動力フローを変更すること、ならびに/または、車両を動作するために動力が利用可能になることを可能にする代替経路を運転者に提案することのような、動力が利用可能になることを保証するための様々な動作をとり得る。
いくつかの実施形態において、制御システム20は、予測プロセッサ22によって判定されるような車両の動力需要に基づいて、燃料消費エンジン14またはエネルギー貯蔵デバイス18のいずれかからの動力をドライブトレーン24に方向付ける。いくつかの実施態様において、動力フロー制御システム20は、エネルギー貯蔵デバイス18のための充電システムを動作させるために燃料消費エンジン14からの機械力を使用するように構成されている。いくつかの場合において、動力フロー制御器20は、エネルギー貯蔵デバイス18のための充電システムへの機械力(たとえば、回生ブレーキ)の流れを制御する。いくつかの実施形態において、車両10は、エネルギー貯蔵デバイス18を充電するための1つまたは複数の追加のまたは代替的なシステムを含む。
他の箇所で説明されるように、予測プロセッサ22は、車両10に関する動作パラメータを確定および/または予測する。いくつかの実施形態において、予測プロセッサ22は、ハイブリッド車両10内に配置される。特定の実施形態において、予測プロセッサ22は、車両10から遠隔した位置、たとえば、車両10から物理的に離れて位置するデータセンターに配置されてもよく、ワイヤレス通信リンクを介して動力フロー制御システム20と通信するように構成されてもよい。予測プロセッサ22は、予測動力要件を判定するために、運転者インターフェース12を通じて提供される運転者入力パラメータ、複数の既知のエンジン特性(たとえば、エンジン構成および/または既知の統計的もしくは長期的なエンジン特性)、検知されるエンジン状態(たとえば、動的に変化するエンジン特性、摩擦、エンジンの状態、エネルギー貯蔵デバイスの状態など)、および、検知される、または外部から取得される情報(たとえば、車両位置、トポロジ、天候、交通量など)を含む、いくつかの情報源に基づいて車両動力需要を予測するように構成されている。
簡潔にするために、当該技術分野において既知であるような、車両10を動作させるためのさらなる機械的および/または電気的デバイス、構成要素、システムなどは、図面に示されず、本明細書においても説明されない。たとえば、クラッチのような係合機構、自動伝動装置、または、機械力をドライブトレーン24へおよびドライブトレーン24から方向転換するのに使用される他のトルク伝達デバイスは図示されず、説明されない。
図1Cは、高DoH車両40の一実施形態のブロック図であり、高DoH車両10のエネルギー貯蔵デバイス18は、力学的エネルギー貯蔵デバイス42である。高DoH車両40のいくつかの実施形態において、力学的エネルギー貯蔵デバイス42は、車両40を駆動するための10キロワット〜200キロワットの機械力を生成するように構成されている1つまたは複数のフライホイールを含む。
いくつかの実施形態において、力学的エネルギー貯蔵デバイス42は、電気モータ/発電機17に結合されている。貯蔵デバイス42からの力学的エネルギーは、モータ/発電機の発電機部分によって電気に変換されて、モータ17に給電するのに使用される。モータ17は、ドライブトレーン24に動力を提供するように結合されている。いくつかの実施態様において、エンジン14は、エネルギー貯蔵デバイス42を充電するためにモータ/発電機17を駆動する。いくつかの実施形態において、モータ/発電機17は、力学的エネルギー貯蔵デバイス42、たとえば、フライホイールのための電気式伝動装置としての役割を果たす。
図1Dは、高DoH車両50の一実施形態のブロック図であり、高DoH車両10のエネルギー貯蔵デバイス18は、それに結合されている電気モータ54を動作させるように構成されている電気エネルギー貯蔵デバイス52である。いくつかの実施形態において、電気的貯蔵デバイス52は、再充電可能電池パック、ウルトラキャパシタ、燃料電池、または他の再充電可能電気エネルギーデバイス(複数の場合もあり)のうちの1つまたは複数である。特定の実施形態において、電気モータ54は、車両50を駆動するための機械力を生成するように構成されている。いくつかの実施形態において、電気モータ54は、入力機械力を、電気エネルギー貯蔵デバイス52を充電(たとえば、貯蔵)するための電力に変換するための発電機としてさらに構成されている。エンジン14は、エネルギー貯蔵デバイス52を充電するために発電機(モータ(たとえば、モータ/発電機54)と同じ構成要素であってもよい)を駆動するように構成されてもよい。車両50のいくつかの実施形態において、発電機は、入力機械力を、電気エネルギー貯蔵デバイス52を充電するための電力に変換するように構成されており、電気モータから分離しており、電気モータとは異なるものである。特定の実施形態において、発電機を動作させるために必要とされる機械力の少なくとも一部は、燃料消費エンジン14によって提供される。いくつかの実施形態において、発電機を動作させるために必要とされる機械力の少なくとも一部は、車両50の回生ブレーキから導出される。
電気モータ/発電機54は、1つまたは複数のデバイス、構成要素、システムなどのうちのいずれかであってもよい。たとえば、モータおよび/または発電機は、ACデバイス、DCデバイス(たとえば、永久磁石)、スイッチドリラクタンスデバイス、反発誘導デバイス、誘導デバイスなどのうちの1つまたは複数であってもよい。
図2は、高DoH車両(車両10、40、および50など)のいくつかの実施形態による運転者インターフェース12および運転者インターフェース12の例示的な機能の一実施形態を示す図である。運転者インターフェース12は、運転者と対話するように設計されており、車両10の運転者からの情報の取得、および、車両10の運転者への情報の表示の両方を行うように構成され得る。運転者インターフェース12は、運転者に特定の情報を入力するよう促し、運転者に選択可能な選択肢を提供し、および/または情報を運転者に中継するように構成され得る。動力フロー制御システム20は、運転者指定の入力77、たとえば、運転者が提供する情報および/または運転者インターフェース12を介して運転者によって行われる選択を受信し、運転者入力情報に基づいて、経路を提案し、予測を行い、および/またはタスクを実行し得る。図2に示すように、運転者インターフェース12が入力または出力し得る情報の例示的で非限定的なリストは、選択された経路96、予測または実際の車両挙動76、車両の現在位置64、目的地までの時間70、目的地位置62、燃料消費74(たとえば、瞬間または平均)、車両排出72(たとえば、瞬間または平均)、他のDoH状態80、運転者特有の情報77、および/あるいは、任意の他の情報81、たとえば、運転者もしくは車両パラメータ値、またはハイブリッド車両の動作に関係する状態を含む。
たとえば、運転者インターフェース12は、運転者によって目的地62を指定するのに使用され得る。いくつかの実施形態において、目的地62は、最終目的地、および/または、車両10の現在位置64と最終目的地との間の複数の中間目的地を含んでもよい。図2〜図6に示すように、運転者インターフェース12および/または他のソースからの情報は、車両の動作に関する予測を行うのに使用され得る。いくつかの実施形態いおいて、車両10は、1つまたは複数の履歴データベース66、67、たとえば、予測プロセッサ22のコンテキスト的予測回路が、目的地62および/または他のコンテキスト的情報のような、車両のコンテキスト的動作状態をそこから推定(たとえば、予測)することができる、運転者および/または車両特有のデータベースを含む。たとえば、特定の実施形態において、運転者の識別情報および時刻を使用して、運転者の中間および/または最終目的地を予測することができる。たとえば、移動が平日の朝の時間帯の間である場合、予測プロセッサは、運転者が出勤していると想定することができる。加えて、または代替形態において、運転者の識別情報および現在位置64を使用して、運転者の目的地を予測することができる。いくつかの実施形態において、運転者特有の履歴データベース66は車両10に搭載されてもよい。特定の実施形態において、運転者特有の履歴データベース66は、車両10から遠隔した位置にあってもよく、セルラ通信リンクのようなワイヤレス通信リンクを介して予測プロセッサ22と通信するように構成されてもよい。いくつかの実施形態において、GPSインターフェース68を使用して、車両10の現在位置64が求められてもよい。
いくつかの実施形態において、運転者インターフェース12は、1つまたは複数の運転者特有の運転パラメータを指定および/またはランク付けするのに使用されてもよい。ランク付けは、運転者特有の運転パラメータの各々に対して運転者が考える重要度を示す。例示的な運転者特有の運転パラメータは、限定ではなく、目的地までの時間70、目的地までの許容可能な排出72、目的地までの許容可能な燃料消費74、車両挙動76、および、加速にかかる時間78のうちの1つまたは複数を含んでもよい。いくつかの実施形態において、目的地までの時間70は、運転者が目的地に到着することを望む時間および/または通勤時間(たとえば、継続時間)のうちの1つまたは複数を含んでもよい。特定の実施形態において、1つまたは複数の運転者特有の運転パラメータは、運転者特有の履歴データベース66に記憶されてもよい。いくつかの実施形態において、運転者は、運転パラメータを指定しなくてもよい。いくつかの実施形態において、運転者が変更可能なデフォルトの(たとえば、出荷時設定の、または、運転者によって以前に設定された)運転パラメータが、履歴データベース66に含まれていてもよい。特定の実施形態において、運転者は、運転者インターフェース12を通じて、所望される場合に1つまたは複数の運転パラメータを指定および/または変更することができる。
いくつかの実施形態において、運転者インターフェースは、運転者に、1つまたは複数の運転パラメータに対するランク情報を入力するよう促すように構成されてもよい。ランク付けされた運転パラメータは、運転者インターフェースに表示される1つまたは複数の経路を提案するのに使用される。ランク付けされた運転者パラメータが、代替的にまたは付加的に、動力需要を予測するために予測プロセッサによって、および/または、ハイブリッド車両を駆動するための動力フローを制御するためにコントローラによって使用されてもよい。様々な実施形態において、コントローラは、車両を駆動するための動力を提供するように、エンジンとドライブトレーン、エネルギー貯蔵デバイスとドライブトレーン、およびエンジンとエネルギー貯蔵デバイスのうちの少なくとも1つの間の動力フローを自動的に制御するように構成されてもよい。動力フローの制御は、少なくとも部分的に、予測動力需要に基づく。
いくつかの実施形態において、車両挙動76は、運転者が車両の挙動をどのように予測するかに関係する。したがって、車両挙動76は、「学習される」運転者特有の運転パラメータであり得る。たとえば、運転者の運転習慣を、連続的にまたは1つまたは複数の時間間隔にわたってのいずれかで監視することができ、運転者の習慣は、履歴データベース66内に含まれ、または更新されてもよい。いくつかの実施形態において、車両挙動に関する情報76は、とりわけ、加速習慣(たとえば、「ジャックウサギ」、徐々に、など)、減速習慣(たとえば、徐々に、急激に、など)のような定量的および/または定性的運転者特有データおよび/またはプロファイルを含んでもよい。車両挙動76はまた、運転者が予期する車両の運転しやすさ、または、所望または予期される搭乗の「スムーズさ」、反応性、加速にかかる時間78のような他のパラメータも含んでもよい。運転者挙動76はまた、とりわけ、運転者指定の車両排出、運転者指定の燃料消費のような、運転者指定の車両の動作特性をも含んでもよい。
いくつかの実施形態において、予測プロセッサ22のコンテキスト的予測部分は、現在位置64と目的地62との間で運転者がとることができる複数の可能性のある経路80a〜80nを判定するように構成されている。特定の実施形態において、予測プロセッサ22は、運転者がとることができる、現在位置64と、複数の中間目的地82a〜82nの各々との間の複数の可能性のある経路80a〜80nを判定するように構成されている。いくつかの実施形態において、複数の可能性のある経路80a〜80nは、現在位置64、目的地62、および、複数の可能性のある経路80a〜80nの各々と関連付けられる1つまたは複数の運転者特有の運転パラメータに基づいて予測プロセッサによって予測され得る。中間目的地82a〜82nは、道路地図システムに基づいて予測され得る。たとえば、中間目的地は、次の交差点であってもよい。特定の実施形態において、予測プロセッサ22は、所定の勾配よりも大きい勾配または傾斜を有する経路を回避するように構成されている。そのため、複数の可能性のある経路80a〜80nは、他の経路と比較して高度がよりゆるやかに増大する少なくとも1つの可能性のある経路を含み得る。
複数の可能性のある経路80a〜80nが、運転者インターフェース12上に表示され得る。いくつかの実施形態において、経路情報は、複数の可能性のある経路80a〜80nの各々について予測プロセッサ22によって確定されるような1つまたは複数の経路特有の運転パラメータ84とともに運転者インターフェース12に表示され得る。特定の実施形態において、経路特有の運転パラメータ84は、経路特有の情報とともに表示されるが、運転者特有の運転パラメータと同じであってもよい。例示的な経路特有の運転パラメータ84は、限定ではなく、車両動力需要86、目的地に到達するまでの時間遅延88(たとえば、交通量、天候、道路工事などに起因する)、燃料消費90の増大(または低減)、燃料代(たとえば、他の経路と比較した燃料代の節約または増大)92、他の経路と比較した車両排出94の増大(または低減)のうちの1つまたは複数を含んでもよい。いくつかの実施形態において、運転パラメータ84は、限定ではなく、瞬間動力、および、動力需要が満たされていない予測累積時間のような、瞬間的状態から導出されるパラメータを含んでもよい。経路特有の運転パラメータ84は、絶対値で、他の可能性のある経路のものに対する値として、および/または、運転者指定の運転パラメータからの偏差として(たとえば、差分値として)表示されてもよい。
いくつかの実施形態において、運転者は、運転者インターフェース12に表示されている複数の可能性のある経路80a〜80nから経路96を選択することができる。特定の実施形態において、予測プロセッサ22は、運転者が複数の可能性のある経路80a〜80nから、経路特有の運転パラメータ84と運転者特有の運転パラメータとの間に「近似一致」がある1つの経路を移動することを所望することになると予測することができる。いくつかの実施形態において、運転者は、運転者インターフェース12に表示されている複数の可能性のある経路80a〜80nとは異なる経路96を指定または選択してもよい。たとえば、選択される(ユーザによって指定される、または予測プロセッサによって予測される)経路96は、運転者が移動することを望む景色のいい経路であってもよい。
いくつかの実施形態において、予測プロセッサ22は、運転者によって選択される経路96に関する情報に基づいて車両動力需要86を予測するように構成されている。特定の実施形態において、予測プロセッサ22は、最終目的地に関する、運転者によってもたらされる情報に基づいて車両動力需要86を予測するように構成されている。いくつかの実施形態において、予測プロセッサ22は、経路および/または目的地の、運転者によってもたらされるかまたは選択される情報を一切用いずに車両動力需要86を予測するように構成されている。たとえば、特定の実施形態において、予測プロセッサ22は、車両10が動作している間の移動する一連の時間間隔にわたって車両動力需要86を予測するように構成されている。いくつかの実施形態において、予測プロセッサ22は、車両10が動作している間に中間経路のいくつかの中間位置に到達するのに必要とされることになる車両動力需要86を予測するように構成されている。
図6は車両10の一実施形態を示し、予測プロセッサ22は、車両のコンテキスト的動作状態に基づいて車両動力需要86を予測するように構成されている。コンテキスト的動作状態は、限定ではなく、外部状態(車両の外部の状態)、内部状態(車両の内部の状態)、検知される状態(外部または内部)、予測される状態(外部または内部)、ならびに、運転パラメータおよび経路または目的地情報のような前述の運転者指定の状態のうちの1つまたは複数を含んでもよい。いくつかの実施形態において、外部状態は、交通量98、GPS情報68、天候100、道路状況102、およびトポグラフィ104のうちの1つまたは複数を含んでもよい。検知される状態は、交通量98、天候100、道路状況102、交通事故106、エンジン状態、エネルギー貯蔵デバイス状態、およびドライブトレーン状態108を含んでもよい。検知されるエンジン状態は、利用可能な最大動力110、トルク112、エンジン速度、および燃料効率114を含んでもよい。検知されるエネルギー貯蔵デバイス状態は、エネルギー貯蔵デバイスの充電状態116、利用可能な動力、ならびに最小および最大充電量(たとえば、貯蔵容量)118を含んでもよい。予測される状態は、天候100、経路94、交通量、目的地62、および構成要素劣化を含んでもよい。
図7は、予測プロセッサ22に結合されているセンサシステム120を有する車両10の一実施形態を示し、センサシステム120は、1つまたは複数の状態を検知するように構成されており、予測プロセッサ22は、1つまたは複数の検知された状態に基づいて車両動力需要86を予測するように構成されている。いくつかの実施形態において、1つまたは複数の検知される車両パラメータは、潤滑油122、ベアリング124、フライホイール126、電池128、キャパシタ130のうちの1つもしくは複数の劣化、エンジン摩耗132、エンジン圧縮134、エンジンの伝動装置136、エネルギー貯蔵デバイスの伝動装置138、および/または、車両の内部もしくは外部の様々な他の状態131を示す検知状態を含んでもよい。
いくつかの実施形態において、予測プロセッサ22は、1つまたは複数の車両構成要素の変化を予測し、したがって、1つまたは複数の車両構成要素の予測される変化に基づいて車両動力需要86の変化を予測するように構成されている。たとえば、構成要素の予測される変化は、構成要素の使用年数、走行距離、回転またはサイクル数などのうちの1つまたは複数に基づいてもよい。特定の実施形態において、予測プロセッサ22は、1つまたは複数の劣化モデルに基づいて変化を予測するように構成されており、劣化モデルは、方程式および/またはルックアップテーブルによって特性化される。いくつかの実施形態において、劣化モデルは、1つまたは複数の検知される状態に基づいて適応可能である。特定の実施形態において、予測プロセッサ22は、ハイブリッド車両10の各構成要素を表す1つまたは複数の数学モデルを含むことができる。たとえば、予測プロセッサ22は、燃料消費エンジン14および/またはエネルギー貯蔵デバイス18の1つまたは複数の数学モデルを含むことができる。予測プロセッサ22は、1つまたは複数の数学モデルに基づいて車両動力需要86を判定または予測するように構成され得る。特定の実施形態において、予測プロセッサ22は、構成要素の性能の検知および/または予測される変化に基づいて1つまたは複数の車両構成要素の数学モデルを訂正するように構成されている。
特定の実施形態において、予測プロセッサ22は、交通状況98を予測し、予測された交通状況または交通状況98の変化に基づいて車両動力需要86を予測するように構成されている。たとえば、予測プロセッサ22は、時刻および/または選択される経路96に基づいて交通状況を予測するように構成され得る。予測プロセッサ22は、車両動力需要86を予測するために交通量の予測と実際との時間発展の差を計上するための線形または非線形自己回帰モデルを含み得る。
いくつかの実施形態において、予測プロセッサ22は、車両動力需要86をリアルタイムに予測するように構成され得る。そのため、予測プロセッサ22は、リアルタイムの状態、たとえば、リアルタイムの天候、道路状況、および/または交通状況に基づいて代替経路を運転者に提案するように構成され得る。提案される経路は、運転者インターフェース12に表示することができ、運転者は、提案される代替経路を承認または拒否することが可能であり得る。予測プロセッサ22は、運転者によって承認される場合に提案される代替経路を実行することができる。特定の実施形態において、予測プロセッサ22は、エネルギー貯蔵デバイス18からのエネルギー使用を最大限にし、燃料消費エンジン14からのエネルギー使用を最小限に抑えるように構成され得る。
いくつかの実施形態において、予測プロセッサ22は、車両動力需要86を予測するためにモデル予測制御フレームワークにモンテカルロアルゴリズムを使用するように構成されてもよい。特定の実施形態において、予測プロセッサ22は、車両動力需要86を予測するためにモデル予測制御フレームワークに確率的計画法を使用するように構成されてもよい。当業者には諒解されるように、確率的計画法は、数理計画法または数理最適化アルゴリズムとして既知のクラスのアルゴリズムを含み得る。たとえば、そのようなアルゴリズムは、整数計画法、線形計画法、および非線形計画法を含み得る。いくつかの実施形態において、予測プロセッサ22は、車両を動作させるための適応的最適化制御アルゴリズムを含み、リアルタイムに検知または予測されるデータを使用して1つまたは複数の制御パラメータを訂正することができる。いくつかの実施形態において、リアルタイムに検知されるデータは、液圧および潤滑システム内の破片粒子を検出することによってエンジン摩耗を検出することを含んでもよい。たとえば、車両は、伝動システム内のベアリングおよびギアの損傷および/またはエンジン摩耗を示すためにオイル清浄度を監視するための1つまたは複数のセンサを有する早期警戒システムを含んでもよい。特定の実施形態において、検知されたデータは、出力動力を低減する可能性があるピストンリングおよびボアの磨損のような構成要素劣化を予測するための摩耗モデルを較正するために使用されてもよい。
いくつかの実施形態において、本明細書に開示する車両動力フロー制御システムは、可能な最大範囲まで十分な加速力がもたらされるという制約を受けて、燃料消費および/もしくは有害な排出物またはこれらの何らかの組合せ(あるいは他の変数)が低減される、たとえば、最小限に抑えられるように、指定の、たとえば、最適化された動力フローを提供する。
制御システムは、種々の動作レジームにおいてエンジンの効率および排出物を計上する内部モデル(たとえば、エンジン速度およびトルクに基づくエンジンマップ)に基づいて排出および/または燃料消費を予測する。所与のエンジン出力動力において、これらの燃料消費および/または排出の値は、たとえば、エンジンをその最大効率動作点において動作させるよう努めることによって低減することができる。
動力フロー制御システムは、いつ、どれだけ多くの加速が必要とされる可能性が高いかを予測し、そのときにエネルギー貯蔵デバイスに十分なエネルギーを提供することによって、十分な加速力を与えるよう試行する。これは、運転状況の予測的、統計的解析に基づいてたとえば、エンジンから運動系への、エンジンからエネルギー貯蔵デバイスへの、エネルギー貯蔵デバイスから運動系への、および/または、再生システム、たとえば、回生ブレーキからエネルギー貯蔵デバイスへのエネルギーフローに沿ってエネルギー貯蔵デバイスの充電および放電を制御することによって達成される。
この予測の基礎としていくつかの技法が使用され得る。たとえば、車両、運転者、または制御レジームが、車両タイプ(たとえば、ミニバン、小型セダンなど)および一般的な運転状況(たとえば、市街地での用事、通勤など)と関連付けられるカテゴリのセットから選択され得る。
各カテゴリは、一般的に「運転サイクル」、または、時間の関数としての速度のセットと関連付けられ、これらは、その状況における一般的なまたは平均の運転サイクルの確率的組合せから導出される。運転サイクルはその後、現在のおよび過去の速度に基づいて特定量の加速が必要とされることになる可能性を概算するのに使用され得る。
車両、運転者、または運転者と組み合わせた車両の運転履歴を使用して、可能性のある加速需要を予測することができる。たとえば、停止した、または、出入制限道路に入った後の履歴加速度が、履歴データベースに組み込まれ、運転者の将来の駆動特性を予測するのに使用され得る。運転者特有の情報は、利用可能な場合は、マッピングもしくはGPSデータ、および/または、気象条件によって増強され得る。
勾配/高度を含む可能性がある経路、マッピング、またはGPSデータが利用可能である場合、動力フロー制御システムは、それらを使用して可能性のある加速需要を予測することができる。たとえば、経路および現在の車両位置を所与として、高速道路に入るか、または勾配を上る加速の要件を予測することができる。特定の例において、車両が高速道路入口に近づいている場合、制御システムは、加速が必要になる可能性の増大を計算し得る。これは、リアルタイムのおよび/または履歴的な交通量または車速データによってさらに強化され得る。一変形形態において、制御システムは、経路推奨の増強または最適化を補助するための構成要素として使用することができる。たとえば、高DoH車両にとっては長い上り坂を回避する経路が好ましい場合がある。別の例として、より短く、より急な上り坂よりも、代わりにより長く、よりゆるやかな上り坂を通る経路が好ましい場合がある。
制御システム予測プロセッサのアルゴリズムは、上記の入力セットの1つまたは組合せを使用して、高DoH車両の加速需要を判定し、必要とされる貯蔵エネルギーを計算し、その後、その要件を受けて指定のまたは最適な燃料消費または排出をもたらすエネルギーフローを向ける。
ドライブトレーン構成に応じて、最適化変数に関係する他の制御変数が、制御システムによって出力され得る。たとえば、無段変速機を有する車両において、エンジン動作点(すなわち、エンジン速度)は、エネルギー効率を最大化するように制御され得る。
動力フロー制御は、経路全体またはより短い時間(または距離)窓、たとえば、移動する時間もしくは距離窓にわたって実施され得る。動力フロー制御プロセスを実施するのに様々な予測および最適化ルーチンが使用され得る。一変形形態において、車両動力需要予測および動力フロー制御モデルは、時間とともに独立変数として動作し、距離にわたる速度のプロファイル(たとえば、コンピュータが生成した経路に対応する)を入力としてとる。この変形形態において、モデルは、車両が所与の距離において目標速度に達するのに必要とされるけん引動力を計算する。予測される利用可能な動力(利用可能なエンジンおよび/またはエネルギー貯蔵デバイスの動力によって物理的に制限され得るか、または、制御システムによって制限され得る)が目標速度に達するのに必要とされる動力よりも小さい場合、利用可能な動力に対応する速度が計算され(たとえば、動力計負荷方程式の反転に基づいて、加速度はシミュレーションの時間ステップに従って線形化されている)、結果として低減した移動距離が計算される。次の時間ステップにおいて、この距離は距離にわたる速度のプロファイルとともに所望の速度を計算するのに使用される。そのようなモデルによって使用されるべき速度−時間プロファイルについて、速度−距離プロファイルは、積分および再サンプリングによって速度−時間プロファイルから予め計算することができる。予測アルゴリズムは、コントローラによってリアルタイムに動作され得るか、または、経路が計算されるときに事前に実行され得る。
例示的な一例として、車両が停止から96.56km/h(60mph)まで10秒かけて加速すると予測される経路の一部分を考える。これは、9.656km/hs(6mph/s)の加速度および0.1336km(0.083マイル)の移動距離に対応する。ここで、コントローラが、1秒の時間基準で、利用可能な動力が経路の始まりにおいて6.437km/hs(4mph/s)の加速しか可能でないと判定すると仮定する。この加速度を所与とすると、1秒の間に、0.0008047km(0.0005マイル)移動する。この距離において、元の経路では車両が7.886km/h(4.9mph)で移動しており、そのため、この速度が、1秒の時間ステップの目標速度として使用される。同様に、2番目の1秒間隔において、車両はもう0.002736km/h(0.0017マイル)、合計で0.003541km/h(0.0022マイル)移動する。元の経路では、車両がこの時点で15.77km/h(9.8mph)で移動しており、そのため、これが、2秒の時間ステップの目標速度として使用される。このように、経路は、予測モデルによって最良に求められるように、車両の実際の加速度として求められる時間にわたる速度のプロファイルとして漸進的に再計算される。
予測プロセッサはまた、一般的な運転パターン、または、特定の場所において学習されたこの運転者の特定の以前の運転パターンに基づいてGPSベースの予測システムを利用して、どこで運転者がブレーキを使用する可能性が高いかを予測することもできる。どこで運転者がブレーキをかける可能性が高いかを予測することによって、制御プロセッサは、エネルギー貯蔵要素からの動力が加速に必要とされる前にブレーキが予測されるときに燃料消費エンジンからエネルギー貯蔵要素を充電しないことを選択することができる。GPSは、ブレーキが履歴的に行われる特定の場所を学習することができ、および/または、マップ情報から、どこでブレーキが行われる可能性が高いか(たとえば、一時停止の標識、交差点、交通信号灯、急な下り坂道路など)を予測することができる。これらは、特定の車によって学習され得るか、または、多数の車両からクラウドソーシングされ、車両動力フローコントローラにダウンロードされ得る、ブレーキ挙動の学習に加えて、制御システムは、他のロケーションベースの運転者特有の挙動を学習および利用することができる。一例は、出入制限道路への進入ランプにおける運転者の加速である。この情報は、そのロケーションにおいて運転者が車両を駆動することによって必要とされる予測動力の精度を改善するために使用され得る。
加速する能力を増強、たとえば、最大化することに加えて、制御システムは、運転者体験の均一性を最適化することができる。たとえば、運転者は、同様の運転状況においてアクセルペダルが踏み込まれるときは車両がいつも同様に挙動することを好む場合がある。履歴データまたは固定の制約のセットを使用して、制御システムは、予測可能なけん引動力を車両に送達するのに有利になるように、利用可能な全動力を送達しないことを選択し得る。
いくつかの事例において、制御システムは、そうでなければフライホイールが消耗して、結果として運転者が相当な動力を失うことになる、長時間の重大な需要を予期して、フライホイール(または他のエネルギー貯蔵デバイス)から送達される動力を低減または制限してもよい。たとえば、長い上り坂を上るときに、フライホイールがその一部分、たとえば、上り坂の半分を上るのに必要とされる全動力を運転者に与えるだけの十分なエネルギーしか有しないことを所与として、制御システムは、フライホイールから送達される動力を、必要とされる全動力の一部、たとえば、半分に制限し得、それによって、送達される動力は上り坂を上る期間全体にわたって存続する。結果として、運転者は上り坂の半分のところで急に減速することを経験しない。
いくつかの実施形態は、上り坂を上る継続時間(すなわち、必要とされる動力が、相対的に小さいエンジン単独で送達され得る動力を超えると予期される運転距離)にわたって一定のエネルギー貯蔵デバイス動力出力を目標とする。別の実施形態において、制御プロセッサは特に、最初は、残りのエネルギー貯蔵デバイス動力およびエンジン動力を所与として上り坂を上る過程全体にわたって維持され得る速度まで車両が減速するまで、過剰な運動エネルギー、および、エンジン動力のみを使用して(エネルギー貯蔵デバイス入力なしで、エネルギー貯蔵デバイスのエネルギーを保持する)、一定の車両速度を維持することを目標とする。いくつかの実施形態は、可能な最高の最小速度を送達し、したがって、運転者が経験する不効用を低減することができる。
本明細書において説明されている実施形態は、加速に十分な動力が利用可能であることを保証することを条件としていくつかの変数(たとえば、燃料経済性)を最適化する、高DoHハイブリッドのための車両動力フロー制御システムに関する。いくつかの実施形態において、車両動力フロー制御システムは、十分な動力および予測可能な応答を合わせてもたらすように構成されている。車両動力フロー制御システムは、エンジンおよびエネルギー貯蔵デバイスからの動力フローならびに/またはエンジン動作点を制御するように構成することができる。ハイブリッド車両は、様々なタイプ(シリーズ、パラレルなど)、および/または貯蔵タイプ(フライホイール、ウルトラキャパシタ、電池など)を含んでもよい。車両の制御は、様々なタイプの情報、たとえば、上述のような、予測、検知、学習、経験、クラウドソーシングに基づいてもよい。
様々なタイプの予測制御アルゴリズムが、動力フローおよび/または動作点を制御するのに使用されてもよい。動力フロー制御システムの一実施形態において、予測制御アルゴリズムは、構成要素間の動力フローに対する制御入力を導出するために、多目的最適化フレームワークにおける、パワートレーンのモデルと、残りの経路の予測動力プロファイルとを含んでもよい。そのような最適化は、性能と効率との間でトレードオフしなければならないことになる。経路の動力プロファイルに応じて、コントローラは、短期間のパフォーマンス(たとえば、接近する上り坂を上る加速)と、長期間のパフォーマンス(たとえば、経路全体にわたる妥当な速度の維持)との間でトレードオフしなければならない場合がある。考慮される予測範囲も、残りの経路全体から次の数マイル、または、エネルギー貯蔵容量およびそれが枯渇する速度に応じてさらにより短い距離まで変動し得る。そのような制御戦略のいくつかの例が、モデル予測制御または後退ホライズン制御である。いくつかの実施形態は、将来の動力需要を推定してその推定値のための制御入力を最適化するために、移動した経路を記憶されている経路の履歴(交通量および天候を考慮にいれるために時刻によってパラメータ化されている場合がある)と比較するためのアルゴリズムを含んでもよい。既存の交通パターンに基づくすべての道路の確率的推定値も、事前に計算し、コントローラによって使用され得る。
いくつかの実施形態は、そうでなければフライホイールが消耗して、結果として運転者が相当な動力を失うことになる、長時間の重大な需要を予期して、フライホイール(または他のエネルギー貯蔵デバイス)から送達される動力を低減または制限することを含む。いくつかの構成は、一般的な運転パターン、または、特定の場所において学習されたこの運転者の特定の以前の運転パターンに基づいて予測を行うGPSベースの予測制御システムを利用する。一例として、GPSベースの予測制御システムは、特定の場所において学習された運転者の特定の以前の運転パターンを使用して、どこで運転者がブレーキを使用する可能性が高いかを予測することができる。別の例として、GPSベースの予測制御システムは、高速道路入口ランプのような高い動力需要を予期し、エンジンからエネルギー貯蔵デバイスへの、および/または発電システムからエネルギー貯蔵デバイス、たとえば、電池、キャパシタ、もしくはフライホイールへの動力フローを制御して、需要に対して適時に十分な充電をもたらすことができる。

Claims (10)

  1. ハイブリッド車両であって、
    前記車両を駆動するための動力を供給するように構成されている燃料消費エンジンと、
    前記ハイブリッド車両内に配置されているエネルギー貯蔵デバイスであって、前記エネルギー貯蔵デバイスは、前記車両を駆動するための動力を供給するように構成されている、エネルギー貯蔵デバイスと、
    前記車両の動作中に変化する状態に基づいて前記車両を駆動するための動力需要を予測するように構成されている予測プロセッサと、
    前記車両の運動を引き起こすように結合されているドライブトレーンと、
    コントローラであって、前記予測される動力需要に少なくとも部分的に基づいて前記車両を駆動するための前記動力を提供するように、
    前記エンジンおよび前記ドライブトレーン、
    前記エネルギー貯蔵デバイスおよび前記ドライブトレーン、ならびに
    前記エンジンおよび前記エネルギー貯蔵デバイスのうちの少なくとも1つの間の動力フローを自動的に制御するように構成されており、前記車両を駆動するための前記動力需要は、前記ハイブリッド車両の動作中の少なくとも1時点において前記エンジンから利用可能な最大動力よりも大きい、コントローラと
    を備える、ハイブリッド車両。
  2. 前記エネルギー貯蔵デバイスは、
    フライホイール、
    電池、および
    キャパシタのうちの少なくとも1つを含む、請求項1に記載のハイブリッド車両。
  3. 前記変化する状態は、
    前記ハイブリッド車両の外部の検知される状態、
    前記ハイブリッド車両の検知される状態、
    1つまたは複数の車両構成要素における予測される変化、
    前記車両の外部の予測される状態、
    運転者特有の状態、
    前記エネルギー貯蔵デバイスからのエネルギー使用状況、
    前記燃料消費エンジンからのエネルギー使用状況、
    履歴データ、
    予測される目的地、および
    予測される経路のうちの1つまたは複数を含む、請求項1に記載のハイブリッド車両。
  4. 前記予測プロセッサに結合されているセンサシステムをさらに備え、前記センサシステムは、前記変化する状態のうちの1つまたは複数を検知するように構成されており、前記予測プロセッサは、前記検知された状態に基づいて前記車両を駆動するための前記動力需要を予測するように構成されている、請求項1に記載のハイブリッド車両。
  5. 運転者インターフェースであって、
    運転者が目的地または経路情報を入力することを可能にし、
    リアルタイムの状態に基づいて1つまたは複数の提案される代替経路を表示し、
    前記1つまたは複数の提案される代替経路の各々と関連付けられる少なくとも1つの運転パラメータを表示するように構成されている、運転者インターフェースをさらに備える、請求項1に記載のハイブリッド車両。
  6. 運転者インターフェースであって、
    運転者が、前記目的に到達するにあたっての時間遅延を引き起こすことになる第1の経路と、前記第1の経路と比較しての燃料消費の増大、および、前記第1の経路と比較しての車両排出の増大のうちの少なくとも一方を引き起こすことになる第2の経路との間での選択を入力することを可能にするように構成されている、運転者インターフェースをさらに備え、
    前記予測プロセッサは、前記選択を使用して前記動力需要を予測するように構成されている、請求項1に記載のハイブリッド車両。
  7. ハイブリッド車両の動作中に変化する状態に基づいて、前記ハイブリッド車両を駆動するための動力需要を予測するように構成されている予測プロセッサであって、前記ハイブリッド車両は、前記ハイブリッド車両のドライブトレーンに結合されている燃料消費エンジンおよびエネルギー貯蔵デバイスを備える、予測プロセッサと、
    コントローラであって、前記予測される動力需要に少なくとも部分的に基づいて前記車両を駆動するための前記動力を提供するように、
    前記エンジンおよび前記ドライブトレーン、
    前記エネルギー貯蔵デバイスおよび前記ドライブトレーン、ならびに
    前記エンジンおよび前記エネルギー貯蔵デバイスのうちの少なくとも1つの間の動力フローを自動的に制御するように構成されており、前記車両を駆動するための前記動力需要は、前記ハイブリッド車両の動作中の少なくとも1時点において前記エンジンから利用可能な最大動力よりも大きい、コントローラと
    を備える、ハイブリッド車両制御システム。
  8. ハイブリッド車両の動作中に変化する状態に基づいて、燃料消費エンジンおよびエネルギー貯蔵デバイスによる前記ハイブリッド車両を駆動するための動力需要を予測するステップと、
    前記予測される車両動力需要に基づいて前記ハイブリッド車両を駆動するための動力を提供するように、前記動力フローを制御するステップであって、前記予測される車両動力需要は、前記車両の動作中の少なくとも1時点において前記エンジンから利用可能な最大動力よりも大きい、制御するステップと
    を含む、方法。
  9. 変化する状態に基づいて前記車両動力需要を予測するステップは、
    前記ハイブリッド車両の検知される状態、
    前記ハイブリッド車両の外部の検知される状態、
    車両状態の劣化モデル、
    運転者特有の状態、および
    履歴データベースに記憶されている情報のうちの1つまたは複数に基づいて予測するステップを含む、請求項8に記載の方法。
  10. 目的地までの1つまたは複数の代替経路を識別するステップと、
    前記1つまたは複数の代替経路の各々と関連付けられる経路特有の車両動力需要を予測するステップと、
    前記代替経路の各々と関連付けられる少なくとも1つの運転パラメータを求めるステップであって、前記少なくとも1つの運転パラメータは、目的地までの時間、目的地までの排出、および目的地までの燃料消費のうちの1つまたは複数を含む、求めるステップと
    を含む、請求項8に記載の方法。
JP2015068835A 2014-04-17 2015-03-30 高いハイブリッド化度を有するハイブリッド車両のための制御システム Active JP6758025B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/255,091 2014-04-17
US14/255,091 US9751521B2 (en) 2014-04-17 2014-04-17 Control system for hybrid vehicles with high degree of hybridization

Publications (3)

Publication Number Publication Date
JP2015205682A true JP2015205682A (ja) 2015-11-19
JP2015205682A5 JP2015205682A5 (ja) 2018-03-22
JP6758025B2 JP6758025B2 (ja) 2020-09-23

Family

ID=53015506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068835A Active JP6758025B2 (ja) 2014-04-17 2015-03-30 高いハイブリッド化度を有するハイブリッド車両のための制御システム

Country Status (5)

Country Link
US (2) US9751521B2 (ja)
EP (1) EP2933157B1 (ja)
JP (1) JP6758025B2 (ja)
KR (1) KR102238858B1 (ja)
CN (1) CN105035076B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173898A (ja) * 2016-03-18 2017-09-28 グローリー株式会社 貨幣処理装置及び貨幣処理システム
JP2018137900A (ja) * 2017-02-22 2018-08-30 トヨタ自動車株式会社 燃料電池車両およびその制御方法
JP2019189216A (ja) * 2018-04-27 2019-10-31 本田技研工業株式会社 予想的車線変更のためのシステム及び方法
KR20210058704A (ko) * 2019-11-12 2021-05-24 도요타지도샤가부시키가이샤 주행 제어 장치, 주행 제어 방법 및 비일시적 기억 매체
WO2021199580A1 (ja) * 2020-03-30 2021-10-07 日立Astemo株式会社 車両制御装置、および、車両制御方法

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9789756B2 (en) * 2014-02-12 2017-10-17 Palo Alto Research Center Incorporated Hybrid vehicle with power boost
US9676382B2 (en) 2014-04-17 2017-06-13 Palo Alto Research Center Incorporated Systems and methods for hybrid vehicles with a high degree of hybridization
US9751521B2 (en) 2014-04-17 2017-09-05 Palo Alto Research Center Incorporated Control system for hybrid vehicles with high degree of hybridization
US9517764B2 (en) * 2014-10-23 2016-12-13 Ford Global Technologies, Llc Methods and system for operating a hybrid vehicle in cruise control mode
US20160258765A1 (en) * 2015-03-02 2016-09-08 Lenovo (Singapore) Pte, Ltd. Apparatus, method, and program product for reducing road travel costs
US12024029B2 (en) 2015-05-01 2024-07-02 Hyliion Inc. Trailer-based energy capture and management
US10245972B2 (en) 2015-05-01 2019-04-02 Hyliion Inc. Trailer-based energy capture and management
US10596913B2 (en) 2015-05-01 2020-03-24 Hyliion Inc. Trailer-based energy capture and management
JP2018523447A (ja) 2015-05-01 2018-08-16 ハイリーオン インク.Hyliion Inc. 動力供給を増大させ、燃料要求を低減させるモーター車両の装備
US10894482B2 (en) 2015-08-07 2021-01-19 Cummins, Inc. Systems and methods of battery management and control for a vehicle
US10118603B2 (en) * 2015-10-30 2018-11-06 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for traffic learning
US10500975B1 (en) 2016-09-30 2019-12-10 Hyliion Inc. Vehicle weight estimation system and related methods
US10821853B2 (en) 2016-09-30 2020-11-03 Hyliion Inc. Vehicle energy management system and related methods
US10336334B2 (en) * 2016-11-23 2019-07-02 Ford Global Technologies, Llc Regenerative braking downshift control using predictive information
US10410440B2 (en) * 2016-12-09 2019-09-10 Traffilog Ltd. Distributed system and method for monitoring vehicle operation
US10126139B2 (en) 2017-01-12 2018-11-13 Ford Global Technologies, Llc Route selection method and system for a vehicle having a regenerative shock absorber
WO2018152406A1 (en) 2017-02-17 2018-08-23 Hyliion Inc. Tractor unit with on-board regenerative braking energy storage for stopover hvac operation without engine idle
CN106828127A (zh) * 2017-02-17 2017-06-13 风度(常州)汽车研发院有限公司 插电式混合动力车型的动力匹配方法及系统
US11062536B2 (en) 2017-02-21 2021-07-13 Ford Global Technologies, Llc Method and apparatus for statistical vehicle element failure analysis
CN107839700B (zh) * 2017-09-14 2019-05-17 中车工业研究院有限公司 轨道交通用柴电混合动力系统的能量分配方法及装置
SE1751528A1 (en) * 2017-12-12 2019-06-13 Scania Cv Ab Method and system for propelling a vehicle
US11046192B2 (en) 2017-12-31 2021-06-29 Hyliion Inc. Electric vehicle energy store with fuel tank form factor and mounting configuration
US11351979B2 (en) 2017-12-31 2022-06-07 Hyliion Inc. Supplemental electric drive with primary engine recognition for electric drive controller adaptation
US10889288B2 (en) 2017-12-31 2021-01-12 Hyliion Inc. Electric drive controller adaptation to through-the-road (TTR) coupled primary engine and/or operating conditions
US11091133B2 (en) 2017-12-31 2021-08-17 Hyliion Inc. Vehicle immobilization mechanism
US11046302B2 (en) 2017-12-31 2021-06-29 Hyliion Inc. On-vehicle characterization of primary engine with communication interface for crowdsourced adaptation of electric drive controllers
US11094988B2 (en) 2017-12-31 2021-08-17 Hyliion Inc. Regenerative electrical power system with state of charge management in view of predicted and-or scheduled stopover auxiliary power requirements
US10960873B2 (en) * 2018-02-13 2021-03-30 Ford Global Technologies, Llc System and method for a range extender engine of a hybrid electric vehicle
US10953864B2 (en) * 2018-02-13 2021-03-23 Ford Global Technologies, Llc System and method for a range extender engine of a hybrid electric vehicle
US10829104B2 (en) 2018-02-19 2020-11-10 Ge Global Sourcing Llc Hybrid vehicle control system
US11107002B2 (en) * 2018-06-11 2021-08-31 Traxen Inc. Reinforcement learning based ground vehicle control techniques
DE102018203975A1 (de) * 2018-03-15 2019-09-19 Bayerische Motoren Werke Aktiengesellschaft Fahrerassistenzverfahren für ein Fahrzeug, Fahrerassistenzsystem und Fahrzeug mit einem derartigen Fahrerassistenzsystem
EP3759003B1 (en) * 2018-04-02 2023-08-02 Cummins Inc. Engine friction monitor
US11794757B2 (en) 2018-06-11 2023-10-24 Colorado State University Research Foundation Systems and methods for prediction windows for optimal powertrain control
CN108860132A (zh) * 2018-06-25 2018-11-23 北京理工大学 一种増程器动态协调控制方法
US10906553B2 (en) * 2018-07-30 2021-02-02 Toyota Motor Engineering & Manufactuiring North America, Inc. Systems and methods for vehicle acceleration event prediction inhibit
US11015480B2 (en) * 2018-08-21 2021-05-25 General Electric Company Feed forward load sensing for hybrid electric systems
JP7430055B2 (ja) * 2018-12-28 2024-02-09 トランスポーテーション アイピー ホールディングス,エルエルシー ハイブリッド推進システム及びこれを制御する方法
DE102019200653A1 (de) * 2019-01-18 2020-07-23 Hyundai Motor Company Verfahren zum Betreiben eines Hybridelektrofahrzeugs und Hybridelektrofahrzeug
US11325494B2 (en) 2019-02-25 2022-05-10 Toyota Research Institute, Inc. Systems, methods, and storage media for determining a target battery charging level for a drive route
CN110265996B (zh) * 2019-02-26 2023-04-07 国网吉林省电力有限公司 一种适于光伏/风电功率预测的时间特征尺度建模方法
DE102019205520A1 (de) * 2019-04-16 2020-10-22 Robert Bosch Gmbh Verfahren zum Ermitteln von Fahrverläufen
JP7238750B2 (ja) * 2019-12-11 2023-03-14 トヨタ自動車株式会社 走行制御装置、方法、プログラムおよび車両
KR20210076223A (ko) * 2019-12-13 2021-06-24 현대자동차주식회사 하이브리드 차량 및 그 제어 방법
EP4176485A4 (en) * 2020-09-14 2024-07-31 Bia Power Llc ELECTROCHEMICAL ENERGY STORAGE SYSTEM FOR HIGH ENERGY AND POWER REQUIREMENTS
US11718298B2 (en) 2020-10-21 2023-08-08 Cummins Inc. Methods and systems for coordinating predictive cruise control, engine-off coasting, and hybrid power split
JP7342843B2 (ja) * 2020-11-17 2023-09-12 トヨタ自動車株式会社 走行制御装置、方法およびプログラム
US11440532B2 (en) * 2021-01-04 2022-09-13 Ford Global Technologies, Llc Method and system for controlling vehicle engine pull-down
CN112896171B (zh) * 2021-02-19 2022-07-22 联合汽车电子有限公司 车辆的控制方法、装置、设备、车辆和存储介质
CN113492827A (zh) * 2021-06-23 2021-10-12 东风柳州汽车有限公司 一种混合动力汽车能量管理方法及装置
CN113759755B (zh) * 2021-09-24 2024-05-10 上海汽车集团股份有限公司 基于混动系统的动力学仿真方法、装置、设备和存储介质
DE102021212315A1 (de) 2021-11-02 2023-05-04 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Überwachung und Steuerung eines Batteriepacks, System zur Überwachung und Steuerung eines Batteriepacks, Batteriemanagementsystem
EP4365042A1 (en) * 2022-11-04 2024-05-08 Volvo Truck Corporation Method for controlling a vehicle driveline comprising a first driving mode and a second driving mode
CN117002472B (zh) * 2023-08-02 2024-04-19 中汽研汽车检验中心(广州)有限公司 一种混合动力电动汽车能量管理优化方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253715A (ja) * 2006-03-22 2007-10-04 Fujitsu Ten Ltd 車両制御装置および車両制御方法
JP2013115863A (ja) * 2011-11-25 2013-06-10 Honda Motor Co Ltd バッテリ管理システム
JP2013160522A (ja) * 2012-02-01 2013-08-19 Toyota Motor Corp 車両の運転支援装置

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2153961A1 (de) 1971-10-29 1973-05-03 Volkswagenwerk Ag Hybrid-antrieb
US3870116A (en) 1973-08-15 1975-03-11 Joseph Seliber Low pollution and fuel consumption flywheel drive system for motor vehicles
US4309620A (en) 1979-12-03 1982-01-05 Calspan Corporation Flywheel electric transmission apparatus
US4423794A (en) 1981-03-12 1984-01-03 The Garrett Corporation Flywheel assisted electro-mechanical drive system
US4625823A (en) 1984-09-17 1986-12-02 Aisin Seiki Kabushiki Kaisha Control system and method for a flywheel type power delivery system
JPS6251729A (ja) 1985-08-30 1987-03-06 Isuzu Motors Ltd 内燃機関のタ−ボチヤ−ジヤの制御装置
JPH0211822A (ja) 1988-06-29 1990-01-16 Isuzu Motors Ltd 回転電機付ターボチャージャの駆動装置
JPH02223627A (ja) 1989-02-27 1990-09-06 Isuzu Motors Ltd 車両のエネルギー回収装置
GB9318591D0 (en) 1993-09-08 1993-10-27 Ellis Christopher W H Kinetic energy storage system
US5427194A (en) 1994-02-04 1995-06-27 Miller; Edward L. Electrohydraulic vehicle with battery flywheel
US6443125B1 (en) 1995-05-17 2002-09-03 Charles Mendler High efficiency vehicle and engine
US5636509A (en) 1995-10-20 1997-06-10 Abell; Irwin R. Flywheel engine improvements
US5713426A (en) 1996-03-19 1998-02-03 Jeol Ltd. Hybrid vehicle
JP3861321B2 (ja) 1996-05-02 2006-12-20 トヨタ自動車株式会社 ハイブリッド車
US6018694A (en) 1996-07-30 2000-01-25 Denso Corporation Controller for hybrid vehicle
US5877414A (en) 1997-07-11 1999-03-02 Ford Motor Company Vehicle road load simulation using effective road profile
JP3216082B2 (ja) 1997-09-17 2001-10-09 本田技研工業株式会社 ハイブリッド車両の制御装置
JPH11125328A (ja) 1997-10-27 1999-05-11 Honda Motor Co Ltd ハイブリッド車両
JP3447937B2 (ja) 1997-11-18 2003-09-16 本田技研工業株式会社 ハイブリッド車両
JP3456624B2 (ja) * 1997-11-28 2003-10-14 本田技研工業株式会社 ハイブリッド車両の制御装置
JP3847438B2 (ja) 1998-02-03 2006-11-22 本田技研工業株式会社 ハイブリッド車両の制御装置
US6205379B1 (en) 1998-09-04 2001-03-20 Toyota Jidosha Kabushiki Kaisha Controller for hybrid vehicle wherein one and the other of front and rear wheels are respectively driven by engine and electric motor
US6554088B2 (en) 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
US6242873B1 (en) 2000-01-31 2001-06-05 Azure Dynamics Inc. Method and apparatus for adaptive hybrid vehicle control
JP3909641B2 (ja) 2000-04-05 2007-04-25 スズキ株式会社 ハイブリッド車両の制御装置
DE10022113A1 (de) 2000-05-06 2001-11-15 Daimler Chrysler Ag Hybridantrieb für Kraftfahrzeuge
US6500089B2 (en) 2000-10-31 2002-12-31 Ford Global Technologies, Inc. Method and arrangement in a hybrid vehicle for maximizing efficiency by operating the engine at sub-optimum conditions
WO2003023942A1 (en) 2001-09-13 2003-03-20 Sibley Lewis B Flywheel energy storage systems
EP1300562A1 (en) 2001-10-04 2003-04-09 Visteon Global Technologies, Inc. Control system for an internal combustion engine boosted with an electronically controlled compressor
EP1357275A1 (en) 2002-04-26 2003-10-29 Visteon Global Technologies, Inc. Modelling of the thermal behaviour of a switched reluctance motor driving a supercharger of an internal combustion engine
JP4104406B2 (ja) 2002-09-20 2008-06-18 本田技研工業株式会社 ハイブリッド車両
JP3866202B2 (ja) 2003-01-22 2007-01-10 本田技研工業株式会社 ハイブリッド車両の制御装置
US6962223B2 (en) 2003-06-26 2005-11-08 George Edmond Berbari Flywheel-driven vehicle
US6931850B2 (en) 2003-09-10 2005-08-23 The Regents Of The Univesity Of California Exhaust gas driven generation of electric power and altitude compensation in vehicles including hybrid electric vehicles
US7870802B2 (en) 2004-10-29 2011-01-18 Lass Stanley E Rotary start stop mechanism
US7076954B1 (en) 2005-03-31 2006-07-18 Caterpillar Inc. Turbocharger system
US20070144175A1 (en) 2005-03-31 2007-06-28 Sopko Thomas M Jr Turbocharger system
CN101501699A (zh) 2005-04-08 2009-08-05 里卡多公司 用于道路轨迹和速度优化的车辆底盘和动力传动系统配置工具
US20070012493A1 (en) 2005-06-21 2007-01-18 Jones Steven M Dual hybrid propulsion system
US8972161B1 (en) * 2005-11-17 2015-03-03 Invent.Ly, Llc Power management systems and devices
US20070150174A1 (en) 2005-12-08 2007-06-28 Seymour Shafer B Predictive navigation
US7654355B1 (en) 2006-01-17 2010-02-02 Williams Kevin R Flywheel system for use with electric wheels in a hybrid vehicle
ATE440762T1 (de) * 2006-04-03 2009-09-15 Harman Becker Automotive Sys Verfahren und system zur kontrolle eines hybridfahrzeugs
DE102006019031A1 (de) 2006-04-25 2007-10-31 Volkswagen Ag Verfahren zur Momentensteuerung einer Hybridantriebseinheit sowie Hybridantriebseinheit
US20080022686A1 (en) 2006-07-31 2008-01-31 Caterpillar Inc. Powertrain and method including HCCI engine
JP2010508456A (ja) 2006-08-23 2010-03-18 ザ ティムケン カンパニー 電力生成機能を備える可変速スーパーチャージャ
KR101179637B1 (ko) * 2006-09-28 2012-09-04 도요타 지도샤(주) 차량의 제어장치 및 차량의 제어방법, 차량의 제어방법을 컴퓨터에 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록매체
JP4314257B2 (ja) * 2006-09-28 2009-08-12 トヨタ自動車株式会社 車両の表示装置および車両の表示装置の制御方法、プログラム、およびプログラムを記録した記録媒体
EP2111502A2 (en) 2007-01-31 2009-10-28 Turbodyne Technologies, Inc. Generation and management of mass air flow
US7454285B2 (en) 2007-03-13 2008-11-18 Ricardo, Inc. Optimized flex fuel powertrain
GB0707280D0 (en) 2007-04-16 2007-05-23 Ricardo Uk Ltd Flywheel arrangement for vehicles
US8050856B2 (en) 2007-04-18 2011-11-01 Chrysler Group Llc Methods and systems for powertrain optimization and improved fuel economy
US8265813B2 (en) 2007-09-11 2012-09-11 GM Global Technology Operations LLC Method and control architecture for optimization of engine fuel-cutoff selection and engine input torque for a hybrid powertrain system
US8043194B2 (en) 2007-10-05 2011-10-25 Ford Global Technologies, Llc Vehicle creep control in a hybrid electric vehicle
US8095254B2 (en) 2007-10-29 2012-01-10 GM Global Technology Operations LLC Method for determining a power constraint for controlling a powertrain system
US8897975B2 (en) 2007-11-04 2014-11-25 GM Global Technology Operations LLC Method for controlling a powertrain system based on penalty costs
US8195349B2 (en) 2007-11-07 2012-06-05 GM Global Technology Operations LLC Method for predicting a speed output of a hybrid powertrain system
FR2923438B1 (fr) * 2007-11-12 2010-03-12 Renault Sas Procede et systeme de gestion du fonctionnement d'un vehicule automobile en fonction de conditions de roulage
US7691027B2 (en) 2007-11-29 2010-04-06 Ford Global Technologies, Llc Idle speed control of a hybrid electric vehicle
US8478466B2 (en) 2007-12-27 2013-07-02 Byd Co. Ltd. Hybrid vehicle having multi-mode controller
JP4697247B2 (ja) * 2008-03-03 2011-06-08 日産自動車株式会社 ハイブリッド車両
US8374781B2 (en) * 2008-07-09 2013-02-12 Chrysler Group Llc Method for vehicle route planning
DE102008036284B4 (de) 2008-08-04 2013-09-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Antriebsstrang für ein Kraftfahrzeug
US8706409B2 (en) 2009-11-24 2014-04-22 Telogis, Inc. Vehicle route selection based on energy usage
GB2466429B8 (en) 2008-12-16 2014-08-06 Ford Global Tech Llc A flywheel driveline and control arrangement
WO2010081837A1 (en) 2009-01-16 2010-07-22 Tele Atlas B.V. Method for creating speed profiles for digital maps
US7931107B2 (en) 2009-02-02 2011-04-26 Jones Jr John Vehicle kinetic energy utilization transmission system
US8126684B2 (en) 2009-04-10 2012-02-28 Livermore Software Technology Corporation Topology optimization for designing engineering product
DE102009034510A1 (de) 2009-07-24 2011-04-14 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit aufgeladenem Verbrennungsmotor sowie Verfahren zum Betreiben eines Fahrzeugs mit aufgeladenem Verbrennungsmotor
US8142329B2 (en) 2009-09-18 2012-03-27 Ford Global Technologies, Llc Controlling torque in a flywheel powertrain
EP2491606A1 (en) 2009-10-20 2012-08-29 Ricardo Uk Limited Energy control
US20110100735A1 (en) 2009-11-05 2011-05-05 Ise Corporation Propulsion Energy Storage Control System and Method of Control
JP2011126321A (ja) * 2009-12-15 2011-06-30 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
US7996344B1 (en) 2010-03-08 2011-08-09 Livermore Software Technology Corporation Multi-objective evolutionary algorithm based engineering design optimization
US20110295433A1 (en) 2010-06-01 2011-12-01 Caterpillar, Inc. System and method for providing power to a hydraulic system
JP5589076B2 (ja) 2010-06-15 2014-09-10 本田技研工業株式会社 自動車用駆動システムおよび自動車用駆動システムの制御方法
US8942919B2 (en) * 2010-10-27 2015-01-27 Honda Motor Co., Ltd. BEV routing system and method
US8930123B2 (en) * 2010-11-19 2015-01-06 International Business Machines Corporation Systems and methods for determining traffic intensity using information obtained through crowdsourcing
EP2463496A1 (en) 2010-12-10 2012-06-13 Perkins Engines Company Limited Multiple turbocharger control
WO2012097349A2 (en) 2011-01-13 2012-07-19 Cummins Inc. System, method, and apparatus for controlling power output distribution in a hybrid power train
US9028362B2 (en) 2011-02-01 2015-05-12 Jing He Powertrain and method for a kinetic hybrid vehicle
CA2831665C (en) 2011-03-29 2016-05-31 Innovus Power, Inc. Generator
US9108528B2 (en) 2011-04-06 2015-08-18 Gm Global Technoogy Operations Llc Open modular electric powertrain and control architecture
US8990005B2 (en) 2011-04-22 2015-03-24 Bayerische Motoren Werke Aktiengesellschaft System and method for providing georeferenced predictive information to motor vehicles
US20120290149A1 (en) * 2011-05-09 2012-11-15 Ford Global Technologies, Llc Methods and Apparatus for Selective Power Enablement with Predictive Capability
US8386091B2 (en) 2011-05-09 2013-02-26 Ford Global Technologies, Llc Methods and apparatus for dynamic powertrain management
US20130024179A1 (en) * 2011-07-22 2013-01-24 General Electric Company Model-based approach for personalized equipment degradation forecasting
US20130046526A1 (en) 2011-08-18 2013-02-21 Sermet Yücel Selecting a Vehicle to Optimize Fuel Efficiency for a Given Route and a Given Driver
JP2013071551A (ja) * 2011-09-27 2013-04-22 Aisin Seiki Co Ltd ハイブリッド車両の制御装置
US9315178B1 (en) * 2012-04-13 2016-04-19 Google Inc. Model checking for autonomous vehicles
DE102013203042A1 (de) 2012-04-17 2013-10-17 Ford Global Technologies, Llc Turbolader für einen Verbrennungsmotor und Verfahren zum Betreiben eines turbogeladenen Verbrennungsmotors
US8892290B2 (en) * 2012-05-04 2014-11-18 Ford Global Technologies, Llc Methods and systems for providing uniform driveline braking
US8562484B1 (en) 2012-05-07 2013-10-22 Ford Global Technologies, Llc Method and apparatus for starting a turbocharged engine in a hybrid vehicle
JP5538475B2 (ja) * 2012-05-25 2014-07-02 本田技研工業株式会社 外部診断装置、車両診断システム及び車両診断方法
US8615336B1 (en) 2012-05-31 2013-12-24 Rockwell Collins, Inc. System and method for controlling power in a hybrid vehicle using cost analysis
JP5631367B2 (ja) * 2012-08-09 2014-11-26 本田技研工業株式会社 経路探索装置
DE102012015961A1 (de) * 2012-08-11 2014-02-13 Udo Sorgatz Vorrichtung zum Antrieb einer Maschine mit instationärem Leistungsbedarf
KR20140044686A (ko) 2012-10-05 2014-04-15 현대자동차주식회사 하이브리드 자동차 및 하이브리드 자동차의 구동 제어 방법
FR2996510B1 (fr) * 2012-10-08 2016-03-25 Peugeot Citroen Automobiles Sa Procede et dispositif d’aide aux decisions de couplage/ decouplage d'une machine d'un vehicule hybride, en fonction du couple offert par le moteur thermique
JP5811107B2 (ja) 2013-01-16 2015-11-11 トヨタ自動車株式会社 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両、ならびにハイブリッド車両の制御方法
US9952600B2 (en) * 2013-02-03 2018-04-24 Michael H Gurin Systems for a shared vehicle
JP5646003B2 (ja) 2013-05-23 2014-12-24 三菱電機株式会社 車両の電源供給装置
US9188505B2 (en) * 2013-06-21 2015-11-17 Ford Global Technologies, Llc Method and system for cylinder compression diagnostics
US9587954B2 (en) * 2013-07-10 2017-03-07 Ford Global Technologies, Llc System and method for vehicle routing using stochastic optimization
US9789756B2 (en) 2014-02-12 2017-10-17 Palo Alto Research Center Incorporated Hybrid vehicle with power boost
US9676382B2 (en) 2014-04-17 2017-06-13 Palo Alto Research Center Incorporated Systems and methods for hybrid vehicles with a high degree of hybridization
US9751521B2 (en) 2014-04-17 2017-09-05 Palo Alto Research Center Incorporated Control system for hybrid vehicles with high degree of hybridization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253715A (ja) * 2006-03-22 2007-10-04 Fujitsu Ten Ltd 車両制御装置および車両制御方法
JP2013115863A (ja) * 2011-11-25 2013-06-10 Honda Motor Co Ltd バッテリ管理システム
JP2013160522A (ja) * 2012-02-01 2013-08-19 Toyota Motor Corp 車両の運転支援装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173898A (ja) * 2016-03-18 2017-09-28 グローリー株式会社 貨幣処理装置及び貨幣処理システム
JP2018137900A (ja) * 2017-02-22 2018-08-30 トヨタ自動車株式会社 燃料電池車両およびその制御方法
US10780787B2 (en) 2017-02-22 2020-09-22 Toyota Jidosha Kabushiki Kaisha Fuel cell vehicle and control method thereof
JP2019189216A (ja) * 2018-04-27 2019-10-31 本田技研工業株式会社 予想的車線変更のためのシステム及び方法
KR20210058704A (ko) * 2019-11-12 2021-05-24 도요타지도샤가부시키가이샤 주행 제어 장치, 주행 제어 방법 및 비일시적 기억 매체
KR102477397B1 (ko) * 2019-11-12 2022-12-15 도요타지도샤가부시키가이샤 주행 제어 장치, 주행 제어 방법 및 비일시적 기억 매체
WO2021199580A1 (ja) * 2020-03-30 2021-10-07 日立Astemo株式会社 車両制御装置、および、車両制御方法
JP2021154968A (ja) * 2020-03-30 2021-10-07 日立Astemo株式会社 車両制御装置、および、車両制御方法
JP7256141B2 (ja) 2020-03-30 2023-04-11 日立Astemo株式会社 車両制御装置、および、車両制御方法

Also Published As

Publication number Publication date
EP2933157A1 (en) 2015-10-21
KR20150120286A (ko) 2015-10-27
US9751521B2 (en) 2017-09-05
US10625729B2 (en) 2020-04-21
KR102238858B1 (ko) 2021-04-12
US20150298684A1 (en) 2015-10-22
EP2933157B1 (en) 2022-06-22
CN105035076B (zh) 2019-06-14
JP6758025B2 (ja) 2020-09-23
US20170361832A1 (en) 2017-12-21
CN105035076A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
US10625729B2 (en) Control system for hybrid vehicles with high degree of hybridization
US20210086658A1 (en) Systems And Methods For Optimizing Travel Time Using Route Information
US9043060B2 (en) Methods, systems, and apparatuses for driveline load management
CN102233807B (zh) 自学习卫星导航辅助混合动力车辆控制系统
US9701302B2 (en) Energy management device for a vehicle having a plurality of different energy sources
US8190318B2 (en) Power management systems and methods in a hybrid vehicle
US7360615B2 (en) Predictive energy management system for hybrid electric vehicles
US10850616B2 (en) Using vehicle systems to generate a route database
US20130073113A1 (en) Vehicle and method for estimating a range for the vehicle
US20220363238A1 (en) Method and system for controlling a powertrain in a hybrid vehicle
KR20170006915A (ko) 친환경 차량의 저전압 직류 변환기의 출력 제어 방법, 및 친환경 차량의 저전압 직류 변환기
CN111976699B (zh) 一种车辆能量管理装置和方法
WO2009126554A1 (en) Energy economy mode using preview information
CN117962857A (zh) 预测功率分配的分级最优控制器
US20200039498A1 (en) Modulation of battery regeneration for a hybrid vehicle
JP2013169915A (ja) ハイブリッド車両の制御装置
Freuer et al. Consumption optimization in battery electric vehicles by autonomous cruise control using predictive route data and a radar system
KR20170027807A (ko) 차량의 준비 수단에 대한 제어
Al-Samari Impact of intelligent transportation systems on parallel hybrid electric heavy duty vehicles
Khanra et al. Driving Assistance for Optimal Trip Planning of Electric Vehicle Using Multi-objective Evolutionary Algorithms
WO2024084712A1 (ja) Socチャートを用いた計画発電蓄電制御技術
Abdrakhmanov Sub-optimal Energy Management Architecture for Intelligent Hybrid Electric Bus: Deterministic vs. Stochastic DP strategy in Urban Conditions
AUVERGNE RUSTEM ABDRAKHMANOV
WO2019030976A1 (ja) 制御計画作成装置、制御計画作成方法及び制御計画作成システム
Ganji Intelligent control and look-ahead energy management of hybrid electric vehicles

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150410

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180206

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180206

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180509

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190510

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190522

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200901

R150 Certificate of patent or registration of utility model

Ref document number: 6758025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250