CN104965117B - 高线性快速峰值检测器 - Google Patents

高线性快速峰值检测器 Download PDF

Info

Publication number
CN104965117B
CN104965117B CN201510333107.2A CN201510333107A CN104965117B CN 104965117 B CN104965117 B CN 104965117B CN 201510333107 A CN201510333107 A CN 201510333107A CN 104965117 B CN104965117 B CN 104965117B
Authority
CN
China
Prior art keywords
current
transistor
source
input signal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510333107.2A
Other languages
English (en)
Other versions
CN104965117A (zh
Inventor
文俊·苏
阿里斯托泰莱·哈奇克里斯托斯
马尔科·卡西亚
秋参·纳拉通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN104965117A publication Critical patent/CN104965117A/zh
Application granted granted Critical
Publication of CN104965117B publication Critical patent/CN104965117B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/04Measuring peak values or amplitude or envelope of ac or of pulses

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Amplifiers (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

本发明描述一种具有可变偏压电流及/或可变偏压电压的高线性快速峰值检测器。在一示范性设计中,所述峰值检测器包括晶体管、可变电流源、电容器及反馈电路。所述晶体管接收输入信号并提供源极电流。所述可变电流源接收所述输入信号,在所述输入信号为低时提供高偏压电流,且在所述输入信号为高时提供低偏压电流。所述电容器在所述输入信号为高时由所述源极电流充电,且在所述输入信号为低时由所述高偏压电流放电。所述反馈电路接收来自所述电容器的检测到的信号,且在所述输入信号为高时为所述晶体管提供较高偏压电压,此举产生来自所述晶体管的较高源极电流。

Description

高线性快速峰值检测器
分案申请的相关信息
本案是分案申请。该分案的母案是申请日为2010年8月27日、申请号为201080041988.6、发明名称为“高线性快速峰值检测器”的发明专利申请案。
根据35 U.S.C.§119主张优先权
本专利申请案主张2009年8月27日申请的标题为“高线性快速峰值检测器(HIGHLINEAR FAST PEAK DETECTOR)”的第61/237,625号美国临时申请案的优先权,所述临时申请案已转让给本案受让人,且以引用的方式明确地并入本文中。
技术领域
本发明大体上涉及电子装置,且更具体地说,涉及一种峰值检测器。
背景技术
无线通信装置通常包括发射器以支持数据发射。所述发射器通常包括功率放大器(PA)以放大射频(RF)信号并提供高输出功率。所述功率放大器可经设计以驱动(例如)50欧姆的特定负载阻抗。负载阻抗可归因于各种扰动而变化,且可导致功率放大器观测到高峰值电压。高峰值电压可超出可确保功率放大器的可靠操作的电平。可能需要检测高峰值电压,并在必要时执行校正动作,使得可保护功率放大器不受高峰值电压影响。
发明内容
一方面,本申请涉及一种设备。所述设备包含:峰值检测器,其用以接收输入信号并提供输出信号,所述峰值检测器包含:第一晶体管,其用以接收所述输入信号并提供源极电流;电容器,其耦合到所述第一晶体管,所述电容器在所述输入信号为高时通过所述源极电流充电;及反馈电路,其耦合到所述第一晶体管,且用以接收指示所述输入信号的包络的检测到的信号,且用以为所述第一晶体管提供可变偏压电压。
另一方面,本申请涉及一种设备。所述设备包含:峰值检测器,其用以接收输入信号并提供输出信号,所述峰值检测器包含:第一晶体管,其用以接收所述输入信号并提供源极电流;可变电流源,其耦合到所述第一晶体管,且接收所述输入信号并基于所述输入信号提供可变偏压电流;电容器,其耦合到所述第一晶体管及所述可变电流源,所述电容器在所述输入信号为高时通过所述源极电流充电,且在所述输入信号为低时通过所述可变偏压电流放电;及反馈电路,其耦合到所述第一晶体管,且用以接收指示所述输入信号的包络的检测到的信号,且为所述第一晶体管提供可变偏压电压。
附图说明
图1展示无线通信装置的框图。
图2展示PA模块及保护电路的框图。
图3展示具有固定偏压电流及固定偏压电压的峰值检测器。
图4展示漏极电流对漏极到源极电压的一系列曲线。
图5展示具有可变偏压电流的峰值检测器。
图6展示具有可变偏压电压的峰值检测器。
图7展示具有可变偏压电流及可变偏压电压的峰值检测器。
图8展示具有可变电流源及反馈电路的峰值检测器。
图9展示图8中的峰值检测器中的各种信号的曲线。
图10展示不同峰值检测器的峰值检测误差的曲线。
图11展示用于执行峰值检测的过程。
具体实施方式
下文所陈述的具体描述内容意在作为本发明的示范性设计的描述,且无意表示其中可实践本发明的仅有设计。术语“示范性”在本文中用以表示“充当实例、例子或说明”。本文中被描述为“示范性”的任何设计未必应解释为比其它设计优选或有利。具体描述内容出于提供对本发明的示范性设计的透彻理解的目的而包括特定细节。对于所属领域的技术人员来说将显而易见,可在无这些特定细节的情况下实践本文中所描述的示范性设计。在一些情况下,以框图形式来展示众所周知的结构及装置,以便避免使本文所呈现的示范性设计的新颖性不清楚。
本文中描述可检测高峰值电压的高线性快速峰值检测器的各种示范性设计。所述峰值检测器可用于各种电子装置,例如无线通信装置、蜂窝式电话、个人数字助理(PDA)、手持式装置、无线调制解调器、膝上型计算机、无绳电话、蓝牙装置、消费型电子装置等。为了清楚起见,下文描述峰值检测器针对无线通信装置的使用。
图1展示无线通信装置100的示范性设计的框图。在此示范性设计中,无线装置100包括数据处理器110及收发器120。收发器120包括支持双向无线通信的发射器130及接收器150。一般来说,无线装置100可包括用于任何数目个通信系统及任何数目个频带的任何数目个发射器及任何数目个接收器。
在发射路径中,数据处理器110处理待发射的数据,且将模拟输出基带信号提供给发射器130。在发射器130内,模拟输出基带信号由放大器(Amp)132放大,由低通滤波器134滤波以移除由数/模转换所产生的图像,由可变增益放大器(VGA)136放大,且由混频器138从基带上变频转换到RF。经上变频转换的信号由滤波器140滤波,由驱动器放大器142及功率放大器144进一步放大,路由通过开关/双工器146,且经由天线148发射。
在接收路径中,天线148从基站及/或其它发射器台接收信号,并提供接收到的信号,所述信号路由通过开关/双工器146并提供给接收器150。在接收器150内,接收到的信号由低噪声放大器(LNA)152放大,由带通滤波器154滤波,且由混频器156从RF下变频转换到基带。经下变频转换的信号由VGA 158放大,由低通滤波器160滤波,且由放大器162放大以获得提供给数据处理器110的模拟输入基带信号。
图1展示实施直接转换架构的发射器130及接收器150,所述直接转换架构于一个级中在RF与基带之间对信号进行频率转换。发射器130及/或接收器150还可实施超外差架构,其于多个级中在RF与基带之间对信号进行频率转换。本机振荡器(LO)产生器170产生发射及接收LO信号,并将所述发射及接收LO信号分别提供给混频器138及156。锁相环(PLL)172从数据处理器110接收控制信息,且将控制信号提供给LO产生器170来以恰当频率产生发射及接收LO信号。
图1展示示范性收发器设计。一般来说,发射器130及接收器150中的信号的调节可由放大器、滤波器、混频器等的一个或一个以上级来执行。这些电路可不同于展示于图1中的配置而进行布置。此外,图1中未展示的其它电路也可用于发射器及接收器中。举例来说,匹配电路可用以使图1中的各种有源电路匹配。还可省略图1中的一些电路。可在一个或一个以上模拟集成电路(IC)、RF IC(RFIC)、混频信号IC等上实施收发器120的全部或一部分。举例来说,发射器130中的放大器132到功率放大器144可实施于RFIC上。驱动器放大器142及功率放大器144还可实施于RFIC外部的另一IC上。
数据处理器110可执行无线装置100的各种功能,例如,对所发射及接收的数据的处理。存储器112可存储用于数据处理器110的程序代码及数据。数据处理器110可实施于一个或一个以上专用集成电路(ASIC)及/或其它IC上。
对于在无线装置中所使用的功率放大器来说,高输出功率以及高功率附加效率(PAE)为重要的。功率放大器可制造于IC上,以便获得较小大小、较低成本及其它优点。为了获得高输出功率及高PAE,基于硅的功率放大器可连接到较高电力供应电压或可能直接连接到电池。此外,为了降低成本以及插入损耗,功率放大器可在不通过绝缘体的情况下耦合到天线,所述绝缘体通常用以因负载失配而使反射信号衰减。因此,功率放大器中的晶体管的栅极及漏极可观测到高峰值电压。当功率放大器的输出处存在严重阻抗失配时,高峰值电压可为电力供应电压的3到4倍。严重负载失配可对应于高电压驻波比(VSWR),例如,10:1或以上的VSWR。峰值检测器可用以检测功率放大器所观测到的高峰值电压,使得可执行适当的校正动作。
图2展示限制峰值电压的功率放大器(PA)模块210及保护电路220的框图。PA模块210包括驱动器放大器(DA)242及功率放大器244,前述两者可对应于图1中的驱动器放大器142及功率放大器144。驱动器放大器242接收输入RF(RFin)信号,并以可配置增益放大输入RF(RFin)信号,并提供中间RF信号。功率放大器244进一步放大中间RF信号,并提供输出RF(RFout)信号。匹配电路246执行功率放大器244的输出阻抗匹配,且耦合于功率放大器244与天线248之间。匹配电路246可使功率放大器244的低输出阻抗(例如,2到4欧姆)与天线248的中等阻抗(例如,50欧姆)匹配。
保护电路220限制功率放大器244的输出处的峰值电压,且保护功率放大器244中的晶体管不被击穿。保护电路220还可被称为VSWR保护电路、PA保护电路等。在保护电路220内,衰减器250从功率放大器244接收RFout信号,且提供峰值检测器输入(Vin)信号,所述峰值检测器输入(Vin)信号可为RFout信号的经衰减版本。峰值检测器260检测Vin信号的峰值电压,且提供指示检测到的峰值电压的峰值检测器输出(Vout)信号。增益控制单元270从峰值检测器260接收Vout信号,且基于Vout信号产生增益控制信号。驱动器放大器242的增益通过增益控制信号来调整。
如图2中所示,PA模块210及保护电路220耦合于负反馈环中。保护电路220感测RFout信号的峰值电压,且在检测到高峰值电压时减小驱动器放大器242的增益。驱动器放大器242的减小的增益将减小RFout信号的振幅,其又将减小峰值电压。反馈环中的保护电路220可由此通过减小驱动器放大器242的增益来减小并限制RFout信号的峰值电压。
在一个示范性设计中,增益控制单元270包括误差放大器,所述误差放大器确定来自峰值检测器260的Vout信号与参考电压之间的误差,并基于所述误差产生增益控制信号。当峰值电压超出由参考电压设定的预定电平时,误差放大器减小驱动器放大器242的增益。
在另一示范性设计中,增益控制单元270包括一组比较器,所述组比较器比较来自峰值检测器260的Vout信号与一组参考电压,且提供一组数字比较器输出信号。数字电路接着处理比较器输出信号,且产生驱动器放大器242的增益控制信号。增益控制信号可经产生而具有滞后,以避免在检测到高峰值电压时在两个输出功率电平之间双态触发。当RFout信号超出高阈值时,可减小驱动器放大器242的增益。这将接着致使RFout信号的振幅减小。然而,仅在RFout信号降到低阈值以下时,才可使驱动器放大器242的增益增大,所述低阈值可设定为比高阈值低一滞后量。当增益改变时,滞后可避免增益因RFout信号包络中的阻尼振荡(ringing)而导致的双态触发。滞后可进一步允许保护电路220处置对RFout信号的振幅调制。
图3展示峰值检测器300的示意图,所述峰值检测器300可用于图2中的峰值检测器260。在峰值检测器300内,N沟道金氧半导体(NMOS)晶体管312的栅极接收Vin信号、源极耦合到节点X,且漏极耦合到电源(Vdd)。电流源314及电容器316并联耦合,且耦合于节点X与电路接地之间。NMOS晶体管322的栅极耦合到峰值检测器300的输出、源极耦合到节点Y,且漏极耦合到Vdd电源。电流源324耦合于节点Y与电路接地之间。运算放大器(op-amp)326的非反相输入耦合到节点X、反相输入耦合到节点Y,且输出耦合到NMOS晶体管322的栅极。电流源314及324各自提供固定电流Ibias。
峰值检测器300操作如下。NMOS晶体管312在Vin信号存在的情况下充当整流正向偏压二极管,且将电荷换向到电容器316上以获得经整流的正电压。为了进行电容器316的双向电荷传送,电流源314充当恒定电流吸收器,使得峰值检测器300可对时变波形作出响应。Vin信号可包括系统带宽内的调制频率的连续区。电容器316的电容及电流源314的偏压电流可经选择,使得可跟随并跟踪Vin信号上的包络的最高振幅及最快电压改变速率(dv/dt)。将电容器316上的所得检测到的电压提供给高输入阻抗运算放大器326以防止电荷从电容器316泄漏。
节点X处检测到的电压等于NMOS晶体管312的栅极处的电压减去NMOS晶体管312的栅极到源极电压(Vgs)。运算放大器326连接于负反馈环中,且设定NMOS晶体管322的栅极电压,使得节点Y处的电压与节点X处的电压匹配。NMOS晶体管322的栅极电压应与NMOS晶体管312的栅极电压匹配,因为NMOS晶体管322及电流源324为NMOS晶体管312及电流源314的复制品。NMOS晶体管322由此补偿NMOS晶体管312的Vgs电压。
图4展示NMOS晶体管的漏极电流(Id)对漏极到源极电压(Vds)的一系列曲线。可针对给定Vgs电压绘制Id对Vds的曲线。此曲线将展示Id电流随着Vds电压而增大,直到到达曲线中的拐点为止。在拐点之后,Id电流变平到最终值(理想地),且并不随着Vds电压增大而增大。图4展示针对三个不同Vgs电压Vgs1、Vgs2及Vgs3的三条曲线。如图4中所示,对应于逐渐变高的Vgs电压的曲线对应Id电流的逐渐变大的最终值。
回看图3,NMOS晶体管312提供源极电流Isource。源极电流包括(i)由来自电流源314的偏压电流及施加于NMOS晶体管312的栅极处的偏压电压确定的DC分量,所述DC分量并未展示于图3中,及(ii)由Vin信号确定的动态分量。充电电流Icharge等于来自NMOS晶体管312的源极电流减去来自电流源314的偏压电流。电容器316在源极电流大于偏压电流时通过充电电流充电,且在源极电流小于偏压电流时通过充电电流放电。电容器316的充电速度应足够快,以允许峰值检测器跟踪较大的快速上升的Vin信号,使得在需要时可采取校正动作从而防止对功率放大器的损害。电容器316不应过小以便限制Vout信号的纹波。
峰值检测器300可检测Vin信号的峰值电压,但可能具有一些缺陷。明确地说,如图4中所示,峰值检测器300因NMOS晶体管312的栅极与源极之间的非线性电压及电流特性而可能遭受低速度、不良的准确度及不良的线性。可通过选择偏压电流的适当值而进行速度、准确度及线性之间的折衷。为了检测较大的快速上升的Vin信号,来自NMOS晶体管312的源极电流应较大,且所有源极电流应用以为电容器316充电。然而,如图3中所示,提供源极电流的一部分作为偏压电流,且提供剩余部分作为充电电流。在此情况下,偏压电流应较小(但并非过小,因为这将限制NMOS晶体管312的速度)。相反地,为了跟随快速降低的Vin信号,来自NMOS晶体管312的源极电流应快速消失,且偏压电流应相当大,以使电容器316快速放电。遗憾的是,使用固定偏压电流及具有固定偏压电压的NMOS晶体管来获得较大的快速上升的Vin信号及快速降低的Vin信号两者的上述所要行为可能为困难或不可能的。
在一方面中,可使用可变偏压电流而非固定偏压电流,以便改进大的快速上升及快速降低的Vin信号的检测性能。在示范性设计中,偏压电流的量值可视Vin信号而定。明确地说,可针对较大Vin信号提供较小偏压电流,且反之亦然。这可改进Vin信号上升时的充电速度及Vin信号降低时的放电速度两者。
图5展示具有可变偏压电流的高线性快速峰值检测器500的示范性设计的示意图。在峰值检测器500内,NMOS晶体管512的栅极接收Vin信号、源极耦合到节点X,且漏极耦合到Vdd电源。可变电流源514及电容器516并联耦合且耦合于节点X与电路接地之间。NMOS晶体管522的栅极耦合到峰值检测器500的输出、源极耦合到节点Y,且漏极耦合到Vdd电源。电流源524耦合于节点Y与电路接地之间。运算放大器526的非反相输入耦合到节点X、反相输入耦合到节点Y,且输出耦合到NMOS晶体管522的栅极。电流源524提供固定电流Ibias。
在展示于图5中的示范性设计中,电流源514接收Vin信号,且提供可变偏压电流Ivar_bias。所述偏压电流可与Vin电压成反比。因此,电流源514对于较大Vin信号可提供较小偏压电流,且反之亦然。当Vin信号变高时,NMOS晶体管512因高Vin信号而提供较大的源极电流。由于偏压电流在Vin信号为高时较小,因此源极电流的大部分为电容器516充电,且提供源极电流的仅一小部分作为偏压电流。来自NMOS晶体管512的源极电流可由此具有类脉冲响应,且可允许峰值检测器500捕获快速上升的Vin信号。相反地,当Vin信号变低时,NMOS晶体管512因低Vin信号而提供较小的源极电流或零源极电流。偏压电流在Vin信号为低时较大,且可使电容器516更快地放电。
在Vin信号变高时减小偏压电流可改进电容器516的充电速度,因为更多源极电流可用以为电容器516充电。可为电容器516充电的速度则视源极电流的量值而定。较大源极电流可为电容器516更快地充电,且可允许峰值检测器跟踪较大的快速上升的Vin信号。可用较大NMOS晶体管512获得较大源极电流。然而,较大NMOS晶体管512将增大Vin信号上的负载,这可能是不合需要的。
在另一方面中,NMOS晶体管的偏压可经由反馈电路来变化,以使NMOS晶体管能够提供可变源极电流,这可改进大的快速上升的Vin信号的检测性能。反馈电路可基于Vin信号的包络来产生NMOS晶体管的可变偏压电压。明确地说,反馈电路可产生可变偏压电压,使得NMOS晶体管对于较大Vin信号振幅可提供较大源极电流,且对于较小Vin信号振幅可提供较小源极电流。当Vin信号上升时,此举可改进充电速度。
图6展示具有可变偏压电压的高线性快速峰值检测器502的示范性设计的示意图。峰值检测器502包括NMOS晶体管512及522、电容器516、电流源524及运算放大器526,其如上文针对图5中的峰值检测器500所描述予以耦合。峰值检测器502进一步包括固定电流源518、反馈电路520,及电阻器522。固定电流源518替换图5中的可变电流源514。反馈电路520的输入耦合到节点X,且输出耦合到电阻器522的一端。电阻器522的另一端耦合到NMOS晶体管512的栅极。
在展示于图6中的示范性设计中,反馈电路520接收节点X处检测到的电压(Vdet),并经由电阻器522将可变偏压电压(Vbias)提供给NMOS晶体管512的栅极。偏压电压可与检测到的电压相关(例如,与检测到的电压成正比)。NMOS晶体管512提供可变源极电流(Ivar_source),所述电流视可变偏压电压而定。明确地说,NMOS晶体管512对于较大偏压电压提供较大源极电流,且对于较小偏压电压提供较小源极电流。当Vin信号变高时,来自NMOS晶体管512的源极电流为电容器516充电,且检测到的电压上升。较高的检测到的电压致使偏压电压增大,其接着产生较大源极电流,所述较大源极电流改进充电速度,且允许峰值检测器502跟随大的快速上升的Vin信号。相反,当Vin信号变低时,来自NMOS晶体管512的源极电流减小到低值。电容器516通过来自电流源518的偏压电流放电,且检测到的电压降低。较低的检测到的电压致使偏压电压降低,其接着产生较小源极电流。可变源极电流可由此允许峰值检测器502更准确地检测大的快速上升的Vin信号,同时最小限度地影响降低的Vin信号的检测。
反馈电路520及NMOS晶体管512形成正反馈环530,所述正反馈环530尤其相对于大且快速的Vin信号可增大NMOS晶体管512的跨导/增益及源极电流两者。正反馈环自举NMOS晶体管512的栅极处的偏压电压,且迫使NMOS晶体管512在增大的Vin信号的情况下更多地导电。正反馈环可经设计以具有环带宽,所述带宽相对于RFout信号的RF频率为缓慢的,但相对于RFout信号的包络为快速的。举例来说,RF频率可为若干千兆赫(GHz),RFout信号的包络可为若干兆赫(MHz),且正反馈环的环带宽可为若干MHz。正反馈环还可经设计以具有小于一的低环增益(例如,具有0.2到0.5的环增益),以便避免NMOS晶体管512饱和并确保稳定响应。
图7展示具有可变偏压电流及可变偏压电压的高线性快速峰值检测器504的示范性设计的示意图。峰值检测器504包括图5中的峰值检测器500中的所有电路组件。峰值检测器504进一步包括反馈电路520及电阻器522,其如上文针对图6中的峰值检测器502所描述予以耦合。
峰值检测器504因以下各项的使用而可提供改进的充电速度及放电速度:(i)提供可变偏压电流(Ivar_bias)的可变电流源514,及(ii)使NMOS晶体管512能够提供可变源极电流(Ivar_source)的正反馈环。当Vin信号变高时,较大源极电流与较小偏压电流的组合允许电容器516被更快地充电。相反地,当Vin信号变低时,较小源极电流与较大偏压电流的组合允许电容器516被更快地放电。
可以各种方式来实施图5及图7中的可变电流源514以及图6及图7中的反馈电路520。可能需要实施电流源514及反馈电路520,使得这些电路并不引起Vin信号上的过度负载。
图8展示具有可变偏压电流及可变偏压电压的高线性快速峰值检测器506的示范性设计的示意图。峰值检测器506包括图7中的峰值检测器504中的所有电路组件。峰值检测器506包括可变电流源514的示范性设计及反馈电路520的示范性设计。
可变电流源514包括分压器810、控制晶体管816及电流镜820。分压器810是用电容器812及814来实施,所述电容器812及814串联耦合且耦合于NMOS晶体管512的栅极与电路接地之间。控制晶体管816是用NMOS晶体管来实施,所述NMOS晶体管的源极耦合到电路接地、栅极耦合到电容器812与814之间的共用节点,且漏极耦合到节点A。电阻器818的一端耦合到NMOS晶体管816的栅极,且另一端接收偏压电压(Vb)。
电流镜820是用NMOS晶体管822、824、832及834以及电流源836来实施。NMOS晶体管822及824以堆叠形式耦合。NMOS晶体管822的源极耦合到电路接地,且栅极耦合到节点A。NMOS晶体管824的源极耦合到NMOS晶体管822的漏极、栅极耦合到节点B,且漏极耦合到节点X。NMOS晶体管832及834也以堆叠形式耦合。NMOS晶体管832的源极耦合到电路接地,且栅极及漏极耦合到节点A。NMOS晶体管834的源极耦合到NMOS晶体管832的漏极,且栅极及漏极耦合到节点B。电流源836耦合于Vdd电源与NMOS晶体管834的漏极之间。NMOS晶体管832及834具有为1的正规化大小,且NMOS晶体管822及824具有为M的大小,其中M可为一或大于一。电流源836提供固定电流Ibias/M。
反馈电路520包括感测电路850、电流镜860,及电压产生器870。感测电路850是用NMOS晶体管852及电阻器854来实施。NMOS晶体管852的栅极耦合到节点X,且源极耦合到电阻器854的一端。电阻器854的另一端耦合到电路接地。电流镜860是用P沟道金氧半导体(PMOS)晶体管862及864来实施,所述晶体管的源极耦合到Vdd电源,且栅极耦合在一起。PMOS晶体管862的栅极及漏极耦合到NMOS晶体管852的漏极。PMOS晶体管864的漏极耦合到节点D。电压产生器870是用NMOS晶体管872及电流源874来实施。NMOS晶体管872的源极耦合到接地电路,且栅极及漏极耦合到节点D。电流源874耦合于Vdd电源与节点D之间。电阻器522耦合于节点D与NMOS晶体管512的栅极之间。
电流源514提供与Vin信号反相关的可变偏压电流。电流源514操作如下。电容器812及814作为Vin信号的动态分量的分压器操作。电容器812接收Vin信号,且电容器814将控制信号提供给NMOS晶体管816的栅极。控制信号为Vin信号的经衰减版本。
当Vin信号变高时,NMOS晶体管816接通,且拉低NMOS晶体管822及832的栅极处的电压。这致使经由NMOS晶体管822及824的偏压电流下降,并在Vin信号达到其峰值时逼近零。因为来自NMOS晶体管512的更多源极电流可用以为电容器516充电,所以小偏压电流在此情况下为需要的。由于以类似于NMOS晶体管822的方式断开NMOS晶体管832,因此来自电流源836的固定电流通过NMOS晶体管834及816。
相反地,当Vin信号变低时,NMOS晶体管816断开,且来自电流源836的固定电流流过NMOS晶体管832及834。为了实现快速响应,NMOS晶体管816并不完全断开,而是具有(例如)1到2微安(μA)的小泄漏电流。NMOS晶体管822及832为电流镜820的部分。NMOS晶体管822因通过NMOS晶体管832的电流Ibias/M及NMOS晶体管822及832的大小之间的比率M:1而提供电流Ibias。NMOS晶体管824及834作为共源共栅晶体管操作,其改进电流镜准确度,并在NMOS晶体管824的漏极处提供高输出阻抗。通过NMOS晶体管822及824的偏压电流使电容器516放电。
NMOS晶体管816可经设计以具有较小的大小,以减小Vin信号上的负载。电容器812及814的电容可经选择,使得NMOS晶体管816主要在Vin信号的预期电压范围的线性区中操作。在示范性设计中,电容器814具有可比电容器812的电容大3到4倍的电容,且提供给NMOS晶体管816的控制信号可为Vin信号的四分之一到五分之一。一般来说,电容值可经选择,使得(i)高Vin信号使NMOS晶体管816完全接通(但并非饱和),且(ii)低Vin信号使NMOS晶体管816断开(但并非完全关断)。
NMOS晶体管822及824在Vin信号为高时可提供小偏压电流(其可为Ibias的0%到10%),且在Vin信号为低时可提供大偏压电流(其可为Ibias的100%)。NMOS晶体管822及824可被操作,使得其在Vin信号为高时并不完全关断,使得这些NMOS晶体管在Vin信号变低时可更快地接通。当Vin信号为高时,小偏压电流可最小限度地影响电容器516的充电。大偏压电流可设定为任何合适值以获得所要放电速度及电容器516上的检测到的电压的所要纹波。充电电流及放电电流对于峰值检测器506可独立设定。
当Vin信号的包络为高时,反馈电路520使来自NMOS晶体管512的源极电流增大。反馈电路520操作如下。NMOS晶体管852及电阻器854作为感测节点X处的电压的感测电路操作,所述电压应跟随Vin信号的包络。NMOS晶体管852为源极跟随器,且电阻器854将NMOS晶体管852的源极电压转换为电流。当节点X处的检测到的电压增大时,通过MOS晶体管862及862的感测到的电流(Isensed)增大。PMOS晶体管862及864作为电流镜进行耦合,且通过PMOS晶体管864的镜射电流(Imirrored)与通过PMOS晶体管862的感测到的电流成比例。NMOS晶体管872作为可跟踪IC工艺、电力供应电压及温度(PVT)中的变化的电阻器而操作。来自PMOS晶体管864的可变镜射电流及来自电流源874的固定参考电流(Iref)通过NMOS晶体管872。偏压电压(Vbias)包括(i)由固定参考电流提供的固定分量,及(ii)与可变镜射电流成比例地变化的可变分量。通过PMOS晶体管864的较高镜射电流产生较高偏压电压,其使NMOS晶体管512的跨导/增益以及源极电流增大。相反地,当节点X处的检测到的电压降低时,感测到的电流降低,镜射电流也降低,且偏压电压降低。较低偏压电压使NMOS晶体管512的跨导以及源极电流降低。
图8展示可变电流源514及反馈电路520的示范性设计。电流源514以RF频率对Vin信号进行操作,且应足够快同时最小限度地对Vin信号加负载。反馈电路520以较低频率对Vin信号的包络进行操作,且应为稳定的。电流源514及反馈电路520还可以其它方式来实施。举例来说,反馈电路520可接收Vout信号而非检测到的信号。
图9展示图8中的峰值检测器506中的各种信号的曲线。在图9中,水平轴指示时间,且垂直轴指示电压(V)或电流(A)。图9展示Vin信号的曲线912、来自电流源514的可变偏压电流的曲线914、来自NMOS晶体管512的源极电流的曲线916,及电容器516的充电电流的曲线918。如图9中所示,当Vin信号变高时,偏压电流降低,源极电流增大,且充电电流增大。相反地,当Vin信号变低时,偏压电流增大,源极电流降低,且充电电流变为负。图9中的电流并非展示为按比例绘制。峰值偏压电流可为峰值源极电流的一部分。
图10展示本文中所描述的不同峰值检测器的峰值检测误差的曲线。在图10中,水平轴指示RFin信号的单位为dBm的发射功率。垂直轴指示峰值检测误差,其是来自峰值检测器的Vout信号与提供给峰值检测器的峰值Vin信号之间的误差。曲线1012展示图3中的峰值检测器300的峰值检测误差,所述峰值检测器300具有固定偏压电流及固定偏压电压。曲线1014展示图5中的峰值检测器500的峰值检测误差,所述峰值检测器500具有可变偏压电流及固定偏压电压。曲线1016展示图7中的峰值检测器504的峰值检测误差,所述峰值检测器504具有可变偏压电流及可变偏压电压。如图10中所示,峰值检测误差可通过使用本文中所描述的可变偏压电流及可变偏压电压而大体上减小。
本文中所描述的高线性快速峰值检测器可提供某些优点。第一,峰值检测器在可变偏压电流的情况下可具有较好准确度。第二,峰值检测器在可变偏压电流及通过正反馈提供的可变偏压电压的情况下可具有较好线性。第三,峰值检测器可具有增强的捕获大的急剧电压峰值的能力。第四,峰值检测器因PVT变化而可具有较小灵敏度。峰值检测器还可具有其它优点。
在示范性设计中,一种设备(例如,集成电路、无线装置等)可包括峰值检测器,所述峰值检测器可接收输入信号,提供输出信号且具有自适应偏压。峰值检测器可包括晶体管及电容器。晶体管可接收输入信号,提供源极电流,且具有自适应偏压。电容器可耦合到晶体管,且(例如)在输入信号为高时可通过源极电流进行充电。在示范性设计中,(例如)如图5、7及8中所示,晶体管可具有基于输入信号的前馈而产生的自适应偏压电流。在另一示范性设计中,(例如)如图6、7及8中所示,晶体管可具有基于来自电容器的检测到的信号的反馈而产生的自适应偏压电压。在又一示范性设计中,(例如)如图7及8中所示,晶体管可具有(i)基于输入信号的前馈而产生的自适应偏压电流,及(ii)基于来自电容器的检测到的信号的反馈而产生的自适应偏压电压。
在另一示范性设计中,一种设备可包括峰值检测器,所述峰值检测器可接收输入信号,提供输出信号,且具有可变偏压电流。举例来说,如图5中所示,峰值检测器可包括第一晶体管、可变电流源及电容器。第一晶体管(例如,图5中的NMOS晶体管512)可接收所述输入信号,并提供源极电流。可变电流源(例如,电流源514)可耦合到第一晶体管,可接收输入信号,且可基于输入信号提供可变偏压电流。可变电流源在输入信号为高时可提供低偏压电流,且在输入信号为低时可提供高偏压电流。电容器(例如,电容器516)可耦合到第一晶体管及可变电流源,在输入信号为高时可通过源极电流充电,且在输入信号为低时可通过可变偏压电流放电。
在示范性设计中,可变电流源可包括电流镜及第二晶体管。电流镜(例如,图8中的电流镜820)可提供可变偏压电流,且可由图8中的NMOS晶体管822及832形成。电流镜在输入信号为低时可被启用,且在输入信号为高时可被停用。第二晶体管(例如,NMOS晶体管816)可耦合到电流镜,且可基于输入信号而启用或停用电流镜。第二晶体管相较于第一晶体管可具有较小大小以减小输入信号上的负载。第二晶体管可接收基于输入信号而产生的控制信号,且可控制第三晶体管(例如,NMOS晶体管822)。第三晶体管在输入信号为低时可提供高偏压电流,且在输入信号为高时可提供低偏压电流。分压器(例如,分压器810)可接收输入信号,并将控制信号提供给第二晶体管。控制信号可为输入信号的一部分,且可避免完全断开第二晶体管以及第二晶体管对输入信号的削波(clipping)。
在另一示范性设计中,一种设备可包括峰值检测器,所述峰值检测器可接收输入信号,提供输出信号,且具有可变偏压电压。举例来说,如图6中所示,峰值检测器可包括第一晶体管、电容器及反馈电路。第一晶体管(例如,图6中的NMOS晶体管512)可接收所述输入信号,并提供源极电流。电容器(例如,电容器516)可耦合到第一晶体管,且在输入信号为高时可通过源极电流进行充电。反馈电路(例如,反馈电路520)可耦合到第一晶体管,可接收指示输入信号的包络的检测到的信号,且可为第一晶体管提供可变偏压电压。反馈电路在输入信号的包络为高时可提供较高偏压电压,且在输入信号的包络为低时可提供较低偏压电压。第一晶体管在较高偏压电压的情况下可提供较高源极电流,且在较低偏压电压的情况下可提供较低源极电流。
反馈电路及第一晶体管可耦合于正反馈环中。正反馈环可具有小于一的环增益以确保稳定性,及小于输入信号的中心频率的环带宽。
在一示范性设计中,反馈电路可包括感测电路、电流镜及电压产生器。感测电路(例如,感测电路850)可耦合到第一晶体管,可感测第一晶体管的源极电压,且可基于源极电压提供感测到的电流。电流镜(例如,电流镜860)可耦合到感测电流,可接收感测到的电流,且可提供镜射电流。电压产生器(例如,电压产生器870)可耦合到电流镜,且可基于镜射电流产生第一晶体管的可变偏压电压。
在一示范性设计中,感测电路可包括第二晶体管及电阻器。第二晶体管(例如,图8中的NMOS晶体管852)可耦合到第一晶体管,且可接收第一晶体管的源极电压。电阻器(例如,电阻器854)可耦合到第二晶体管,且可将第二晶体管的源极电压转换为感测到的电流。在一示范性设计中,电压产生器可包括电流源及第三晶体管。电流源(例如,电流源874)可提供参考电流。第三晶体管(例如,NMOS晶体管872)可作为电阻器操作,可接收镜射电流及参考电流,且可提供可变偏压电压。
在又一示范性设计中,一种设备可包括峰值检测器,所述峰值检测器可接收输入信号,提供输出信号,且具有可变偏压电流及可变偏压电压。(例如)如图7中所示,峰值检测器可包括第一晶体管、可变电流源、电容器及反馈电路。第一晶体管(例如,图7中的NMOS晶体管512)可接收所述输入信号,并提供源极电流。可变电流源(例如,电流源514)可耦合到第一晶体管,可接收输入信号,且可基于输入信号提供可变偏压电流。电容器(例如,电容器516)可耦合到第一晶体管及可变电流源,在输入信号为高时可通过源极电流充电,且在输入信号为低时可通过可变偏压电流放电。反馈电路可耦合到第一晶体管,可接收指示输入信号的包络的检测到的信号,且可为第晶体管提供可变偏压电压。
可变电流源在输入信号为高时可提供低偏压电流,且在输入信号为低时可提供高偏压电流。此举可改进充电性能。反馈电路(例如,反馈电路520)在输入信号的包络为高时可提供较高偏压电压,且在输入信号的包络为低时可提供较低偏压电压。第一晶体管在较高偏压电压的情况下可提供较高源极电流,且在较低偏压电压的情况下可提供较低源极电流。此举也可改进充电性能。
在一示范性设计中,可变电流源可包括电流镜及第二晶体管。电流镜(例如,图8中的电流镜820)可提供可变偏压电流。第二晶体管(例如,NMOS晶体管816)可耦合到电流镜,在输入信号为低时可启用电流镜,且在输入信号为高时可停用电流镜。
在一示范性设计中,反馈电路可包括感测电路及电压产生器。感测电路(例如,感测电路850)可耦合到第一晶体管,可感测第一晶体管的源极电压,且可基于源极电压提供感测到的电流。电压产生器(例如,电压产生器870)可基于感测到的电流产生第一晶体管的可变偏压电压。
图11展示用于执行峰值检测的过程1100的示范性设计。可基于输入信号产生源极电流以为电容器充电(框1112)。可基于输入信号产生可变偏压电流以使电容器放电(框1114)。可变偏压电流在输入信号为高时可为低,且在所述输入信号为低时可为高。可基于来自电容器的检测到的信号产生输出信号,且所述输出信号可指示输入信号的峰值(框1116)。可基于检测到的信号产生可变偏压电压(框1118)。源极电流可基于可变偏压电压而产生,且可具有可变振幅。源极电流在检测到的信号为高时可为高,且在检测到的信号为低时可为低。
本文中所描述的高线性快速峰值检测器可实施于以下各项上:IC、模拟IC、RFIC、混频信号IC、ASIC、印刷电路板(PCB)、电子装置等。峰值检测器还可用例如以下各项的各种IC工艺技术来制造:互补金氧半导体(CMOS)、NMOS、PMOS、双极结型晶体管(BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
实施本文中所描述的高线性快速峰值检测器的设备可为独立装置或可为较大装置的部分。一装置可为(i)独立IC、(ii)可包括用于存储数据及/或指令的存储器IC的一个或一个以上IC的集合、(iii)例如RF接收器(RFR)或RF发射器/接收器(RTR)等RFIC、(iv)例如移动台调制解调器(MSM)等ASIC、(v)可嵌入于其它装置内的模块、(vi)接收器、蜂窝式电话、无线装置、手机或移动单元、(vii)等。
在一个或一个以上示范性设计中,所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么所述功能可作为一个或一个以上指令或代码存储在计算机可读媒体上或经由计算机可读媒体来传输。计算机可读媒体包括计算机存储媒体与通信媒体两者,通信媒体包括促进计算机程序自一处传送到另一处的任何媒体。存储媒体可为可由计算机存取的任何可用媒体。作为实例而非限制,所述计算机可读媒体可包含RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置,或可用以运载或存储呈指令或数据结构形式的所要程序代码且可由计算机存取的任何其它媒体。并且,严格地说,任何连接均被称为计算机可读媒体。举例来说,如果使用同轴电缆、光纤缆线、双绞线、数字订户线(DSL),或例如红外线、无线电及微波等无线技术从网站、服务器或其它远程源传输软件,那么同轴电缆、光纤缆线、双绞线、DSL,或例如红外线、无线电及微波等无线技术包括于媒体的定义中。如本文中所使用,磁盘及光盘包括压缩光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)、软性磁盘及蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘用激光以光学方式再现数据。上述各项的组合也应包括在计算机可读媒体的范围内。
提供本发明的先前描述是为了使任何所属领域的技术人员能够制作或使用本发明。对于所属领域的技术人员来说,对本发明的各种修改将是显而易见的,且可在不脱离本发明的范围的情况下将本文中所定义的一般原理应用于其它变化。因此,本发明无意限于本文中所描述的实例及设计,而是将被赋予与本文所揭示的原理及新颖特征一致的最宽范围。

Claims (11)

1.一种无线通信设备,其包含:
峰值检测器,其用以接收输入信号并提供输出信号,所述峰值检测器包含
第一晶体管,其用以在栅极处接收所述输入信号并提供源极电流,
电容器,其耦合到所述第一晶体管,所述电容器在所述输入信号为高时通过所述源极电流充电,及
反馈电路,其耦合到所述第一晶体管,且用以接收指示所述输入信号的包络的检测到的信号,且用以在所述第一晶体管的所述栅极处提供可变偏压电压,所述可变偏压电压与所述检测到的信号连续地成比例,其中,所述反馈电路和所述第一晶体管耦合于正反馈环中。
2.根据权利要求1所述的设备,所述反馈电路在所述输入信号的所述包络为高时提供较高偏压电压,且在所述输入信号的所述包络为低时提供较低偏压电压,且所述第一晶体管在所述较高偏压电压的情况下提供较高源极电流,且在所述较低偏压电压的情况下提供较低源极电流。
3.根据权利要求1所述的设备,所述正反馈环具有小于1的环增益及小于所述输入信号的中心频率的环带宽。
4.根据权利要求1所述的设备,所述反馈电路包含
感测电路,其耦合到所述第一晶体管,且用以感测所述第一晶体管的源极电压,并基于所述源极电压提供感测到的电流,及
电压产生器,其用以基于所述感测到的电流产生所述第一晶体管的所述可变偏压电压。
5.根据权利要求4所述的设备,所述感测电路包含
第二晶体管,其耦合到所述第一晶体管,且用以接收所述第一晶体管的所述源极电压,及
电阻器,其耦合到所述第二晶体管,且用以将所述第二晶体管的源极电压转换为所述感测到的电流。
6.根据权利要求4所述的设备,所述反馈电路进一步包含
电流镜,其耦合到所述感测电流,且用以接收所述感测到的电流并提供镜射电流,且所述电压产生器耦合到所述电流镜,并基于所述镜射电流产生所述可变偏压电压。
7.根据权利要求6所述的设备,所述电压产生器包含
电流源,其用以提供参考电流,及
第二晶体管,其作为电阻器而操作,且用以接收所述镜射电流及所述参考电流并提供所述可变偏压电压。
8.一种无线通信设备,其包含:
峰值检测器,其用以接收输入信号并提供输出信号,所述峰值检测器包含
第一晶体管,其用以接收所述输入信号并提供源极电流,
可变电流源,其耦合到所述第一晶体管,且接收所述输入信号并基于所述输入信号提供可变偏压电流,
电容器,其耦合到所述第一晶体管及所述可变电流源,所述电容器在所述输入信号为高时通过所述源极电流充电,且在所述输入信号为低时通过所述可变偏压电流放电,及
反馈电路,其耦合到所述第一晶体管,且用以接收指示所述输入信号的包络的检测到的信号,且为所述第一晶体管提供可变偏压电压,其中所述可变电流源包含:
电流镜,其用以提供所述可变偏压电流,及
第二晶体管,其耦合到所述电流镜,且用以在所述输入信号为低时启用所述电流镜,且在所述输入信号为高时停用所述电流镜。
9.根据权利要求8所述的设备,所述电流镜在所述输入信号为高时提供低偏压电流,且在所述输入信号为低时提供高偏压电流。
10.根据权利要求8所述的设备,所述反馈电路在所述输入信号的所述包络为高时提供较高偏压电压,且在所述输入信号的所述包络为低时提供较低偏压电压,且所述第一晶体管在所述较高偏压电压的情况下提供较高源极电流,且在所述较低偏压电压的情况下提供较低源极电流。
11.根据权利要求8所述的设备,所述反馈电路包含
感测电路,其耦合到所述第一晶体管,且用以感测所述第一晶体管的源极电压,并基于所述源极电压提供感测到的电流,及
电压产生器,其基于所述感测到的电流产生所述第一晶体管的所述可变偏压电压。
CN201510333107.2A 2009-08-27 2010-08-27 高线性快速峰值检测器 Expired - Fee Related CN104965117B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US23762509P 2009-08-27 2009-08-27
US61/237,625 2009-08-27
US12/718,806 US8310277B2 (en) 2009-08-27 2010-03-05 High linear fast peak detector
US12/718,806 2010-03-05
CN201080041988.6A CN102498406B (zh) 2009-08-27 2010-08-27 高线性快速峰值检测器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201080041988.6A Division CN102498406B (zh) 2009-08-27 2010-08-27 高线性快速峰值检测器

Publications (2)

Publication Number Publication Date
CN104965117A CN104965117A (zh) 2015-10-07
CN104965117B true CN104965117B (zh) 2018-12-14

Family

ID=43623916

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510333107.2A Expired - Fee Related CN104965117B (zh) 2009-08-27 2010-08-27 高线性快速峰值检测器
CN201080041988.6A Active CN102498406B (zh) 2009-08-27 2010-08-27 高线性快速峰值检测器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201080041988.6A Active CN102498406B (zh) 2009-08-27 2010-08-27 高线性快速峰值检测器

Country Status (6)

Country Link
US (1) US8310277B2 (zh)
EP (1) EP2470918B1 (zh)
JP (2) JP2013503345A (zh)
KR (1) KR101362507B1 (zh)
CN (2) CN104965117B (zh)
WO (1) WO2011031540A2 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8880014B2 (en) * 2010-06-07 2014-11-04 Skyworks Solutions, Inc. CMOS RF switch device and method for biasing the same
CN102692549A (zh) * 2012-06-18 2012-09-26 苏州硅智源微电子有限公司 一种峰值检测集成电路
CN103630735B (zh) * 2012-08-27 2016-04-13 上海占空比电子科技有限公司 一种电压斜率变化检测电路及方法
US9178476B2 (en) * 2012-09-26 2015-11-03 Broadcom Corporation Envelope detector with enhanced linear range
CN103117720A (zh) * 2013-01-16 2013-05-22 东南大学 一种磁卡解码芯片中自适应控制增益的方法
KR20140146866A (ko) * 2013-06-18 2014-12-29 에스케이하이닉스 주식회사 전압 레벨 검출 회로 및 이를 이용한 내부 전압 생성 회로
JP2015065505A (ja) * 2013-09-24 2015-04-09 住友電気工業株式会社 信号振幅検出回路
CN104569557A (zh) * 2014-03-26 2015-04-29 深圳市依崇微电子科技有限公司 轨到轨峰值检测电路及其方法
US9229460B1 (en) * 2014-07-01 2016-01-05 Innophase Inc. Radio frequency peak detection with subthreshold biasing
US10175272B2 (en) * 2014-08-26 2019-01-08 Intersil Americas LLC Remote differential voltage sensing
KR102332993B1 (ko) 2014-11-14 2021-12-01 한국전자통신연구원 고속 신호 세기 검출기 및 이를 이용한 버스트 모드 트랜스 임피던스 증폭기
US9866336B2 (en) * 2015-06-17 2018-01-09 Google Llc Phased array antenna self-calibration
CN105182049A (zh) * 2015-09-16 2015-12-23 湖南格兰德芯微电子有限公司 射频信号峰值探测器
CN106571797B (zh) * 2015-10-10 2024-03-15 意法半导体研发(深圳)有限公司 上电复位(por)电路
US10145868B2 (en) * 2016-03-14 2018-12-04 Ampere Computing Llc Self-referenced on-die voltage droop detector
US9954485B2 (en) 2016-05-09 2018-04-24 Nxp Usa, Inc. Amplitude detection with compensation
US10627430B2 (en) * 2016-05-24 2020-04-21 Texas Instruments Incorporated Fast current-based envelope detector
US10613560B2 (en) * 2016-08-05 2020-04-07 Mediatek Inc. Buffer stage and control circuit
US9767888B1 (en) * 2016-12-30 2017-09-19 Cadence Design Systems, Inc. Methods and devices for high-sensitivity memory interface receiver
US10466296B2 (en) 2017-01-09 2019-11-05 Analog Devices Global Devices and methods for smart sensor application
WO2018152769A1 (zh) * 2017-02-24 2018-08-30 深圳市汇顶科技股份有限公司 晶体振荡器及其控制电路
CN109857186B (zh) * 2018-12-29 2023-10-13 南京芯耐特半导体有限公司 一种带负反馈的源极跟随器以及滤波器结构
CN109633245B (zh) * 2019-01-15 2020-12-01 电子科技大学 一种新型峰值检测电路
CN110286259B (zh) * 2019-07-12 2021-10-08 浙江匠联科技有限公司 一种电流峰值检测电路
CN112782454B (zh) * 2020-12-29 2024-01-26 武汉邮电科学研究院有限公司 快速峰值检测电路及设备
CN115291667B (zh) * 2021-12-22 2023-08-25 夏芯微电子(上海)有限公司 无线通信设备及自适应偏置电压调节电路

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982434A (en) * 1975-03-14 1976-09-28 Eastech, Inc. Fluid flow signal processing circuit
CA1183580A (en) * 1982-02-19 1985-03-05 Linear Technology Inc. Peak amplitude detector
JPS61107171A (ja) * 1984-10-31 1986-05-26 Toshiba Corp ピ−ク検出回路
JPS63131072A (ja) * 1986-11-20 1988-06-03 Mitsubishi Electric Corp ピ−ク検出回路
US4866301A (en) * 1988-05-24 1989-09-12 Dallas Semiconductor Corporation Controlled slew peak detector
US4992674A (en) * 1988-05-24 1991-02-12 Dallas Semiconductor Corporation Controlled slew peak detector
JPH0754335B2 (ja) * 1989-01-31 1995-06-07 富士通株式会社 ピーク値検出回路
JPH03194475A (ja) * 1989-12-22 1991-08-26 Sumitomo Electric Ind Ltd 包絡線回路
JP2739800B2 (ja) * 1992-08-04 1998-04-15 日本電気株式会社 半導体集積回路
US5324994A (en) * 1992-12-24 1994-06-28 Tektronix, Inc. Peak detection circuit
US5428307A (en) * 1993-10-20 1995-06-27 Silicon Systems, Inc. Closed-loop peak detector topology
US5614851A (en) * 1995-02-09 1997-03-25 National Semiconductor Corporation High-accuracy, low-power peak-to-peak voltage detector
US5631584A (en) * 1995-09-29 1997-05-20 Dallas Semiconductor Corporation Differential cross coupled peak detector
JPH09189724A (ja) * 1996-01-08 1997-07-22 Fujitsu Ltd ピーク検出回路
US6100680A (en) * 1996-01-17 2000-08-08 Allegro Microsystems, Inc. Detecting the passing of magnetic articles using a transducer-signal detector having a switchable dual-mode threshold
JPH10239359A (ja) * 1997-02-24 1998-09-11 Hitachi Ltd ピーク値検出器
SG65654A1 (en) * 1997-06-02 1999-06-22 Motorola Inc Circuit for tracking rapid changes in mid-point voltage of a data signal
JP3293576B2 (ja) * 1998-12-09 2002-06-17 日本電気株式会社 ピークホールド回路
US6232802B1 (en) * 1999-05-28 2001-05-15 Kendin Communications, Inc. Selective sampled peak detector and method
US6211716B1 (en) * 1999-05-28 2001-04-03 Kendin Communications, Inc. Baseline wander compensation circuit and method
EP1385174B1 (en) * 2002-07-26 2006-07-05 Alcatel A fast sample-and-hold peak detector circuit
US7095256B1 (en) * 2003-07-17 2006-08-22 Massachusetts Institute Of Technology Low-power wide dynamic range envelope detector system and method
JP2005057627A (ja) * 2003-08-07 2005-03-03 Matsushita Electric Ind Co Ltd ピーク検出回路
JP2007255909A (ja) * 2006-03-20 2007-10-04 Nec Electronics Corp ピーク検波回路
JP5223497B2 (ja) * 2008-06-27 2013-06-26 富士通セミコンダクター株式会社 ピークホールド回路

Also Published As

Publication number Publication date
JP2015163883A (ja) 2015-09-10
JP2013503345A (ja) 2013-01-31
CN104965117A (zh) 2015-10-07
WO2011031540A2 (en) 2011-03-17
WO2011031540A3 (en) 2011-05-19
US8310277B2 (en) 2012-11-13
KR20120049924A (ko) 2012-05-17
US20110050285A1 (en) 2011-03-03
EP2470918A2 (en) 2012-07-04
CN102498406B (zh) 2015-07-22
JP6073401B2 (ja) 2017-02-01
EP2470918B1 (en) 2018-01-17
KR101362507B1 (ko) 2014-02-13
CN102498406A (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
CN104965117B (zh) 高线性快速峰值检测器
JP5405661B2 (ja) ワイヤレス機器のオーバードライブ状態検出回路
US9559639B2 (en) Protection circuit for power amplifier
CN102474227B (zh) 具有可变匹配电路以改进线性度的放大器
US8970307B2 (en) Bias current monitor and control mechanism for amplifiers
KR101288175B1 (ko) 프로그램가능 오프 전압을 갖는 증폭기
US11398805B2 (en) Power amplification module
US20110025404A1 (en) Switches with variable control voltages
CN102474223A (zh) 具有多重操作模式的放大器模块
US10171043B2 (en) Amplification device incorporating limiting

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181214

Termination date: 20210827

CF01 Termination of patent right due to non-payment of annual fee