CN104916677B - 具有核-壳结构的半导体器件 - Google Patents

具有核-壳结构的半导体器件 Download PDF

Info

Publication number
CN104916677B
CN104916677B CN201410315836.0A CN201410315836A CN104916677B CN 104916677 B CN104916677 B CN 104916677B CN 201410315836 A CN201410315836 A CN 201410315836A CN 104916677 B CN104916677 B CN 104916677B
Authority
CN
China
Prior art keywords
shell material
nuclear structure
nuclear
support element
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410315836.0A
Other languages
English (en)
Other versions
CN104916677A (zh
Inventor
卡洛斯·H.·迪亚兹
林群雄
张惠政
章勋明
王建勋
黄懋霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN104916677A publication Critical patent/CN104916677A/zh
Application granted granted Critical
Publication of CN104916677B publication Critical patent/CN104916677B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/068Nanowires or nanotubes comprising a junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7853Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/938Field effect transistors, FETS, with nanowire- or nanotube-channel region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供了具有核‑壳结构的半导体器件。一种器件结构包括形成在支撑件上的核结构、以及形成核结构上并且围绕核结构的至少一部分的壳材料。壳材料和核结构配置为在壳材料中形成量子阱沟道。

Description

具有核-壳结构的半导体器件
技术领域
本发明描述的技术通常涉及半导体器件,更具体地,涉及半导体器件的制造。
背景技术
传统的平面器件通常在小型化和合适材料的选择方面存在限制。因为半导体器件的部件尺寸继续缩小(例如,进入亚50nm范畴内),所以诸如短沟道效应和亚阈值特性差的各种问题通常在传统的平面器件中变得较为严重。已经开发出具有增强性能的新型器件几何形状(诸如三维器件结构(例如,FinFET))以及用于N-MOS和P-MOS器件的不同高迁移率沟道的异质集成,以推动器件和电路向更高组装密度的发展。
发明内容
为解决现有技术中所存在的缺陷,本发明提供了一种器件结构,包括:核结构,形成在支撑件上;以及壳材料,形成在所述核结构上并且围绕所述核结构的至少一部分,所述壳材料和所述核结构配置为在所述壳材料中形成量子阱沟道。
根据本发明的一个实施例,所述核结构和所述壳材料包括在纳米线结构中;以及所述纳米线结构大致平行于所述支撑件。
根据本发明的一个实施例,所述核结构和所述壳材料包括在纳米线结构中;以及所述纳米线结构大致垂直于所述支撑件。
根据本发明的一个实施例,所述壳材料与第一能带隙相关联;所述核结构与第二能带隙相关联;以及所述第一能带隙小于所述第二能带隙。
根据本发明的一个实施例,形成在所述壳材料和所述核结构之间的界面处的势垒层与介于约0.3eV至约0.5eV之间的势垒高度相关联。
根据本发明的一个实施例,该结构还包括:包装材料,形成在所述壳材料上并且围绕所述壳材料的至少一部分;其中:所述壳材料与第一能带隙相关联;所述包装材料与第二能带隙相关联;以及所述第一能带隙小于所述第二能带隙。
根据本发明的一个实施例,所述壳材料与第一晶格常数相关联;所述核结构与第二晶格常数相关联;以及所述第一晶格常数大于所述第二晶格常数。
根据本发明的一个实施例,所述第一晶格常数比所述第二晶格常数高出约1%至约8%。
根据本发明的一个实施例,所述核结构具有在第一范围内的第一厚度;以及所述壳材料具有在第二范围内的第二厚度。
根据本发明的一个实施例,所述第一范围对应于约3nm至约15nm;以及所述第二范围对应于约2nm至约15nm。
根据本发明的一个实施例,至少基于与所述核结构的所述第一厚度相关联的信息来确定与所述壳材料相关联的所述第二范围。
根据本发明的一个实施例,所述壳材料包括硅、硅锗、锗、和III-V材料中的至少一种;以及所述核结构包括硅、硅锗和锗中的至少一种。
根据本发明的一个实施例,所述核结构与第一导电类型相关联;以及所述壳材料与不同于所述第一导电类型的第二导电类型相关联。
根据本发明的另一方面,提供了一种方法,包括:在支撑件上形成核结构;以及在所述核结构上形成壳材料,以围绕所述核结构的至少一部分,所述壳材料包括量子阱沟道。
根据本发明的一个实施例,该方法还包括:在所述壳材料上形成包装材料,以围绕所述壳材料的至少一部分,从而在所述壳材料中形成所述量子阱沟道。
根据本发明的一个实施例,在所述支撑件上形成所述核结构的工艺包括:在所述支撑件上形成第一材料;以及去除所述第一材料下方的所述支撑件的一部分,以形成包括所述核结构的纳米线结构。
根据本发明的一个实施例,在所述支撑件上形成所述核结构的工艺包括:在所述支撑件上形成第一材料;在所述第一材料上形成第二材料;以及去除所述第二材料下方的所述第一材料的一部分,以形成包括所述核结构的纳米线结构。
根据本发明的一个实施例,在所述支撑件上形成所述核结构的工艺包括:在所述支撑件上形成第一材料;在所述第一材料上形成第二含锗材料;实施冷凝以使所述第二含锗材料中的锗原子向所述支撑件迁移,从而形成第三材料;以及去除所述第三材料下方的所述支撑件的一部分,以形成包括所述核结构的纳米线结构。
根据本发明的一个实施例,在所述支撑件上形成所述核结构的工艺包括:在所述支撑件上形成图案化的第一材料;以及在所述图案化的第一材料上形成包括所述核结构的纳米线结构。
根据本发明的又一个方面,提供了一种晶体管,包括:源极区;漏极区;以及纳米线结构,包括核结构以及围绕所述核结构的至少一部分的壳材料;其中,所述壳材料和所述核结构配置为在所述壳材料中形成量子阱沟道,以传导所述源极区和所述漏极区之间的电流。
附图说明
当结合附图进行阅读时,通过以下详细的描述可以最佳理解本发明的各方面。应该注意的是,根据行业中的标准做法,没有按比例绘制各种部件。实际上,为了清楚的讨论,各种部件的尺寸可以任意地增大或减小。
图1(A)至图1(C)是根据一些实施例的示出水平纳米线晶体管结构的示例图。
图2(A)至图2(B)是根据一些实施例的示出垂直纳米线晶体管结构的示例图。
图3(A)至图3(B)是根据一些实施例的分别示出n型晶体管的能带图和p型晶体管的能带图的示例图。
图4(A)至图4(D)是根据一些实施例的示出用于在绝缘体上硅(SOI)晶圆上制造水平核结构的工艺的示例图。
图5(A)至图5(F)是根据一些实施例的示出用于制造包括水平核-壳结构的晶体管结构的工艺的示例图。
图6(A)至图7(F)是根据一些实施例的示出用于在SOI晶圆上制造水平核-壳结构的另一个工艺的示例图。
图8(A)至图8(C)是根据一些实施例的示出用于制造垂直核-壳结构的工艺的示例图。
图9(A)至图9(C)是根据一些实施例的示出用于制造垂直核-壳结构的另一个工艺的示例图。
图10是根据一些实施例的用于制造包括核-壳结构的器件结构的示例流程图。
具体实施方式
以下公开提供了许多不同的实施例或实例,用于实现本发明的不同特征。下面描述了组件和布置的特定实例以简化本发明。当然,这些仅是实例,而不旨在限制本发明。例如,在以下描述中,在第二部件上方或上形成第一部件可以包括第一部件和第二部件直接接触形成的实施例,并且也可以包括在第一部件和第二部件之间可以形成额外的部件,从而使得第一部件和第二部件可以不直接接触的实施例。此外,本发明可以在多个实例中重复参考标号和/或字符。这种重复是为了简化和清楚的目的,并且其本身不指示所讨论的多个实施例和/或配置之间的关系。
此外,为了便于描述,在此可以使用诸如“在…上”、“在…下面”等的空间关系术语,以便描述如图所示的一个元件或部件与另一元件(多个元件)或部件(多个部件)的关系。除了图中所示的方位之外,空间关系术语旨在包括器件在使用或操作中的不同定向。装置可以以其他方式定向(旋转90度或在其他定向上),并且在此使用的空间关系描述符可以同样地作出相应的解释。
纳米技术的发展以及生产纳米线的新兴能力已经为设计下一代半导体器件(诸如具有核-壳结构的水平纳米线器件和垂直纳米线器件)开拓了新的可能性。
图1(A)至图1(C)是根据一些实施例的示出水平纳米线晶体管结构的示例图。如图1(A)所示,水平纳米线晶体管结构100包括核结构102(例如,A)和形成在核结构102上的壳材料104(例如,B)。围绕核结构102的至少一部分的壳材料104用作纳米线晶体管结构100的沟道区(例如,量子阱沟道),并且核结构102用作势垒区。例如,壳材料104配置为传导在源极区(未示出)和漏极区(未示出)之间流动的电流并且包括反转层或积累层。此外,纳米线晶体管结构100包括间隔件106(例如,氮化硅、氧化硅)和层间介电(ILD)材料108(例如,氧化硅)。核结构102延伸穿过间隔件106并且由材料110(例如,氧化硅、锗、硅锗)支撑。
图1(B)示出了纳米线晶体管结构100的截面图,并且图1(C)示出了沿着如图1(B)所示的剖切线C截取的纳米线晶体管结构100的截面图。如图1(C)所示,纳米线晶体管结构100形成在支撑结构114(例如,硅衬底、氧化物上硅晶圆)上。浅沟槽隔离(STI)结构112围绕核结构102、壳材料104、间隔件106和/或材料110。在一些实施例中,使用某些工艺形成STI结构112。例如,实施干蚀刻工艺(例如,反应离子刻蚀)以在支撑结构114中形成沟槽,然后通过沉积以介电材料填充沟槽,随后进行化学机械抛光工艺。还可以通过蚀刻去除介电材料以形成STI结构112。
图2(A)至图2(B)是根据一些实施例的示出垂直纳米线晶体管结构的示例图。如图2(A)和图2(B)所示,垂直纳米线晶体管结构200包括核结构202(例如,A)和形成在核结构202上的壳材料204(例如,B)。围绕核结构202的至少一部分的壳材料204用作纳米线晶体管结构200的沟道区(例如,量子阱沟道),并且核结构202用作势垒区。例如,壳材料204配置为传导在源极区(未示出)和漏极区(未示出)之间流动的电流并且包括反转层或积累层。图2(B)示出了纳米线晶体管结构200的截面图。核结构202和壳材料204形成在支撑结构206上。
在一些实施例中,壳材料104(或壳材料204)与第一晶格常数和第一能带隙相关联,并且核结构102(或核结构202)与第二晶格常数和第二能带隙相关联。第一能带隙小于第二能带隙,并且第一晶格常数大于第二晶格常数。例如,第一晶格常数比第二晶格常数高出约1%至约8%。在壳材料104(或壳材料204)和核结构102(或核结构202)上可以分布晶格失配应变,而不产生许多位错。
在某些实施例中,壳材料104(或壳材料204)的厚度介于约2nm至约15nm的范围内,并且核结构102(或核结构202)的直径介于约3nm至约15nm的范围内。例如,核结构102(或核结构202)对量子沟道限制具有厚度下限(例如,防止隧穿或散射),并且具有厚度上限,以减少由核结构102(或核结构202)和壳材料104(或壳材料204)之间的晶格失配产生的位错。作为一个实例,壳材料104(或壳材料204)对传导电流具有厚度下限(例如,包括反转层或积累层),并且具有厚度上限,用于减少由核结构102(或核结构202)和壳材料104(或壳材料204)之间的晶格失配导致的位错。壳材料104(或壳材料204)的厚度可以不大于由纳米线晶体管结构100(或纳米线晶体管结构200)制造的晶体管的栅极长度(例如,栅极长度小于或等于50nm)的约1/3。例如,核结构102(或核结构202)的半径控制在特定范围内,以为壳材料104(或壳材料204)的厚度提供更大的灵活性。
在一些实施例中,壳材料104(或壳材料204)包括硅、硅锗、锗、III-V材料(例如,砷化铟镓)或其他合适的材料。核结构102(或核结构202)包括硅、硅锗、锗或其他合适的材料。核结构102(或核结构202)和壳材料104(或壳材料204)可以具有不同的导电类型(例如,不同类型的掺杂剂)。例如,核结构102(或核结构202)未掺杂或掺杂有p型掺杂剂多达1×1020/cm3,并且壳材料104(或壳材料204)未掺杂或掺杂有n型掺杂剂多达1×1020/cm3。在另一个实例中,核结构102(或核结构202)未掺杂或掺杂有n型掺杂剂多达1×1020/cm3,并且壳材料104(或壳材料204)未掺杂或掺杂有p型掺杂剂多达1×1020/cm3
图3(A)和图3(B)是根据一些实施例的分别示出n型晶体管的能带图和p型晶体管的能带图的示例图。如图3(A)所示,n型晶体管300包括核结构302(例如,A)和形成在核结构302上的壳材料304(例如,B)。壳材料304围绕核结构302的至少一部分并且用作n型晶体管300的沟道区(例如,量子阱沟道)。包装材料306(例如,介电材料)形成在壳材料304上并且围绕壳材料304的至少一部分。例如,包装材料306包括具有大能带隙的高k材料并且用作晶体管300的栅极电介质。如图3(A)所示,势垒层形成在核结构302(例如,A)和壳材料304(例如,B)之间的界面处。例如,势垒高度(例如,ΔE)在约0.3eV至约0.5eV的范围内。
如图3(B)所示,p型晶体管320包括核结构322(例如,A)和形成在核结构322上的壳材料324(例如,B)。壳材料324围绕核结构322的至少一部分并且用作p型晶体管320的沟道区(例如,量子阱沟道)。包装材料326(例如,介电材料)形成在壳材料324上并且围绕壳材料324的至少一部分。如图3(B)所示,势垒层形成在核结构322(例如,A)和壳材料324(例如,B)之间的界面处。例如,势垒高度(例如,ΔE)在约0.3eV至约0.5eV的范围内。作为一个实例,包装材料326是具有大能带隙的高k材料并且用作晶体管320的栅极电介质。在一些实施例中,包装材料306和包装材料326包括HfO2、ZrO2、La2O3、Al2O3、TiO2、SrTiO3、LaAlO3、Y2O3、HfOxNy、ZrOxNy、La2OxNy、Al2OxNy、TiOxNy或其他合适的材料。
图4(A)至图4(D)是根据一些实施例的示出用于在绝缘体上硅(SOI)晶圆上制造水平核结构的工艺的示例图。SOI晶圆包括埋氧化硅层404上的硅层402,埋氧化硅层404形成在硅衬底406上。(例如,通过光刻和蚀刻)图案化硅层402。例如,实施反应离子蚀刻以去除硅层402的一部分。图4(B)示出了包括图案化的硅层402的SOI晶圆的截面图。对SOI晶圆实施蚀刻工艺(例如,选择性蚀刻或各向同性蚀刻)。去除硅层402下方的氧化硅层404的一部分,这导致一个或多个纳米线结构悬挂在开槽的氧化硅层404的部分之上,如图4(C)所示。图4(D)示出了水平纳米线结构中的一个的截面图。例如,在室温下使用稀释氢氟酸实施蚀刻工艺。还可以对纳米线结构进行退火(例如,在约600℃至约1000℃的范围内的温度下),以形成一个或多个水平核结构(例如,核结构102)。此外,可以氧化并蚀刻纳米线结构以实现具有理想直径的水平核结构(例如,核结构102)。例如,形成的核结构大致平行于硅衬底406,并且是椭圆形或圆柱形。
图5(A)至图5(F)是根据一些实施例的示出用于制造包括水平核-壳结构的晶体管结构的工艺的示例图。如图5(A)所示,晶圆500包括形成(例如,通过外延生长)在支撑结构504(例如,硅衬底)上的第一材料502(例如,A)和形成(例如,通过外延生长)在第一材料502上的第二材料506(例如,B)。例如,第一材料502和第二材料506包括具有不同锗浓度的硅锗。在另一个实例中,第二材料506包括硅。间隔件508(例如,氮化硅)和源极/漏极区510形成在第二材料506上。在一些实施例中,介电材料(例如,氧化硅)可以形成在源极/漏极区510上。
图5(B)示出了晶圆500的截面图。一个或多个分隔结构514(例如,浅沟槽隔离结构)形成在支撑结构504上(例如,邻近第一材料502)。对晶圆500实施蚀刻工艺(例如,选择性蚀刻或各向同性蚀刻)。去除第二材料506下方的第一材料502的一部分,这导致一个或多个纳米线结构悬挂在开槽的第二材料506的一部分之上,如图5(C)所示。图5(D)示出了水平纳米线结构中的一个的截面图。还可以对纳米线结构进行退火(例如,在约600℃至约1000℃的范围内的温度下),以形成一个或多个水平核结构(例如,核结构102)。可以氧化并蚀刻纳米线结构以获得具有理想直径的水平核结构(例如,核结构102)。此外,壳材料516(例如,壳材料104)形成(例如,通过外延生长)在由第二材料506产生的水平核结构上,如图5(E)所示。图5(F)示出了包括如图5(E)所示的核-壳结构的晶体管结构的截面图。
图6(A)至图7(F)是根据一些实施例的示出用于在SOI晶圆上制造水平核-壳结构的另一个工艺的示例图。如图6(A)所示,SOI晶圆600包括埋氧化硅层604上的硅层602,埋氧化硅层604形成在硅衬底606上。硅锗层608形成在硅层602上。
在含氧环境下(例如,在烤箱内),例如,在介于约850℃和约1100℃之间的温度下对SOI晶圆600实施冷凝工艺。在冷凝工艺期间,硅锗层608中的锗原子向内迁移以形成含锗材料612。例如,含锗材料612包括高百分比的锗(例如,接近100%)。由于冷凝工艺,氧化硅层610形成在含锗材料612上,如图6(B)所示。然后,(例如,通过蚀刻)去除氧化硅层610,如图6(C)所示。
(例如,通过光刻和蚀刻)图案化含锗材料612,如图7(A)所示。图7(B)示出了包括含锗材料612的SOI晶圆600的截面图。对SOI晶圆600实施蚀刻工艺(例如,选择性蚀刻或各向同性蚀刻)。去除含锗材料612下方的氧化硅层604的一部分,这导致一个或多个纳米线结构悬挂在开槽的氧化硅层604的一部分之上,如图7(C)所示。图7(D)示出了水平纳米线结构中的一个的截面图。还可以对纳米线结构进行退火(例如,在约600℃至约1000℃的范围内的温度下),以形成一个或多个水平核结构(例如,核结构102)。可以氧化并蚀刻纳米线结构以获得具有理想直径的水平核结构(例如,核结构102)。此外,壳材料614(例如,壳材料104)形成(例如,通过外延生长)在由含锗材料612产生的水平核结构上,如图7(E)所示。图7(F)示出了如图7(E)所示的水平核-壳结构的截面图。
图8(A)至图8(C)是根据一些实施例的示出用于制造垂直核-壳结构的工艺的示例图。垂直核-壳结构可以生长在支撑结构802(例如,硅衬底)上。如图8(A)所示,在支撑结构802上图案化第一材料804(例如,氧化硅)。在图案化的第一材料804上选择性地或定向地形成(例如,通过外延生长)一个或多个垂直纳米线结构。还可以对纳米线结构进行退火(例如,在约600℃至约1000℃的范围内的温度下),以形成一个或多个垂直核结构806(例如,核结构202),如图8(B)所示。可以氧化并蚀刻纳米线结构以获得具有理想直径的垂直核结构806。此外,壳材料808(例如,壳材料204)形成(例如,通过外延生长)在垂直核结构806上,如图8(C)所示。作为一个实例,支撑结构802具有晶体取向(111)。例如,垂直核结构806大致垂直于支撑结构802。
图9(A)至图9(C)是根据一些实施例的示出用于制造垂直核-壳结构的另一个工艺的示例图。如图9(A)所示,第一材料902(例如,硅锗)形成在支撑结构904上。掩膜层906形成在第一材料902上,然后通过例如光刻和蚀刻图案化掩膜层906。例如,光刻胶层形成在掩膜层906上并且暴露于期望的辐射图案。然后,使用光刻胶显影剂显影光刻胶层。光刻胶层内的图案通过掩膜层906转印到下面的第一材料902。可以使用单个蚀刻(例如,干蚀刻或湿蚀刻)或多个蚀刻将图案通过掩膜层906转印到下面的第一材料902,然后(例如,通过化学机械平坦化工艺)去除掩膜层906,以形成一个或多个垂直纳米线结构。还可以对纳米线结构进行退火(例如,在约600℃至约1000℃的范围内的温度下),以形成一个或多个垂直核结构906(例如,核结构202),如图9(B)所示。可以氧化并蚀刻纳米线结构以获得具有理想直径的垂直核结构902。例如,垂直核结构902大致垂直于支撑结构904并且为椭圆形或圆柱形。此外,壳材料908(例如,壳材料204)形成(例如,通过外延生长)在垂直核结构902上,如图9(C)所示。
图10示出了根据一些实施例的用于制造包括核-壳结构的器件结构的示例流程图。在步骤1002中,在支撑件(例如,衬底)上形成核结构。在步骤1004中,在核结构上形成围绕核结构的至少一部分的壳材料。壳材料包括量子阱沟道。例如,通过化学气相蒸汽(CVD)、等离子体增强化学气相蒸汽(PECVD)、物理气相沉积(PVD)、溅射、原子层沉积(ALD)或其他合适的工艺形成核结构和壳材料。
根据一个实施例,一种器件结构包括形成在支撑件上的核结构、以及形成在核结构上并且围绕核结构的至少一部分的壳材料。壳材料和核结构配置为在壳材料中形成量子阱沟道。
根据另一个实施例,提供了一种用于形成核-壳器器件结构的方法。在支撑件上形成核结构。在核结构上形成围绕核结构的至少一部分的壳材料,其中,壳材料包括量子阱沟道。
根据又一个实施例,一种晶体管包括源极区、漏极区和纳米线结构,其中,纳米线结构包括核结构和围绕核结构的至少一部分的壳材料。壳材料和核结构配置为在壳材料中形成量子阱沟道以传导源极区和漏极区之间的电流。
上面概述了若干实施例的特征,使得本领域的普通技术人员可以更好地理解本发明的各个方面。本领域的普通技术人员应该理解,他们可以容易地使用本发明作为基础来设计或更改用于实施与在此所介绍实施例相同的目的和/或实现相同优点的其他工艺和结构。本领域的普通技术人员也应该意识到,这种等同构造并不背离本发明的精神和范围,并且在不背离本发明的精神和范围的情况下,在此他们可以进行多种变化、替换以及改变。

Claims (18)

1.一种半导体器件结构,包括:
核结构,形成在支撑件上;以及
壳材料,形成在所述核结构上并且围绕所述核结构的至少一部分,所述壳材料和所述核结构配置为在所述壳材料中形成量子阱沟道;
其中,所述核结构具有在第一范围内的第一厚度,所述壳材料具有在第二范围内的第二厚度,至少基于与所述核结构的所述第一厚度相关联的信息来确定与所述壳材料相关联的所述第二范围,其中,所述核结构对量子沟道具有厚度下限,并且为了减小由所述核结构和所述壳材料之间的晶格失配产生的位错而具有厚度上限,并且,所述壳材料对传导电流具有厚度下限,并且为了减小由所述核结构和所述壳材料之间的晶格失配产生的位错而具有厚度上限。
2.根据权利要求1所述的结构,其中:
所述核结构和所述壳材料包括在纳米线结构中;以及
所述纳米线结构平行于所述支撑件。
3.根据权利要求1所述的结构,其中:
所述核结构和所述壳材料包括在纳米线结构中;以及
所述纳米线结构垂直于所述支撑件。
4.根据权利要求1所述的结构,其中:
所述壳材料与第一能带隙相关联;
所述核结构与第二能带隙相关联;以及
所述第一能带隙小于所述第二能带隙。
5.根据权利要求4所述的结构,其中,形成在所述壳材料和所述核结构之间的界面处的势垒层与介于0.3eV至0.5eV之间的势垒高度相关联。
6.根据权利要求1所述的结构,还包括:
包装材料,形成在所述壳材料上并且围绕所述壳材料的至少一部分;
其中:
所述壳材料与第一能带隙相关联;
所述包装材料与第二能带隙相关联;以及
所述第一能带隙小于所述第二能带隙。
7.根据权利要求1所述的结构,其中:
所述壳材料与第一晶格常数相关联;
所述核结构与第二晶格常数相关联;以及
所述第一晶格常数大于所述第二晶格常数。
8.根据权利要求7所述的结构,其中,所述第一晶格常数比所述第二晶格常数高出1%至8%。
9.根据权利要求1所述的结构,其中:
所述第一范围对应于3nm至15nm;以及
所述第二范围对应于2nm至15nm。
10.根据权利要求1所述的结构,其中:
所述壳材料包括硅、硅锗、锗、和III-V材料中的至少一种;以及
所述核结构包括硅、硅锗和锗中的至少一种。
11.根据权利要求1所述的结构,其中:
所述核结构与第一导电类型相关联;以及
所述壳材料与不同于所述第一导电类型的第二导电类型相关联。
12.一种形成半导体器件的方法,包括:
在支撑件上形成核结构;以及
在所述核结构上形成壳材料,以围绕所述核结构的至少一部分,所述壳材料包括量子阱沟道;
其中,所述核结构具有在第一范围内的第一厚度,所述壳材料具有在第二范围内的第二厚度,至少基于与所述核结构的所述第一厚度相关联的信息来确定与所述壳材料相关联的所述第二范围,其中,所述核结构对量子沟道具有厚度下限,并且为了减小由所述核结构和所述壳材料之间的晶格失配产生的位错而具有厚度上限,并且,所述壳材料对传导电流具有厚度下限,并且为了减小由所述核结构和所述壳材料之间的晶格失配产生的位错而具有厚度上限。
13.根据权利要求12所述的方法,还包括:
在所述壳材料上形成包装材料,以围绕所述壳材料的至少一部分,从而在所述壳材料中形成所述量子阱沟道。
14.根据权利要求12所述的方法,其中,在所述支撑件上形成所述核结构的工艺包括:
在所述支撑件上形成第一材料;以及
去除所述第一材料下方的所述支撑件的一部分,以形成包括所述核结构的纳米线结构。
15.根据权利要求12所述的方法,其中,在所述支撑件上形成所述核结构的工艺包括:
在所述支撑件上形成第一材料;
在所述第一材料上形成第二材料;以及
去除所述第二材料下方的所述第一材料的一部分,以形成包括所述核结构的纳米线结构。
16.根据权利要求12所述的方法,其中,在所述支撑件上形成所述核结构的工艺包括:
在所述支撑件上形成第一材料;
在所述第一材料上形成第二含锗材料;
实施冷凝以使所述第二含锗材料中的锗原子向所述支撑件迁移,从而形成第三材料;以及
去除所述第三材料下方的所述支撑件的一部分,以形成包括所述核结构的纳米线结构。
17.根据权利要求12所述的方法,其中,在所述支撑件上形成所述核结构的工艺包括:
在所述支撑件上形成图案化的第一材料;以及
在所述图案化的第一材料上形成包括所述核结构的纳米线结构。
18.一种晶体管,包括:
源极区;
漏极区;以及
纳米线结构,包括核结构以及围绕所述核结构的至少一部分的壳材料;
其中,所述壳材料和所述核结构配置为在所述壳材料中形成量子阱沟道,以传导所述源极区和所述漏极区之间的电流,其中,所述核结构具有在第一范围内的第一厚度,所述壳材料具有在第二范围内的第二厚度,至少基于与所述核结构的所述第一厚度相关联的信息来确定与所述壳材料相关联的所述第二范围,其中,所述核结构对量子沟道具有厚度下限,并且为了减小由所述核结构和所述壳材料之间的晶格失配产生的位错而具有厚度上限,并且,所述壳材料对传导电流具有厚度下限,并且为了减小由所述核结构和所述壳材料之间的晶格失配产生的位错而具有厚度上限。
CN201410315836.0A 2014-03-14 2014-07-03 具有核-壳结构的半导体器件 Active CN104916677B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/211,382 US10553718B2 (en) 2014-03-14 2014-03-14 Semiconductor devices with core-shell structures
US14/211,382 2014-03-14

Publications (2)

Publication Number Publication Date
CN104916677A CN104916677A (zh) 2015-09-16
CN104916677B true CN104916677B (zh) 2018-09-25

Family

ID=54069804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410315836.0A Active CN104916677B (zh) 2014-03-14 2014-07-03 具有核-壳结构的半导体器件

Country Status (3)

Country Link
US (2) US10553718B2 (zh)
CN (1) CN104916677B (zh)
TW (1) TWI651853B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374679B (zh) 2014-08-26 2019-03-26 中芯国际集成电路制造(上海)有限公司 半导体装置及其制造方法
CN106158636B (zh) * 2015-03-31 2019-04-26 中芯国际集成电路制造(上海)有限公司 晶体管及其形成方法
US9806077B2 (en) 2016-03-07 2017-10-31 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure with low defect and method for forming the same
US9882000B2 (en) * 2016-05-24 2018-01-30 Northrop Grumman Systems Corporation Wrap around gate field effect transistor (WAGFET)
CN106298778A (zh) * 2016-09-30 2017-01-04 中国科学院微电子研究所 半导体器件及其制造方法及包括该器件的电子设备
US11081484B2 (en) 2016-09-30 2021-08-03 Institute of Microelectronics, Chinese Academy of Sciences IC unit and method of manufacturing the same, and electronic device including the same
CN110098250B (zh) * 2018-01-31 2022-07-05 中国科学院微电子研究所 带体区的竖直型器件及其制造方法及相应电子设备
CN108417635B (zh) * 2018-02-09 2021-07-09 中国科学院微电子研究所 量子点器件及其制作方法
CN110233176B (zh) * 2018-03-05 2022-07-22 中芯国际集成电路制造(北京)有限公司 半导体结构及其形成方法
US11799035B2 (en) * 2019-04-12 2023-10-24 The Research Foundation For The State University Of New York Gate all-around field effect transistors including quantum-based features

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1244142A1 (en) * 2001-03-23 2002-09-25 Universite Catholique De Louvain Fabrication method of SOI semiconductor devices
US6855606B2 (en) * 2003-02-20 2005-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor nano-rod devices
US7456476B2 (en) * 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
KR100550343B1 (ko) * 2003-11-21 2006-02-08 삼성전자주식회사 다중 채널 모오스 트랜지스터를 포함하는 반도체 장치의제조 방법
KR100594327B1 (ko) * 2005-03-24 2006-06-30 삼성전자주식회사 라운드 형태의 단면을 가지는 나노와이어를 구비한 반도체소자 및 그 제조 방법
KR100755367B1 (ko) * 2005-06-08 2007-09-04 삼성전자주식회사 실린더형 게이트를 갖는 나노-라인 반도체 소자 및 그제조방법
KR100630764B1 (ko) * 2005-08-30 2006-10-04 삼성전자주식회사 게이트 올어라운드 반도체소자 및 그 제조방법
JP4970997B2 (ja) * 2006-03-30 2012-07-11 パナソニック株式会社 ナノワイヤトランジスタの製造方法
JP2008071814A (ja) * 2006-09-12 2008-03-27 Fujitsu Ltd 半導体装置及びその製造方法
US8063450B2 (en) * 2006-09-19 2011-11-22 Qunano Ab Assembly of nanoscaled field effect transistors
US20080135949A1 (en) * 2006-12-08 2008-06-12 Agency For Science, Technology And Research Stacked silicon-germanium nanowire structure and method of forming the same
US8097922B1 (en) * 2007-05-29 2012-01-17 The Regents Of The University Of California Nanometer-scale transistor architecture providing enhanced carrier mobility
US8073034B2 (en) * 2007-06-01 2011-12-06 Jds Uniphase Corporation Mesa vertical-cavity surface-emitting laser
WO2009107031A1 (en) * 2008-02-26 2009-09-03 Nxp B.V. Method for manufacturing semiconductor device and semiconductor device
US7960715B2 (en) * 2008-04-24 2011-06-14 University Of Iowa Research Foundation Semiconductor heterostructure nanowire devices
EP2120266B1 (en) * 2008-05-13 2015-10-28 Imec Scalable quantum well device and method for manufacturing the same
US8030108B1 (en) * 2008-06-30 2011-10-04 Stc.Unm Epitaxial growth of in-plane nanowires and nanowire devices
US8022393B2 (en) * 2008-07-29 2011-09-20 Nokia Corporation Lithographic process using a nanowire mask, and nanoscale devices fabricated using the process
US9373694B2 (en) * 2009-09-28 2016-06-21 Semiconductor Manufacturing International (Shanghai) Corporation System and method for integrated circuits with cylindrical gate structures
US8283653B2 (en) * 2009-12-23 2012-10-09 Intel Corporation Non-planar germanium quantum well devices
JP5110107B2 (ja) * 2010-03-11 2012-12-26 株式会社デンソー 温度センサ及び温度センサの製造方法
US8609518B2 (en) * 2011-07-22 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Re-growing source/drain regions from un-relaxed silicon layer
US20140034905A1 (en) * 2012-08-01 2014-02-06 International Business Machines Corporation Epitaxially Thickened Doped or Undoped Core Nanowire FET Structure and Method for Increasing Effective Device Width
US20140091279A1 (en) * 2012-09-28 2014-04-03 Jessica S. Kachian Non-planar semiconductor device having germanium-based active region with release etch-passivation surface
CN103854971B (zh) * 2012-12-04 2016-10-05 中芯国际集成电路制造(上海)有限公司 纳米线的制造方法、纳米线场效应晶体管的制造方法
US8609481B1 (en) * 2012-12-05 2013-12-17 International Business Machines Corporation Gate-all-around carbon nanotube transistor with selectively doped spacers
CN103915484B (zh) * 2012-12-28 2018-08-07 瑞萨电子株式会社 具有被改造以用于背栅偏置的沟道芯部的场效应晶体管及制作方法
US9076813B1 (en) * 2013-01-15 2015-07-07 Stc.Unm Gate-all-around metal-oxide-semiconductor transistors with gate oxides
US9362397B2 (en) * 2013-09-24 2016-06-07 Samsung Electronics Co., Ltd. Semiconductor devices
KR102083494B1 (ko) * 2013-10-02 2020-03-02 삼성전자 주식회사 나노와이어 트랜지스터를 포함하는 반도체 소자
US9048301B2 (en) * 2013-10-16 2015-06-02 Taiwan Semiconductor Manufacturing Company Limited Nanowire MOSFET with support structures for source and drain

Also Published As

Publication number Publication date
US11245033B2 (en) 2022-02-08
TW201539743A (zh) 2015-10-16
US20150263094A1 (en) 2015-09-17
TWI651853B (zh) 2019-02-21
US20180350984A1 (en) 2018-12-06
US10553718B2 (en) 2020-02-04
CN104916677A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
CN104916677B (zh) 具有核-壳结构的半导体器件
US9564439B2 (en) Structure and method for advanced bulk fin isolation
US10079303B2 (en) Method to form strained nFET and strained pFET nanowires on a same substrate
CN104576739B (zh) 半导体结构及其制造方法
US10083907B2 (en) Method and structure for forming on-chip anti-fuse with reduced breakdown voltage
US9129938B1 (en) Methods of forming germanium-containing and/or III-V nanowire gate-all-around transistors
CN105448726B (zh) 鳍式场效应晶体管的形成方法
CN103794498B (zh) 一种半导体器件及其制备方法
US9343530B2 (en) Method for manufacturing fin structure of finFET
CN106024882A (zh) 双宽度鳍式场效应晶体管
US9735057B2 (en) Fabricating field effect transistor(s) with stressed channel region(s) and low-resistance source/drain regions
CN106158636A (zh) 晶体管及其形成方法
US11233137B2 (en) Transistors and methods of forming transistors using vertical nanowires
CN106711329A (zh) 形成纳米线基装置的方法
CN105590856B (zh) 一种纳米线器件的制作方法
US9570403B2 (en) Secure chip with physically unclonable function
CN104733472B (zh) 含锗鳍与化合物半导体鳍的集成
CN108074968B (zh) 具有自对准栅极的穿隧finfet
CN105336614B (zh) 半导体器件及其制造方法
EP3264472B1 (en) Method and device for finfet with graphene nanoribbon
CN103943485B (zh) 形成水平方向功函数可变的栅极的方法
CN111725138B (zh) 一种半导体器件的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant