CN104781444B - 用于在基体上制造金属-硼碳化物层的方法 - Google Patents

用于在基体上制造金属-硼碳化物层的方法 Download PDF

Info

Publication number
CN104781444B
CN104781444B CN201380051231.9A CN201380051231A CN104781444B CN 104781444 B CN104781444 B CN 104781444B CN 201380051231 A CN201380051231 A CN 201380051231A CN 104781444 B CN104781444 B CN 104781444B
Authority
CN
China
Prior art keywords
metal
peak
methods
borocarbides
pvd methods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380051231.9A
Other languages
English (en)
Other versions
CN104781444A (zh
Inventor
M.阿恩特
H.鲁迪吉尔
H.博瓦蒂
J.施内德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ou Ruikang Surface Solutions Inc
Original Assignee
Ou Ruikang Surface Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ou Ruikang Surface Solutions Inc filed Critical Ou Ruikang Surface Solutions Inc
Publication of CN104781444A publication Critical patent/CN104781444A/zh
Application granted granted Critical
Publication of CN104781444B publication Critical patent/CN104781444B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/907Oxycarbides; Sulfocarbides; Mixture of carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/3467Pulsed operation, e.g. HIPIMS

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Sliding-Contact Bearings (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明涉及用于涂敷带有层的基体的PVD方法,所述层至少含有微晶金属硼碳化物相。在PVD方法的过程中,所述源输出是脉冲的,使得在600℃以下的基体温度在由此产生的层的x‑射线光谱中,至少一个峰可以确定,其半峰宽允许得出结论:存在所述金属‑硼碳化物的微晶相。

Description

用于在基体上制造金属-硼碳化物层的方法
本发明涉及金属硼碳化物层通过脉冲PVD方法在基体上的沉积。由此,其优选强调了脉冲阴极溅射法,其中由阴极溅射出的材料由气相作为涂敷材料沉积在基体上。
金属硼碳化物材料由于它们突出的机械和化学性能而被用作基础材料。为此,已知不同的制造方法,下面对其不作详细说明。但是,这些材料在制造上昂贵和在加工上是有问题的。
一种可能的途径是改善组分,其基础体是常规的材料,如例如金属陶瓷、钢、硬金属或高速钢。该类改善由此也可包括带有金属硼碳化物层的涂层。由此,可以借助PVD方法。在本文中PVD是指物理气相沉积和强调了由气相沉积。Schier在申请WO2012/052437中强调了溅射PVD方法和尤其是HIPIMS方法。由此HIPIMS是指高能脉冲磁控管溅射,其是一种溅射方法,其中来自阴极的溅射在磁控管帮助下和通过高的电流密度进行。Schier强调了溅射是不利的,因为所述必需的工艺气流被认为是难以控制的。除了在实现针对涂敷所需的结晶相方面产生的此困难之外,还如Schier关于氧化铝的实例的描述。
因此,WO2012/052437中描述了用于沉积该类层的电弧蒸发法。在此方法中电弧一直持续,针对涂敷材料提供的其在所谓的靶上的入射点移动,由此靶材料蒸发。作为靶材料,使用包含至少两种不同金属的靶,其中靶的至少具有最低金属化温度的金属以陶瓷化合物存在。这样,在电弧PVD中常常遭遇的微滴生成将会受到抑制。但是,这不完全成功。如果需要以基本上无微滴的方式涂敷,则在电弧PVD方法中常常需要艰苦的过滤技术,其显著降低了涂敷速率和使得该类技术常常是不经济的。
稀土硼碳化物如今被称为有趣的超导材料。在Iavarone等的文章“Borocarbide“Thin Films and Tunneling Measurement”(2000年在Dresden的NATO研讨会的范围中发表)中,描述了磁控管溅射作为用于制造Re-Ni2B2C的方法,其中Re代表来自由Y、Er、Lu形成的组的一种元素。所述溅射方法在大约800℃应用和必须使用镶人造钻石的基体。
因此,希望的是有可行的方法,其允许在中温下经济地将金属硼碳化物层沉积到基体上,其中该层应当含有(至少明显的一部分)优选地希望的微晶-和/或纳米-晶体相。
因此,本发明的目的是提供该类方法。
根据本发明,解决所述目的的是应用脉冲PVD-方法。在所述电弧PVD-方法方面,脉冲增加了工艺稳定性和明显减少了微滴形成。在溅射方面,与常规溅射相比,电离程度明显增加。本发明人已经认识到通过脉冲可以在基体温度在600℃以下就已经令人惊奇地形成金属硼碳化物的微晶相。如果应用其中金属以陶瓷化合物存在的靶,在导致小于或等于100W/cm2的中等电流密度的脉冲溅射功率下,在一定程度上情况已经如此了。
但是,优选应用所谓的HIPIMS技术,在大于100W/cm2的其电流密度下施加在所述靶的表面。所述电流密度以脉冲形式良好地施加使得不过分加热所述靶。通过HIPIMS方法和如本发明人所认识到的,金属硼碳化物的晶体相也可以由其中金属不是以陶瓷化合物形式存在的靶实现。优选地同样当应用HIPIMS方法时,由靶发生溅射,其中所述金属以陶瓷化合物的形式和尤其是作为金属硼碳化物存在。
根据本发明尤其优选的实施方案,在HIPIMS操作过程中对基体施加负偏压。此偏压为-30V至-400V,其中除了其它考虑因素之外的绝对值上限由以下事实决定:基体表面的温度随着偏压值增加,这是由于被加速的离子和其导致增加的能量输入(impute)。
由于在600℃以下已经形成微晶相,所以本发明的方法可以以经济的工业方式应用,因为不必预知额外的技术措施以实现涂敷设备从而维持高温(>600℃)。尤其是所述的方法可以特别有利地应用在本身不暴露于高温的涂敷基体的范围中。众所周知的实例是HSS钢。
在金属硼碳化物材料的组内,与半金属(准金属)形成的那些是特别令人感兴趣的。对于超导材料,那些金属硼碳化物是有趣的,其中存在至少一种稀土元素。对于改进器具,其应当提供磨损保护和/或应当导致具有低的摩擦值的表面,过渡金属和尤其是由Ti、Zr、Hf、V、Nb、Ta、Cr、Mo和W形成的组的元素的硼碳化物已经表明尤其适合。优选地,使用Mo、Zr和/或Cr。该类改进处理尤其可以有利地应用于来自汽车业的带有滑动表面的工具和组件。
本发明现在将在附图帮助下和用Mo2BC举例和详细说明。
首先和为了比较目的,使Mo2BC通过DC溅射在小的涂敷室内沉积。所述涂敷参数分别为:
发生器 DC
功率 50W
50mm化合物靶
基体温度 300-700°C
基础压力 x 10 -5 mbar
考虑的是基体温度效应、粗糙度和硬度以及弹性模量。
所述涂层在不同的温度施加。图1分别显示了在300℃、450℃、550℃、650℃和700℃的基体温度下涂敷的表面的x-射线衍射光谱(2θ)。显然只有在600℃以上才可认为存在晶体相。在550℃温度以下存在无定形或纳米-晶体相。弹性模量以及硬度随着基体温度降低而增加。
与之相反和当通过脉冲功率施加沉积时,在580℃已经测量到明显的峰,如图2中示出了比较。由此,应用的方法是脉冲磁控管溅射。当使增加的离子轰击发生脉冲时增加的等离子体密度和增加的吸附原子迁移率导致相形成程度增加。
如图3中清楚地所示,如果应用HIPIMS,在580℃的基体温度下已经主要是晶体相。在本发明中HPPMS和HIPIMS表示相同的技术。这导致最高的结晶度和花纹结构。在图4中示出了在类似基体温度(560℃-580℃)下的不同方法的x-射线光谱。在两种不同的市购可得源帮助下实现了HIPIMS涂层。当涂敷钢基体时出现了相同的温度行为。由此,在此情况下基体的选择没有影响。
在600℃以下基体温度施加-100V的基体偏压对于在非脉冲DC-溅射下的相形成没有显著影响。因此,相反地,如果应用HIPIMS技术和同时对所述基体施加例如-100V的负偏压,在480ºC基体温度下至少已经出现了Mo2BC晶体相。
公开了用至少含有微晶金属硼碳化物相的层涂敷基体的PVD方法,其中所述方法特征在于使PVD方法范围内的源功率脉冲,从而在在600℃以下的基体温度下如此沉积的层的x-射线光谱中,至少一个峰可以用半峰宽确定,该半峰宽使得可以得出结论:存在金属硼碳化物的微晶相。
所述方法可以是脉冲电弧PVD方法,但是优选是脉冲溅射法。
根据本发明的溅射法可以如HIPIMS方法至少部分地用大于100W/cm2的电流密度操作。
根据本发明的PVD方法可以用靶操作,其中金属以陶瓷化合物形式存在,例如金属硼碳化物。
根据本发明的方法,所述金属硼碳化物可以是根据式Me2BC的材料,其中Me是由Cr、Zr和Mo形成的组的一种元素。
所述方法可以实现从而至少一个峰具有相对于测量值最大振幅至少二倍程度的振幅,其暗示了20º-70º的2θ的x射线光谱中的纳米晶体相和/或无定形相。这可以例如如图所示通过在HIPIMS方法中分别选择的基体偏压来实现。
通过所述新的方法,可以制造带有金属硼碳化物的涂层,其中在所述涂层的x-射线光谱中至少一个峰可以确定,其半峰宽表明了存在所述金属硼碳化物微晶相。
所述金属硼碳化物可以是根据式Me2BC的材料,其中Me是由Cr、Zr和Mo形成的组的一种元素。

Claims (10)

1.用于涂敷带有涂层的基体的PVD方法,所述涂层至少含有微晶金属硼碳化物相,其特征在于:在PVD方法的范围中,所述源功率是脉冲的,使得在600℃以下的基体温度在由此沉积的层的x-射线光谱中,至少一个峰可以确定,其半峰宽允许得出结论:存在所述金属-硼碳化物的微晶相,其中所述PVD方法包括HIPIMS方法。
2.如权利要求1所述的方法,其特征在于:所述PVD方法是溅射法。
3.如权利要求2所述的方法,其特征在于:所述溅射法操作到至少一部分具有如HIPIMS方法的大于100W/cm2的电流密度。
4.如前述权利要求任一项所述的方法,其特征在于:所述PVD方法通过靶操作,其中金属以陶瓷化合物的形式存在。
5.如权利要求4所述的方法,其特征在于:所述陶瓷化合物是金属硼碳化物。
6.如前述权利要求任一项所述的方法,其特征在于:至少在所述PVD方法的至少一部分期间,对所述待涂敷的基体施加负偏压。
7.如前述权利要求任一项所述的方法,其特征在于:所述金属硼碳化物是根据式Me2BC的材料,其中Me是由Cr、Zr和Mo形成的组的一种元素。
8.如前述权利要求任一项所述的方法,其特征在于:所述方法这样进行操作,使得至少一个峰具有至少是测量值的最大振幅二倍的振幅,其表明在20°-70°的2θx-射线光谱中存在纳米-晶体和/或无定形相。
9.带有金属硼碳化物涂层的工件,其特征在于:在所述涂层的x-射线光谱中至少一个峰可以确定,其半峰宽表明了存在所述金属硼碳化物微晶相,其中包含所述金属硼碳化物微晶相的涂层是通过权利要求1-8中任一项的方法涂敷的。
10.如权利要求9所述的工件,其特征在于:所述金属硼碳化物是根据式Me2BC的材料,其中Me是由Cr、Zr和Mo形成的组的一种元素。
CN201380051231.9A 2012-09-10 2013-09-09 用于在基体上制造金属-硼碳化物层的方法 Expired - Fee Related CN104781444B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012017809.3 2012-09-10
DE102012017809.3A DE102012017809A1 (de) 2012-09-10 2012-09-10 Verfahren zur Herstellung einer Metallborocarbidschicht auf einem Substrat
PCT/EP2013/002700 WO2014053209A1 (de) 2012-09-10 2013-09-09 Verfahren zur herstellung einer metallborocarbidschicht auf einem substrat

Publications (2)

Publication Number Publication Date
CN104781444A CN104781444A (zh) 2015-07-15
CN104781444B true CN104781444B (zh) 2018-08-07

Family

ID=49759246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380051231.9A Expired - Fee Related CN104781444B (zh) 2012-09-10 2013-09-09 用于在基体上制造金属-硼碳化物层的方法

Country Status (8)

Country Link
US (1) US9624571B2 (zh)
EP (1) EP2893053B1 (zh)
JP (2) JP2015533937A (zh)
KR (2) KR20150053959A (zh)
CN (1) CN104781444B (zh)
DE (1) DE102012017809A1 (zh)
MX (1) MX361794B (zh)
WO (1) WO2014053209A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117165927A (zh) * 2015-09-18 2023-12-05 应用材料公司 用于沉积共形bcn膜的方法
US10774416B2 (en) 2015-10-16 2020-09-15 Oerlikon Surface Solutions Ag, Pfäffikon Coating material comprising a ternary phase of Hf—B—C
US10957519B2 (en) 2015-12-21 2021-03-23 Ionquest Corp. Magnetically enhanced high density plasma-chemical vapor deposition plasma source for depositing diamond and diamond-like films
US11359274B2 (en) 2015-12-21 2022-06-14 IonQuestCorp. Electrically and magnetically enhanced ionized physical vapor deposition unbalanced sputtering source
US11482404B2 (en) 2015-12-21 2022-10-25 Ionquest Corp. Electrically and magnetically enhanced ionized physical vapor deposition unbalanced sputtering source
US11823859B2 (en) 2016-09-09 2023-11-21 Ionquest Corp. Sputtering a layer on a substrate using a high-energy density plasma magnetron
US10227691B2 (en) 2015-12-21 2019-03-12 IonQuest LLC Magnetically enhanced low temperature-high density plasma-chemical vapor deposition plasma source for depositing diamond and diamond like films
CN105441890B (zh) * 2015-12-22 2018-04-17 西安交通大学 一种高温低摩擦系数硬质涂层及其制备方法
EP3835452B1 (fr) * 2019-12-09 2024-01-31 The Swatch Group Research and Development Ltd Methode de fabrication d'une surface decorative
TW202140426A (zh) 2020-02-14 2021-11-01 日商大鵬藥品工業股份有限公司 醯基硫脲化合物的製造方法
CN114560714A (zh) * 2022-03-14 2022-05-31 宁波杭州湾新材料研究院 一种纤维增韧陶瓷基复合材料及其制备方法与应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504189A (ja) * 1997-06-16 2002-02-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 基板の真空被覆方法および装置
JP4112836B2 (ja) * 2001-06-19 2008-07-02 株式会社神戸製鋼所 切削工具用硬質皮膜を形成するためのターゲット
JP4614546B2 (ja) * 2001-01-19 2011-01-19 畑 朋延 化合物薄膜の堆積方法とその装置
CN101426947A (zh) * 2006-04-21 2009-05-06 塞美康股份公司 涂覆体
SE533395C2 (sv) * 2007-06-08 2010-09-14 Sandvik Intellectual Property Sätt att göra PVD-beläggningar
DE102007030735A1 (de) * 2007-07-02 2009-01-08 Walter Ag Werkzeug mit mehrlagiger Metalloxidbeschichtung
JP4916021B2 (ja) * 2007-09-26 2012-04-11 日立ツール株式会社 皮膜
DE102008009487B4 (de) * 2008-02-15 2022-09-22 Walter Ag Strahlbehandelter Schneideinsatz und Verfahren
DE102008020163A1 (de) * 2008-04-22 2009-10-29 Siemens Aktiengesellschaft Kathode
DE102009001675A1 (de) * 2009-03-19 2010-09-23 Eberhard-Karls-Universität Tübingen Schneidwerkzeug
JP5222764B2 (ja) * 2009-03-24 2013-06-26 株式会社神戸製鋼所 積層皮膜および積層皮膜被覆部材
DE102010028558A1 (de) * 2010-05-04 2011-11-10 Walter Ag PVD-Hybridverfahren zum Abscheiden von Mischkristallschichten
DE102010042828A1 (de) * 2010-10-22 2012-04-26 Walter Ag Target für Lichtbogenverfahren

Also Published As

Publication number Publication date
JP2020023754A (ja) 2020-02-13
WO2014053209A1 (de) 2014-04-10
JP2015533937A (ja) 2015-11-26
DE102012017809A1 (de) 2014-03-13
EP2893053A1 (de) 2015-07-15
US20150232982A1 (en) 2015-08-20
US9624571B2 (en) 2017-04-18
KR20210076171A (ko) 2021-06-23
MX2015003080A (es) 2015-11-09
KR20150053959A (ko) 2015-05-19
JP6830992B2 (ja) 2021-02-17
MX361794B (es) 2018-12-17
CN104781444A (zh) 2015-07-15
EP2893053B1 (de) 2022-10-12

Similar Documents

Publication Publication Date Title
CN104781444B (zh) 用于在基体上制造金属-硼碳化物层的方法
Musil Flexible hard nanocomposite coatings
Vetter 60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications
Colligon Energetic condensation: Processes, properties, and products
Anders Energetic deposition using filtered cathodic arc plasmas
Lin et al. Structure and properties of Cr2O3 coatings deposited using DCMS, PDCMS, and DOMS
Batková et al. Effect of positive pulse voltage in bipolar reactive HiPIMS on crystal structure, microstructure and mechanical properties of CrN films
Lasfargues et al. Non-reactively sputtered ultra-high temperature Hf-C and Ta-C coatings
KR20100017702A (ko) Pvd 코팅을 만들기 위한 방법
Ferreira et al. Phase tailoring of tantalum thin films deposited in deep oscillation magnetron sputtering mode
Zhou et al. Effect of bias voltage on microstructure and optical properties of Al2O3 thin films prepared by twin targets reactive high power impulse magnetron sputtering
CN103510053A (zh) 金属表面镀制类金刚石薄膜的方法
Shimizu et al. Pressure dependence of (Ti, Al) N film growth on inner walls of small holes in high-power impulse magnetron sputtering
Window et al. Strain, ion bombardment and energetic neutrals in magnetron sputtering
CN108330452A (zh) Max相涂层的制备方法
JP6789503B2 (ja) 硬質皮膜の成膜方法
JP3603112B2 (ja) アルミナ結晶質薄膜の低温製法
JP2005213636A (ja) 複合成膜装置およびスパッタリング蒸発源
JP2022507087A (ja) セラミックターゲットから堆積されたAlリッチな立方晶AlTiNコーティング
US20140255286A1 (en) Method for manufacturing cubic boron nitride thin film with reduced compressive residual stress and cubic boron nitride thin film manufactured using the same
Aufderheide Sputtered thin film coatings
JP6895631B2 (ja) 硬質皮膜の成膜方法
CN113235060B (zh) 一种全α相钽涂层的制备方法
Perekrestov et al. Fabrication of multicomponent carbide coatings by modified magnetron sputter deposition
KR101054298B1 (ko) 확산박막 증착 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Swiss hole

Applicant after: OERLIKON SURFACE SOLUTIONS AG, PFAFFIKON

Address before: Swiss Te Lui Bach

Applicant before: OERLIKON TRADING AG, TRUBBACH

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180807