CN104781320A - 改善断裂韧性的增韧颗粒 - Google Patents

改善断裂韧性的增韧颗粒 Download PDF

Info

Publication number
CN104781320A
CN104781320A CN201380059211.6A CN201380059211A CN104781320A CN 104781320 A CN104781320 A CN 104781320A CN 201380059211 A CN201380059211 A CN 201380059211A CN 104781320 A CN104781320 A CN 104781320A
Authority
CN
China
Prior art keywords
resin
particle
toughness reinforcing
insoluble
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380059211.6A
Other languages
English (en)
Other versions
CN104781320B (zh
Inventor
艾米利亚诺·佛罗尼
文森特·艾尔兹
赛缪尔·希尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C1-Esteraseremmer-N Industrial
Original Assignee
C1-Esteraseremmer-N Industrial
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C1-Esteraseremmer-N Industrial filed Critical C1-Esteraseremmer-N Industrial
Publication of CN104781320A publication Critical patent/CN104781320A/zh
Application granted granted Critical
Publication of CN104781320B publication Critical patent/CN104781320B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/30Fillers, e.g. particles, powders, beads, flakes, spheres, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2363/00Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/24995Two or more layers
    • Y10T428/249952At least one thermosetting synthetic polymeric material layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

一种可固化预浸体层,其通过分别对树脂浸渍强化纤维层的顶表面及底表面涂覆两层外树脂膜形成。所述外树脂膜包含不溶性增韧颗粒,及部分可溶或可膨胀增韧颗粒,但浸渍所述强化纤维的树脂基质不含所述相同增韧颗粒。所述不溶性增韧颗粒在所述预浸体层固化时不溶于所述树脂膜的所述树脂基质中。所述部分可溶或可膨胀增韧颗粒在所述预浸体层固化时可部分地溶于所述树脂膜的树脂基质中或在其中膨胀,但在固化后保持离散颗粒形式。

Description

改善断裂韧性的增韧颗粒
背景技术
纤维强化聚合物(fiber-reinforced polymer;FRP)复合体业已用作可替代航天结构(诸如航空器的主要结构)中的金属的高强度低重量工程材料。所述复合材料的重要特性是高强度、高刚性和经降低的重量。
通常是使用多层预浸体层以形成具有层合物结构的结构复合材料部件。这类复合材料部件的层离(delamination)是一种主要失效模式。当在两个层彼此脱胶时就会发生层离。重要的设计限制因子包括会引发层离所需的能量和传播所述层离所需的能量。
具有经改善抗层离性的固化复合材料(例如,预浸体叠层(layup))即为具有经改善冲击后压缩强度(Compression Strength After Impact;CAI)和断裂韧性(GIc和GIIc)者。
CAI是测量复合材料抗损伤能力的量度。在测量CAI的试验中,使复合材料经受特定能量的冲击且接着压实加载。在冲击之后并且在压实试验之前测量损伤的面积和凹痕深度。在本试验期间,将复合材料加以束缚限制以确保不会发生弹性不稳定并记录复合材料的强度。
断裂韧性为描述含裂纹材料的抗断裂能力的性质,且为用于航天应用的材料中最重要的性质之一。断裂韧性是当存在裂纹时表示材料抗脆性断裂的定量方式。
断裂韧性可以应变能释放率(Gc)定量表示,应变能释放率(Gc)是每单位新产生断裂表面积在断裂期间所消散的能量。Gc包含GIc(1型–开口模式)或GIIc(II型–平面内剪切)。下标“Ic”表示在垂直于所述裂纹的法线拉伸应力下产生的I型裂纹开口,而下标“IIc”表示因平行于所述裂纹的平面和垂直于裂纹前缘的剪切应力之作用而产生的II型裂纹。通常是通过检测I型和II型断裂韧性来确定层离的引发和发展。
发明内容
本文揭示一种具有分别涂覆到树脂浸渍强化纤维层顶表面和底表面的两层树脂膜的可固化预浸体层,其中所述树脂膜包含不溶性增韧颗粒、和部分可溶或可膨胀增韧颗粒,但浸渍所述强化纤维用的树脂基质不含所述相同增韧颗粒。所述不溶性增韧颗粒在所述预浸体层固化时不溶于所述树脂膜的所述树脂基质中。所述部分可溶或可膨胀增韧颗粒在所述预浸体层固化时可部分地溶于所述树脂膜的所述树脂基质中或在其中膨胀,但在固化后会呈离散颗粒存在。通过堆叠多层这些预浸体层可形成复合结构。
本文还公开关于制造所述预浸体层和所述复合结构的方法。
附图说明
图1A到1D说明用于制造预浸体层的四-膜法。
图2说明根据一个实施例的用于实施所述四-膜法的示范性系统。
图3A说明形成根据另一个实施例的系统的示范性预浸体,其中树脂珠粒是在第一加压辊隙前方形成。
图3B是图3A中所显示树脂珠粒的分解图。
图4是光学显微镜图像,其显示依照两-膜法形成的固化层合物的横截面视图。
图5是光学显微镜图像,其显示依照四-膜法形成的固化层合物的横截面视图。
图6A是图4中所显示固化层合物的层间区域的放大视图。
图6B是图5中所显示固化层合物的层间区域的放大视图。
具体实施方式
已尝试使用增韧颗粒来韧化相邻预浸体层之间的层间区域。一直以来,将非交联可溶性热塑性颗粒用于韧化热固性树脂系统,但它们会造成各种问题。与在固化期间溶解的热塑性颗粒相关的问题之一是所得复合体未能保有足够的热固性热机械性质。某些不溶性颗粒不能让树脂材料穿透所述颗粒而导致所述颗粒与所述树脂基质之间的脱胶,它们因而未能赋予复合材料足够的强度。因此,增韧颗粒的选择具有重要性。
业已发现,通过将增韧颗粒的特定掺合物并入到多层复合体的层间区域中可改善最终固化复合体的CAI和断裂韧性。在这种情形中所述多层复合体是指由经配置呈堆叠配置(即,叠层或层合物)的多层结构层所组成的层合物。每个结构层是由树脂浸渍纤维(即,浸渍有树脂基质的强化纤维)所构成。“层间区域”是指两个相邻强化纤维结构层之间的区域。
此外,已发现除了利用四-膜法(four-film process)可将增韧颗粒施加到结构层之外,通过将不溶性增韧颗粒与部分可溶(或可膨胀)增韧颗粒的特定掺合物并入到多层复合体的层间区域中可进一步改善多层复合体的GIIc断裂韧性。出人意料的是,发现通过四-膜法来置放增韧颗粒可得到实质上均整性的层间区域,这是因为在多层复合体(或预浸体叠层)固化时所述颗粒不会迁移离开所述层间区域。
当与制造期间通过两-膜法(two-film process)来施加增韧颗粒的掺合物的相同复合体加以比较时可观察到这一改善情况。然而,当在利用四-膜法但仅将一种类型的增韧颗粒(不溶性或部分可溶/可膨胀中任一者)并入到层间区域中时,并未显示出GIIc断裂韧性的相同改善。
图1A到1D说明上述四-膜法。参照图1A,两层树脂膜11、12是各别地施加到强化纤维10层的顶表面和底表面。所述强化纤维10可为单向排列纤维(即,在同一平面上且沿同一方向排列的连续纤维)。然而,应了解,所述强化纤维10可沿多方向排列或可呈编织物形式。接着将热和压力施加到所得组合件以形成如图1B中所显示的树脂浸渍纤维层13。参照图1C和1D,随后,各别地将两个额外树脂膜14、15压到所述树脂浸渍层13的顶表面和底表面以得到复合体层16,也称为“预浸体”或“预浸体层”。为了形成复合体结构,将多层复合体层16叠层呈堆叠配置以形成在相邻复合体层之间的层间区域中具有增韧颗粒的复合体叠层。
在一个实施例中,所述树脂膜11、12、14、15是从实质上相同可固化热固性树脂基质形成,不同之处在于所述外膜14和15包含不溶性和部分可溶或可膨胀增韧颗粒的混合物,而所述头两层膜11和12则不含不溶性和部分可溶或可膨胀增韧颗粒的混合物。形成所述外树脂膜14、15的树脂基质中(i)不溶性增韧颗粒与(ii)部分可溶或可膨胀增韧颗粒的比值在20:80到80:20内。
图2说明用于实施四-膜法的示范性系统。沿着纵向路径22将强化纤维的连续层20馈送到浸渍区段21中。各自由离型纸负载的两层树脂膜23、24(不含增韧颗粒)是从供给辊25、26松开,继而在所述纤维层20通过由加压辊27到30形成的加压辊隙时借助加压/压实辊27、28、29、30被各别地压到所述纤维层20的顶表面和底表面。来自所述加压辊27到30的压力促使所述树脂膜23、24浸渍所述纤维层20,从而得到树脂浸渍纤维层31。分别负载树脂膜23和24的所述离型纸P1和P2接着在所述浸渍纤维层31通过辊29与30之间的第二加压辊隙后,从所述浸渍纤维层31的表面剥离。接着,含有增韧颗粒的两个额外树脂膜32、33从供给辊34、35松开,继而借助加压/压实辊36、37、38、39被各别地压到所述浸渍纤维层31的顶表面和底表面上,从而得到预浸体40。负载树脂32的离型纸P3在所述预浸体40通过辊38与39之间的辊隙后,会从所述预浸体40剥离。因此,所得预浸体40载于离型纸上且会在下游位置(未显示)处卷绕。可在相对的加压辊27到30之间形成的所述加压辊隙前方和下游预加热所述头两层树脂膜23、24以软化所述树脂膜和帮助浸渍工艺。然而,浸渍期间的加热不足以固化树脂基质。
上述四-膜法与两-膜法不同,两-膜法在用于形成预浸体工业中更为典型。在所述两-膜法中,利用加热和加压仅将两层树脂基质膜施加到强化纤维层的相对侧,以借此浸渍所述纤维。当所述树脂基质包含比相邻纤维之间的空隙或间隙大的增韧颗粒时,所述颗粒在浸渍期间会被所述纤维过滤出来,因此,留在所述纤维层的外侧。
图3A说明另一种预浸体形成系统,其与图2中所显示类似,不同之处在于在加压/压实辊44、45之间形成的第一辊隙前方在两个离型纸P4、P5之间形成树脂珠粒41以浸渍强化纤维的层42,且通过改变辊44、45之间的间隙来控制树脂含量以形成树脂浸渍纤维层48。所述树脂珠粒41为有意积累在辊44、45之间形成的第一辊隙前方的过量树脂积累物。所述树脂珠粒41的放大视图显示于图3B中。在所述强化纤维层通过过量树脂时,其变成涂覆有所述树脂本身。所述方法的这一步骤中使用不含颗粒的树脂。在一个实施例中,所述树脂珠粒41可通过允许部分树脂在其到达所述第一辊隙处之前散布于所述离型纸中的一者上产生。所述离型纸P4、P5接着在所述树脂浸渍纤维层48通过由辊46和47形成的所述第二加压辊隙后从所述树脂浸渍纤维层48剥离。随后,接着将含有增韧颗粒的两层额外树脂膜49、50压到所述树脂浸渍纤维层48上以形成如上文关于图2所述的预浸体。
溶解性
特定颗粒是不溶还是可溶的确定涉及在存有它们的特定树脂系统中的溶解性。所述树脂系统可包含一或多种热固性树脂、固化剂和/或催化剂以及少量任选的用于调节未固化或固化树脂基质性质的添加剂。
热载台显微镜(Hot stage microscopy)可用于确定颗粒在树脂基质中为不溶、部分可溶、或可膨胀。首先,测量干燥聚合颗粒(亦即,不与树脂组合)的样本来确定平均粒度和体积。其次,经由机械混合将颗粒的样本分散于期望的树脂基质中。再次,将所得混合物的样本置于显微镜载玻片上,接着将所述载玻片置于显微镜下方的热载台设置中。然后,将所述样本加热到所需固化温度,并观察并测量所述颗粒的尺寸、体积或形状的任何改变。所有热载台测试可以不含固化剂或催化剂的树脂基质的10重量%(重量百分比)颗粒负载率来进行。
不溶性增韧颗粒
当在增韧颗粒经过上述热载台显微镜分析且所述颗粒与初始“干燥”颗粒相比直径或体积的任何改变为最小(例如,小于5%,优选的是,小于1%)时,则所述颗粒被认为是不溶的。在一些实施例中,不溶性增韧颗粒包括在热载台显微镜分析期间会熔化但不会与树脂基质兼容且因此在冷却时会再形成为离散颗粒的颗粒。仅就分析目的来说,所述颗粒可在热载台显微镜分析期间流动并且结晶度也可改变。
就环氧基树脂基质来说,不溶性颗粒可包括由一或多种选自以下的聚合物制成的聚合颗粒:聚酰胺酰亚胺(PAI)、聚酰胺(PA)、聚醚醚酮(PEEK)、聚醚酮酮(PEKK)、聚酯、聚丙烯、聚苯硫醚(PPS)、液晶聚合物(LCD)。
在一个实施例中,所述不溶性颗粒为在固化工艺中不会溶解且留在固化复合材料的层间区域中的不溶性热塑性颗粒。适合的不溶性热塑性颗粒的实例包括聚酰胺酰亚胺(PAI)颗粒和聚酰胺(PA)颗粒(例如,尼龙或聚邻苯二甲酰胺(PPA)颗粒),其在其固化周期期间不溶于环氧树脂系统中。
某些等级的聚酰亚胺颗粒可能适于作为不溶性增韧颗粒。例如,从二苯甲酮四羧酸二酐(BTDA)、4,4'-亚甲基二苯胺(MDA)和2,4-甲苯二胺(TDA)制得,且具有包含90至92%芳族碳的非邻苯二甲酰亚胺碳内含物(例如,购自奥地利兰精公司(Lenzing AG)的P84)的聚酰亚胺。
已发现不溶性热塑性颗粒作为层间增韧剂可有效避免损失热湿性能。因为这些热塑性颗粒即使在固化之后仍不溶于树脂基质中,所以它们可赋予固化树脂经改善的韧性、抗损伤性、热湿性能、加工、抗微龟裂性、和经降低的溶剂敏感性。
除上述聚合颗粒外,还可添加由导电材料(例如,金属、石墨、碳)、陶瓷、二氧化硅形成的无机颗粒作为不溶性颗粒。
部分可溶和可膨胀增韧颗粒
如果颗粒经过部分溶解且在树脂基质热固化时不完全溶解于树脂基质中,则所述颗粒被认为是部分可溶的。当这类部分可溶颗粒经过上述热载台显微镜分析时,所述颗粒与初始“干燥”颗粒相比的粒度或体积改变量大于5%,但可识别的颗粒在固化和冷却后仍旧呈离散颗粒。如本文所用,“溶解”在树脂中意味着与周围树脂形成均质相。
“可膨胀”颗粒包括在经过上述热载台显微镜分析时粒度或体积增加量大于5%的颗粒。所述膨胀是因为周围树脂基质灌注到颗粒外表面中而引起的。
已发现部分可溶或可膨胀热塑性颗粒可赋予复合材料良好的拉伸强度性质。某些工程化交联热塑性颗粒特别适于作为层间增韧颗粒。这些交联热塑性颗粒可被视为部分可溶且同时可膨胀。
工程化交联热塑性颗粒
在一个实施例中,工程化交联热塑性颗粒是由通过利用与反应性基团化学性反应的交联剂使具有一或多个一或多个反应性基团的可交联热塑性聚合物交联所建立的交联网状结构(cross-linking network)所组成,其中所述交联剂是通过所述反应性基团直接使所述聚合链彼此交联。所述反应性基团可以是聚合主链上的端基或侧基。可将所述实施例的直接交联反应描述作通过利用一或多个反应性基团使聚合链直接交联而“绑系”所述聚合物分子。
交联热塑性颗粒可通过包括将热塑性聚合物、交联剂以及催化剂溶解在不会与水混溶的常见溶剂中的乳液法制得。接着,在水中通过使用非离子界面活性剂借此形成乳化颗粒而建立乳液。所述乳化颗粒接着进行干燥和固化,致使聚合链呈化学性交联。反应条件及交联剂的类型和量将决定颗粒的最终形状。反应条件(如温度)会导致更大程度的交联。具有较大官能度的交联剂会影响热塑性颗粒的交联程度。具有相对更低官能度的其它交联剂将以更低的程度交联。交联剂浓度还可与交联程度成正比例。
易于交联的适合热塑性聚合物的实例包括(但不限于)选自以下各项:具有羟基端基的聚醚砜(PES);具有羟基端基、氨基或酸酐端基的聚醚酰亚胺(PEI);具有羟基端基的聚苯氧化物(PPO)或聚苯醚(PPE);具有氟-或羟基端基的聚芳醚酮(PAEK),包括聚醚醚酮(PEEK)、聚醚酮酮(PEKK);或具有反应性端基或主链官能团的任何工程热塑性聚合物。可交联热塑性聚合物的具体实例包括具有羟基端基的PES、具有胺端基的PES-PEES共聚物、具有胺端基的PEI、具有羟基端基的PPE。
根据热塑性聚合物端基/官能团的化学性质,可选择具有多个反应性部位的适合多官能交联剂。这类交联剂的实例为:烷基化三聚氰胺衍生物(例如氰特(Cymel)303)、酸氯化物(例如1,3,5-苯三酰三氯)、多官能环氧树脂(例如,爱牢达(Araldite)MY0501、MY721)、羧酸(例如1,2,4,5-苯四甲酸)。还可利用自由基加成采用热、UV或其它辐射固化技术轻易地使多元不饱和热塑性聚合物交联。
在另一个实施例中,本发明提供一种由互穿聚合物网状结构(IPN)组成的工程化颗粒,其由与独立交联网状结构缠结的热塑性聚合物链构成。所述IPN通过利用与反应性基团化学性反应的交联剂在热塑性聚合物存在下使一或多种具有一或多个反应性基团的化合物(例如,交联单体)起反应而建立。所述反应(其在特定交联或固化条件下发生)使得所述化合物通过所述反应性基团而交联,因而形成独立交联的网状结构。因此,所述热塑性聚合物链在分子层级上可与独立交联网状结构缠结以形成IPN。这种方法可描述成通过形成个别及独立交联网状结构借此建立互穿网状结构而“绑系”所述热塑性聚合物链。因此,在这一实施例中,所述热塑性聚合物不需要在其上具有反应性基团。
举例来说,IPN可通过以下建立:(i)形成包含热塑性聚合物、多官能环氧树脂及能够使所述环氧树脂交联的胺固化剂的乳液;(ii)从所述乳液移除溶剂并收集呈固体颗粒形式的浓缩物;(iii)干燥所述颗粒接着再进行固化(例如,通过加热),使得所述环氧树脂变成交联。作为固化的结果,所述交联环氧树脂与所述热塑性聚合物形成IPN。
本文所述的交联热塑性颗粒热力学上与热固性树脂基质(诸如环氧基基质)相容,并且其是经化学性交联以便能防止其在树脂基质固化期间总体溶解在树脂中。
本文所述的交联热塑性颗粒还与存有它们的周围树脂基质形成“梯度界面”。本文中所使用的术语“梯度接口”是指所述颗粒每一者与所述周围树脂基质之间的逐渐且强力之接口。通过使用热力学上与热固性树脂(例如环氧树脂)兼容的工程化交联热塑性颗粒可得到梯度界面。交联热塑性颗粒核中热塑性聚合物的浓度在中心处最大,并随着树脂基质从外表面进入颗粒且移向核,而朝向颗粒的外表面逐渐减小。这种热塑性聚合物浓度从热塑性颗粒的核到外表面的逐渐减小在所述热塑性颗粒每一者与所述周围树脂基质之间会形成梯度接口。因此,热固性树脂与热塑性颗粒之间没有极明显的轮廓或过渡。如果呈现极明显的轮廓或过渡,则与包含梯度接口的复合材料相比,复合材料中热塑性颗粒与热固性树脂之间的所述接口将弱得多。因此,所述交联热塑性颗粒还可被视为“可膨胀”,这是因为当将颗粒混合在树脂基质中时,树脂基质可扩散到颗粒中,因而导致粒度增加。然而,所述交联颗粒在树脂基质固化之后将保持呈离散且可识别的颗粒。
本文所用“离散颗粒”是指可在树脂基质中识别且可通过使用扫描电子显微镜(SEM)、光学显微镜或示差干涉相差显微镜(DIC)检测的颗粒。
交联热塑性颗粒的优点为其有能力实现层间区域中热塑性聚合物之局部高浓度而不会有相逆转的风险。已知层间区域中的热塑性内容物可提高材料的韧性。然而,当在将大量线性可兼容热塑性颗粒与热固性树脂掺合或溶解在热固性树脂中时,已知所述热塑性颗粒在热固性树脂固化期间会以反转方式相分离(也称为由反应引起的相分离),而得到包含热固性聚合物的热塑性连续相。所述相逆转又会严重损害复合体的性质(主要是耐热性和耐溶剂性)。
适用于层间增韧的部分可溶和/或可膨胀热塑性颗粒的其它实例包括特定等级的聚酰亚胺颗粒。可用于本文所述目的的热塑性聚酰亚胺可至少在固化周期期间膨胀或部分溶解于树脂系统中,但它们还必须可抗溶解达到其在固化后保持离散颗粒形式的程度。就这类应用来说,并非所有聚酰亚胺表现相同。溶解性大到以致它们在制备树脂基质期间或在预浸体工艺中完全溶解的聚酰亚胺是不适宜的。
基于二苯甲酮四羧酸二酐(BTDA)和5(6)-氨基-1-(4'-氨基苯基)-1,3,3-三甲基二氢茚(AATI)且仅含约81%芳族(40个)非邻苯二甲酰亚胺碳的聚酰亚胺将适用于本文所述的目的。预期基于AATl和MDA或TDA的混合物的聚酰亚胺同样有用,只要芳族非邻苯二甲酰亚胺碳含量小于90%即可。预期可用的其它聚酰亚胺为其中二胺完全或部分基于2,2,4-三甲基己烷-1,6-二胺的聚酰亚胺。基于BTDA和AATI的聚酰亚胺也适合。这类聚酰亚胺是以商标5218从汽巴-嘉基公司(Ciba-Geigy Corporation)购得。
可膨胀颗粒的额外实例包括官能团化橡胶颗粒。官能团化橡胶颗粒由官能团化弹性体构成,其可包括具有或经改性而包含羧基、羧酰胺、酸酐、环氧或胺官能度的二烯和烯烃橡胶。这些橡胶颗粒可进一步表征为部分交联,使得它们展现充分的完整性,以抵抗通常在制造和固化所在复合体时遭遇的温度下发生的显著溶解。
一般来说,所述不溶性和部分可溶/可膨胀颗粒可具有在5到70μm范围的粒度或粒径。所述颗粒可为规则或不规则形状,且可呈球形颗粒、经研磨的颗粒、丸粒等形式。
复合体中增韧颗粒(不溶性和部分可溶/可膨胀颗粒)的总量可占树脂基质约2%到30%重量。优选地,增韧颗粒含量的范围在5重量%到20重量%之间。最佳量将根据树脂基质的固有韧性、颗粒的韧性以及其它因子改变。
树脂基质
增韧颗粒分散于其中的树脂基质(或树脂系统)是指可固化树脂配方且可包含一或多种热固性树脂,其包括(但不限于)环氧树脂、双马来酰亚胺、乙烯基酯树脂、氰酸酯树脂、异氰酸酯改性的环氧树脂、酚系树脂、苯并噁嗪、甲醛缩合树脂(如与脲、三聚氰胺或苯酚)、聚酯、丙烯酸树脂和其组合物。在一个实施例中,所述树脂基质为包含一或多种多官能环氧树脂作为主要聚合组分的环氧基热固性调配物。
适合的环氧树脂包括芳族二胺、芳族单(伯)胺、氨基苯酚、多羟基酚、多羟基醇、多羧酸的聚缩水甘油基衍生物。适合的环氧树脂的实例包括双酚(诸如双酚A、双酚F、双酚S和双酚K)的聚缩水甘油醚;以及甲酚的聚缩水甘油醚和以苯酚为主的酚醛清漆。
具体实例为4,4'-二氨基二苯基甲烷(TGDDM)的四缩水甘油衍生物、甲苯二酚二缩水甘油醚、三缩水甘油基-对-氨基苯酚、三缩水甘油基-间-氨基苯酚、溴双酚F二缩水甘油醚、二氨基二苯基甲烷的四缩水甘油衍生物、三羟基苯基甲烷三缩水甘油醚、苯酚-甲醛酚醛清漆的聚缩水甘油醚、邻甲酚酚醛清漆的聚缩水甘油醚或四苯基乙烷的四缩水甘油醚。
适用于树脂基质中的市售环氧树脂包括N,N,N',N'-四缩水甘油基二氨基二苯基甲烷(例如,来自亨斯迈(Huntsman)的MY 9663、MY 720、和MY 721);N,N,N',N'-四缩水甘油基-双(4-氨基苯基)-1,4-二异丙基苯(例如,来自迈图(Momentive)的EPON 1071);N,N,N',N'-四缩水甘油基-双(4-氨基-3,5-二甲基苯基)-1,4-二异丙基苯(例如,来自迈图的EPON 1072);对氨基苯酚的三缩水甘油醚(例如,来自亨斯迈的MY 0510);间氨基苯酚的三缩水甘油醚(例如,来自亨斯迈的MY 0610);以双酚A为主的物质的二缩水甘油醚(例如,来自亨斯迈的Tactix 123);2,2-双(4,4'-二羟基苯基)丙烷(例如,来自陶氏(Dow)的DER 661、来自迈图的EPON 828)、苯酚酚醛清漆的缩水甘油醚(例如,来自陶氏的DEN 431、DEN 438);二-环戊二烯基环氧酚醛清漆树脂(例如,来自亨斯迈的Tactix 556);1,2-邻苯二甲酸二缩水甘油酯(例如GLY CEL A-100);双酚F的二缩水甘油衍生物(例如,来自亨斯迈的PY 306)。其它环氧树脂包括环脂族,诸如3',4'-环氧基环己基-3,4-环氧基环己烷羧酸酯(例如,来自亨斯迈的CY 179)。
一般来说,所述树脂基质包含一或多种热固性树脂与添加剂的组合,例如固化剂、催化剂、共聚单体、流变控制剂、增粘剂、流变改性剂、无机或有机填充剂、可溶性热塑性或弹性增韧剂、稳定剂、抑制剂、颜料/染料、阻燃剂、反应性稀释剂以及为所属领域的技术人员众所周知的用于改善固化前或固化后树脂基质性质的其它添加剂。
固化剂和/或催化剂的添加可提高固化速率和/或减低树脂基质的固化温度。用于热固性树脂的固化剂是适当地选自已知的固化剂,例如,芳族或脂族胺、或胍衍生物。芳族胺固化剂是优选的,优选的是每分子具有至少两个氨基的芳族胺,且尤其优选的是二氨基二苯基砜,例如,其中的氨基相对于砜基团在间-或对-位置。特定的实例为3,3'-和4-,4'-二氨基二苯基砜(DDS);亚甲基二苯胺;双(4-氨基-3,5-二甲基苯基)-1,4-二异丙基苯;双(4-氨基苯基)-1,4-二异丙基苯;4,4'亚甲基双-(2,6-二乙基)-苯胺(来自龙沙(Lonza)的MDEA);4,4'亚甲基双-(3-氯-2,6-二乙基)-苯胺(来自龙沙的MCDEA);4,4'亚甲基双-(2,6-二异丙基)-苯胺(来自龙沙的M-DIPA);3,5-二乙基甲苯-2,4/2,6-二胺(来自龙沙的D-ETDA80);4,4'亚甲基双-(2-异丙基-6-甲基)-苯胺(来自龙沙的M-MIPA);4-氯苯基-N,N-二甲基-脲(例如灭草隆(Monuron));3,4-二氯苯基-N,N-二甲基-脲(例如敌草隆TM(Diuron TM))和二氰基二酰胺(例如,来自太平洋锚化学公司(Pacific Anchor Chemical)的Amicure TMCG 1200)。
适合的固化剂还包括酸酐,特别是多羧酸酐,如耐地酸酐(nadic anhydride)、甲基耐地酸酐(methylnadic anhydride)、邻苯二甲酸酐、四氢邻苯二甲酸酐、六氢邻苯二甲酸酐、甲基四氢邻苯二甲酸酐、内亚甲基四氢邻苯二甲酸酐和偏苯三甲酸酐。
强化纤维
对于高性能复合材料和预浸体之制造来说,用于本文所述目的的强化纤维可以一般术语表征为具有高拉伸强度(TS)(例如,大于3500MPa)和高拉伸模量(TM)(例如,大于230GPa)。适用于这些目的的纤维包括碳或石墨纤维、玻璃纤维和由碳化硅、氧化铝、二氧化钛、硼和类似物形成的纤维、以及由有机聚合物诸如(例如)聚烯烃、聚(苯并噻唑)、聚(苯并咪唑)、聚芳酯、聚(苯并噁唑)、芳族聚酰胺、聚芳醚和类似物形成的纤维,和可包括具有两种或更多种所述纤维的混合物。优选地,所述纤维是选自玻璃纤维、碳纤维和芳族聚酰胺纤维,诸如由杜邦公司(DuPont Company)以商品名凯芙拉(Kevlar)所销售的纤维。此外,打算由树脂基质浸渍的所述强化纤维可呈连续、单向或多向纤维的薄片形式、或呈编织或非编织织物形式。
复合体部件和预浸体叠层
可将预浸体层的多层叠层呈堆叠配置,以形成具有层合物结构的结构复合材料部件,接着再进行固化。在某些实施例中,在所述叠层中的所述预浸体层可相对彼此定位成所选择定向。例如,预浸体叠层可包括具有纤维是相对叠层的最大维度(诸如长度)定位成各种不同角度0°、45°、90°等等的单向纤维架构的预浸体层。应进一步明了,在某些实施例中,具有纤维架构的任何组合(诸如单向和多维)的预浸体可经组合以形成预浸体叠层。所述预浸体叠层可在成型工具上形成,以得到所预期的三维构形。预浸体叠层之固化通常是在加热和加压下发生。
实例
以下实例用来说明本发明的产物和工艺。
实例1-两-膜法
基于表格1中所显示的配方基础上来制备树脂基质。
表格1
组分 含量[重量%]
爱牢达PY306 23.6
爱牢达MY0510 23.6
PES 18.9
4,4'DDS 23.9
芳族尼龙(干燥) 5.0
交联PES-PEES颗粒 5.0
接着使所述树脂基质成膜到负载纸上,以形成具有50gsm膜航空用重量(film aerialweight;FAW)的树脂膜。
在预浸体机器中将东邦特耐克丝(Toho Tenax)IMS65碳纤维铺展成194gsm的航空用重量。接着将两层树脂膜压在铺展纤维的各相对侧上,以得到具有以下特征的预浸体:
FAW=194gsm
树脂含量=34%
依照EN 2565叠层从上述预浸体所切薄片以形成层合物。接着在利用2℃/min固化温度斜升率达到固化温度于180℃下进行固化所述层合物2小时。图4显示固化层合物(横截面视图)的光学显微镜图像。
实例2-四-膜法
基于表格2和3中所显示的配方基础上来形成两种不同树脂基质。
表格2
组分[U-膜] 含量(重量%)
爱牢达PY 306 26.2
爱牢达MY 0510 26.2
PES 21.0
4,4'DDS 26.6
表格3
组分[P-膜] 含量(重量%)
爱牢达PY 306 21.0
爱牢达MY 0510 21.0
PES 16.8
4'4'DDS 21.2
芳族尼龙 10.0
交联PES-PEES颗粒 10.0
在以上表格中:
爱牢达PY 306=以双酚F为主的双官能团环氧树脂
爱牢达MY 0510=对氨基苯酚的三缩水甘油醚
接着在负载纸上使基于表格2配方基础上的树脂基质成膜达到25gsm的航空用重量以得到树脂膜,将其标记为“U-膜”。接着在负载纸上使基于表格3配方基础上的树脂基质成膜达到25gsm的航空用重量以得到树脂膜,将其标记为“P-膜”。在预浸体机器中将东邦特耐克丝IMS65碳纤维铺展成194gsm的航空用重量。利用上述四膜法,将两层U-膜压在铺展纤维的相对侧上,以得到具有以下特征的树脂浸渍预浸体:
FAW=194gsm
树脂含量=20%
接着将两层P-膜压到在前一步骤中所得到预浸体的相对侧,以得到具有以下特征的最终预浸体:
FAW=194gsm
树脂含量=34%
依照EN 2565叠层从上述预浸体所切薄片以形成层合物。接着利用2℃/min固化温度斜升率达到固化温度在180℃下固化所述层合物2小时。
图5显示通过四-膜法制得的固化层合物(横截面视图)的光学纤维图像(×10放大倍数)。
图6A和6B为分别显示于图4和图5中的固化层合物之层间区域的×20放大视图。
由图4、5、6A、和6B可见,通过四-膜法得到的层合物结构与通过两-膜法得到的层合物结构相比具有远远更具均整性的层间区域。此外,对于通过两-膜法所制得的层合物来说,显著数量的颗粒似乎已迁移离开层间区域并嵌入到纤维束中(图4和6A),而对于通过四-膜法(图5和6B)所制得层合物的情况,此情况并未出现,这是因为大多数颗粒被局限于层间区域。
机械测试结果
依照表格4中所揭示测试方法测定依照实例1和2所制得固化层合物的机械性质。所述测试结果也显示于表格4中。
表格4
(*)试样块宽度为12.7mm。如prEN6034中所指明,试样块是预先龟裂成GIIc结构而非GIc结构。
概述于表格4中的数据清楚地显示,具有与更具均整性的层间区域的层合物相关联的II型层间韧性(GIIc)有所增强。

Claims (17)

1.一种可固化预浸体层,其包含:
具有顶表面和底表面的树脂浸渍强化纤维层;
分别涂覆到所述层的所述顶表面和所述底表面的两层树脂膜,
其中所述树脂浸渍强化纤维层包含浸有第一可固化树脂基质的强化纤维,且所述树脂膜包含第二可固化树脂基质,
所述第二可固化树脂基质包含至少一种热固性树脂,和以下两种不同类型颗粒的混合物:(i)不溶性增韧颗粒,及(ii)部分可溶或可膨胀增韧颗粒,及
所述第一可固化树脂基质包含至少一种热固性树脂,但不含所述不溶性增韧颗粒和所述部分可溶或可膨胀增韧颗粒,及
其中所述不溶性增韧颗粒在所述预浸体层固化时不溶于所述第二树脂基质中,且所述部分可溶或可膨胀增韧颗粒在所述预浸体层固化时可部分地溶于所述第二树脂基质中或在其中膨胀,但在固化后保持离散颗粒形式。
2.根据权利要求1所述的可固化预浸体层,其中所述第二树脂基质中不溶性增韧颗粒(i)与部分可溶或可膨胀增韧颗粒(ii)的比率在20:80到80:20范围内。
3.根据权利要求1或2所述的可固化预浸体层,其中所述第二树脂基质包含至少一种环氧树脂,且所述不溶性增韧颗粒为在所述环氧树脂固化时不溶于所述环氧树脂中的热塑性颗粒。
4.根据前述权利要求中任一权利要求所述的可固化预浸体层,其中所述第二树脂基质包含部分可溶的增韧颗粒,其为在所述预浸体层固化时体积减小大于5%但在固化后保持离散颗粒形式的热塑性颗粒。
5.根据前述权利要求中任一权利要求所述的可固化预浸体层,其中所述第二树脂基质包含可膨胀增韧颗粒,其为在所述预浸体层固化之前或期间体积增加大于5%的热塑性颗粒。
6.根据前述权利要求中任一权利要求所述的可固化预浸体层,其中所述第二树脂基质包含不溶性热塑性颗粒与可膨胀交联热塑性颗粒的组合,
所述交联热塑性颗粒包含以下各项之一:
(a)通过使具有至少一个反应性基团的可交联热塑性聚合物利用与所述反应性基团化学性反应的交联剂进行交联所建立的交联网络,和
(b)包含与单独的交联网络缠结的热塑性聚合物链的互穿聚合物网络IPN,所述IPN是通过使具有一或多个反应性基团的至少一种化合物利用与所述一或多个反应性基团化学性反应的交联剂在热塑性聚合物存在下起反应而建立。
7.根据权利要求6所述的可固化预浸体层,其中所述交联热塑性颗粒与所述第二树脂基质形成表面梯度。
8.根据前述权利要求中任一权利要求所述的可固化预浸体层,其中所述不溶性及部分可溶或可膨胀增韧颗粒具有在5μm到70μm范围内的粒度。
9.根据前述权利要求中任一权利要求所述的可固化预浸体层,其中所述第一及第二树脂基质中的每一者包含多种相对于这两种基质均属常见的多官能基环氧树脂。
10.一种包含多层预浸体层的复合结构,所述多层预浸体层以堆叠配置方式铺放以形成层间区域中具有增韧颗粒的层合物结构,所述层间区域是在相邻强化纤维层之间形成,其中每个预浸体层是根据权利要求1到9中任一权利要求所述的预浸体层。
11.一种制造可固化预浸体层的方法,所述方法包含:
从第一可固化树脂基质形成两层内树脂膜;
将一层内树脂膜压到强化纤维层的顶表面上,且将一层内树脂压到所述同一强化纤维层的底表面上,以形成具有顶表面和底表面的树脂浸渍纤维层;
从第二可固化树脂基质形成两层外树脂膜;
将一层外树脂膜压到所述树脂浸渍纤维层的顶表面上,且将一层外树脂膜压到所述树脂浸渍纤维层的底表面上,
其中
所述第二可固化树脂基质包含至少一种热固性树脂,和以下两种不同类型增韧颗粒的混合物:(i)不溶性增韧颗粒,和(ii)部分可溶或可膨胀增韧颗粒,及
所述第一可固化树脂基质包含至少一种热固性树脂,但不含所述相同不溶性和部分可溶或可膨胀增韧颗粒,及
所述不溶性增韧颗粒在所述预浸体层固化时不溶于所述第二树脂基质中,且所述部分可溶或可膨胀增韧颗粒在所述预浸体层固化时可部分地溶于所述第二树脂基质中或在其中膨胀,但在固化之后保持离散颗粒形式。
12.一种制造复合结构的方法,所述方法包含:
形成多层预浸体层,每个预浸体层由根据权利要求11所述的方法形成;
将所述预浸体层叠放呈堆叠配置,以形成层合物结构;及
固化所述层合物结构,
其中所述不溶性增韧颗粒在固化时不溶于所述第二树脂基质中,且所述部分可溶或可膨胀增韧颗粒在固化时可部分地溶于所述第二树脂基质中或在其中膨胀,但在固化后保持离散颗粒形式。
13.一种制造可固化预浸体层的方法,所述方法包含:
通过在两个压实辊前方涂覆呈树脂珠粒形式的第一可固化树脂来浸渍强化纤维层,其中通过改变所述压实辊之间的间隙来控制所述树脂含量,以形成树脂浸渍纤维层;
从第二可固化树脂形成两层外树脂膜;
将一层外树脂膜压到所述树脂浸渍纤维层的顶表面上,且将一层外树脂膜压到所述树脂浸渍纤维层的底表面上,
其中
所述第二可固化树脂包含至少一种热固性树脂,和以下两种不同类型增韧颗粒的混合物:(i)不溶性增韧颗粒,和(ii)部分可溶或可膨胀增韧颗粒,及
所述第一可固化树脂包含一或多种热固性树脂,但不含所述相同不溶性和部分可溶或可膨胀增韧颗粒,及
所述不溶性增韧颗粒在所述预浸体层固化时不溶于所述第二树脂中,且所述部分可溶或可膨胀增韧颗粒在所述预浸体层固化时可部分地溶于所述第二树脂中或在其中膨胀,但在固化后保持离散颗粒形式。
14.根据权利要求11到13中任一权利要求所述的方法,其中所述第二树脂基质包含至少一种环氧树脂,且所述不溶性增韧颗粒为在所述环氧树脂固化时不溶于环氧树脂中的热塑性颗粒。
15.根据权利要求11到14中任一权利要求所述的方法,其中所述第二树脂基质包含部分可溶增韧颗粒,其为在所述预浸体层固化时体积减小大于5%但在固化后保持离散颗粒形式的热塑性颗粒。
16.根据权利要求11到14中任一权利要求所述的方法,其中所述第二树脂基质包含可膨胀增韧颗粒,其为在所述预浸体层固化之前或期间体积增加大于5%的热塑性颗粒。
17.根据权利要求11到14中任一权利要求所述的方法,其中所述第二树脂基质包含不溶性热塑性颗粒与可膨胀交联热塑性颗粒的组合,
所述交联热塑性颗粒包括以下各项之一:
(a)通过使具有至少一个反应性基团的可交联热塑性聚合物利用与所述反应性基团化学性反应的交联剂进行交联所建立的交联网络,和
(b)包含与单独的交联网络缠结的热塑性聚合链的互穿聚合物网络IPN,所述IPN是通过使具有一或多个反应性基团的至少一种化合物利用与所述一或多个反应性基团化学性反应的交联剂在热塑性聚合物存在下起反应建立。
CN201380059211.6A 2012-12-19 2013-11-05 改善断裂韧性的增韧颗粒 Active CN104781320B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1222934.0 2012-12-19
GB201222934A GB201222934D0 (en) 2012-12-19 2012-12-19 Particle toughening for improving fracture toughness
PCT/US2013/068384 WO2014099149A1 (en) 2012-12-19 2013-11-05 Particle toughening for improving fracture toughness

Publications (2)

Publication Number Publication Date
CN104781320A true CN104781320A (zh) 2015-07-15
CN104781320B CN104781320B (zh) 2018-05-29

Family

ID=47631022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380059211.6A Active CN104781320B (zh) 2012-12-19 2013-11-05 改善断裂韧性的增韧颗粒

Country Status (15)

Country Link
US (2) US9517608B2 (zh)
EP (1) EP2900738B1 (zh)
JP (2) JP2016509082A (zh)
KR (1) KR20150095686A (zh)
CN (1) CN104781320B (zh)
AU (1) AU2013364187B2 (zh)
BR (1) BR112015010443B1 (zh)
CA (1) CA2895406A1 (zh)
ES (1) ES2590655T3 (zh)
GB (1) GB201222934D0 (zh)
MX (1) MX2015005716A (zh)
MY (1) MY182455A (zh)
RU (1) RU2616693C2 (zh)
TW (1) TWI600538B (zh)
WO (1) WO2014099149A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108495748A (zh) * 2016-01-20 2018-09-04 泽费罗斯股份有限公司 具有核壳相的热塑性环氧材料
CN111448244A (zh) * 2017-12-12 2020-07-24 赫克赛尔公司 具有热塑性增韧的线型酚醛基环氧树脂基质的半浸料

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567426B2 (en) * 2009-05-29 2017-02-14 Cytec Technology Corp. Engineered crosslinked thermoplastic particles for interlaminar toughening
JP2017523256A (ja) 2014-05-22 2017-08-17 サイテック インダストリーズ インコーポレイテッド 強化剤として使用するための官能化重合体粒子
US10472472B2 (en) 2014-09-23 2019-11-12 The Boeing Company Placement of modifier material in resin-rich pockets to mitigate microcracking in a composite structure
US9587076B2 (en) * 2014-09-23 2017-03-07 The Boeing Company Polymer nanoparticles for controlling resin reaction rates
US10808123B2 (en) 2014-09-23 2020-10-20 The Boeing Company Nanoparticles for improving the dimensional stability of resins
US10072126B2 (en) * 2014-09-23 2018-09-11 The Boeing Company Soluble nanoparticles for composite performance enhancement
US10662302B2 (en) 2014-09-23 2020-05-26 The Boeing Company Polymer nanoparticles for improved distortion capability in composites
JP6600982B2 (ja) * 2015-05-11 2019-11-06 三菱ケミカル株式会社 繊維強化プラスチック成形体及びその製造方法、並びに積層体
US10427378B2 (en) * 2015-10-29 2019-10-01 King Abdulaziz University Composite epoxy material with embedded silicon carbide and alumina nanoparticles
US10427382B2 (en) * 2015-10-29 2019-10-01 King Abdulaziz University Composite epoxy material with embedded MWCNT fibers and process of manufacturing
US10208176B2 (en) 2016-06-22 2019-02-19 Hexcel Corporation Composite material with thermoplastic toughened novolac-based epoxy resin matrix
US10472474B2 (en) 2016-06-22 2019-11-12 Hexcel Corporation Semipreg with thermoplastic toughened novolac-based epoxy resin matrix
US10106661B2 (en) 2016-06-22 2018-10-23 Hexcel Corporation Composite material with thermoplastic toughened novolac-based epoxy resin matrix
CA3054592A1 (en) 2017-03-07 2018-09-13 Cytec Industries Inc. Composite materials with structural and fire retardant capabilities
US10710348B2 (en) 2017-07-26 2020-07-14 The Boeing Company Methods and apparatus to increase fire resistance and fracture toughness of a composite structure
CN111087756A (zh) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 耐高温高韧性预浸料及其制备方法
US20220041825A1 (en) * 2018-12-21 2022-02-10 Cytec Industries Inc. Toughened composite materials capable of delamination propagation resistance
US11376812B2 (en) 2020-02-11 2022-07-05 Helicoid Industries Inc. Shock and impact resistant structures
US11346499B1 (en) 2021-06-01 2022-05-31 Helicoid Industries Inc. Containers and methods for protecting pressure vessels
US11852297B2 (en) 2021-06-01 2023-12-26 Helicoid Industries Inc. Containers and methods for protecting pressure vessels
WO2024006078A1 (en) 2022-06-27 2024-01-04 Helicoid Industries Inc. High impact-resistant, reinforced fiber for leading edge protection of aerodynamic structures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028478A (en) * 1986-12-25 1991-07-02 Troy Industries, Inc. Fiber reinforced composite materials having resin practice inter-layer zones
WO2012087602A2 (en) * 2010-12-22 2012-06-28 Cytec Technology Corp. Epoxy resin system containing insoluble and partially soluble or swellable toughening particles for use in prepreg and structural component applications

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883787A (en) 1985-07-29 1989-11-28 Ortho Pharmaceutical Corporation Process for preparing 2-acyl-3, 4-dialkoxyanilines
JPS63170428A (ja) * 1987-01-07 1988-07-14 Toray Ind Inc プリプレグの製造方法
JPS63170427A (ja) * 1987-01-07 1988-07-14 Toray Ind Inc 繊維強化プリプレグの製造方法
JPS6426651A (en) * 1987-01-06 1989-01-27 Toray Industries Production of prepreg
US5242748A (en) 1989-01-04 1993-09-07 Basf Aktiengesellschaft Toughened thermosetting structural materials
US5248711A (en) 1989-02-16 1993-09-28 Hexcel Corporation Toughened resin systems for composite applications
US4957801A (en) * 1989-05-17 1990-09-18 American Cyanamid Company Advance composites with thermoplastic particles at the interface between layers
DE69030375T2 (de) 1989-08-10 1997-09-04 Fiberite Inc Mit polyimid-thermoplastischem harz gehärtete epoxydmatrize
JPH082976B2 (ja) * 1989-11-06 1996-01-17 東レ株式会社 プリプレグの製造方法
US5268223A (en) 1991-05-31 1993-12-07 Amoco Corporation Toughened fiber-reinforced composites
DE69322427T2 (de) 1992-03-30 1999-10-07 Toray Industries Prepreg und Verbundwerkstoffe
JPH0741576A (ja) * 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化樹脂
EP0745640B1 (en) 1994-12-02 2003-04-02 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
FI980528A (fi) * 1998-03-09 1999-09-10 Bioxid Oy Uusi prepreg
GB0610272D0 (en) * 2006-05-24 2006-07-05 Auxetic Technologies Ltd A composite material
GB0615644D0 (en) * 2006-08-07 2006-09-13 Airbus Uk Ltd Method of manufacturing composite material
GB0619401D0 (en) 2006-10-02 2006-11-08 Hexcel Composites Ltd Composite materials with improved performance
CN101616949B (zh) * 2007-02-23 2014-01-01 松下电器产业株式会社 环氧树脂组合物、预浸渍体、层合板和印刷配线板
GB0717507D0 (en) * 2007-09-07 2007-10-17 Cytec Tech Corp Composite materials and their use
CN104119645B (zh) * 2008-09-29 2016-10-26 东丽株式会社 环氧树脂组合物、预浸料坯及纤维增强复合材料
US20110218272A1 (en) * 2008-11-13 2011-09-08 Toho Tenax Co., Ltd. Thermosetting resin composition and prepreg using the same
JP5495285B2 (ja) * 2008-12-22 2014-05-21 東邦テナックス株式会社 プリプレグとその製造方法
US9567426B2 (en) * 2009-05-29 2017-02-14 Cytec Technology Corp. Engineered crosslinked thermoplastic particles for interlaminar toughening
US8846818B2 (en) * 2009-05-29 2014-09-30 Cytec Technology Corp. Engineered cross-linked thermoplastic particles for interlaminar toughening
JP5527861B2 (ja) * 2009-08-31 2014-06-25 サイテク・テクノロジー・コーポレーシヨン 高性能接着剤組成物
JP5468853B2 (ja) * 2009-09-07 2014-04-09 東邦テナックス株式会社 複合材料
TW201220977A (en) * 2010-07-01 2012-05-16 Sumitomo Bakelite Co Preppreg, circuit board, and semiconductor device
WO2012060971A1 (en) * 2010-11-01 2012-05-10 Cytec Technology Corp. Targeted deposition of particles on substrates used in the manufacture of composite articles
JP2012193322A (ja) * 2011-03-18 2012-10-11 Toray Ind Inc プリプレグ、および炭素繊維強化複合材料
US10047478B2 (en) * 2011-03-30 2018-08-14 Toho Tenax Co., Ltd Prepreg and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028478A (en) * 1986-12-25 1991-07-02 Troy Industries, Inc. Fiber reinforced composite materials having resin practice inter-layer zones
WO2012087602A2 (en) * 2010-12-22 2012-06-28 Cytec Technology Corp. Epoxy resin system containing insoluble and partially soluble or swellable toughening particles for use in prepreg and structural component applications
US20120164455A1 (en) * 2010-12-22 2012-06-28 Cytec Technology Corp. Epoxy Resin System Containing Insoluble and Partially Soluble or Swellable Toughening Particles for Use in Prepreg and Structural Component Applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108495748A (zh) * 2016-01-20 2018-09-04 泽费罗斯股份有限公司 具有核壳相的热塑性环氧材料
CN111448244A (zh) * 2017-12-12 2020-07-24 赫克赛尔公司 具有热塑性增韧的线型酚醛基环氧树脂基质的半浸料
CN111448244B (zh) * 2017-12-12 2023-04-07 赫克赛尔公司 具有热塑性增韧的线型酚醛基环氧树脂基质的半浸料

Also Published As

Publication number Publication date
AU2013364187B2 (en) 2015-09-10
CN104781320B (zh) 2018-05-29
BR112015010443A2 (pt) 2017-07-11
WO2014099149A1 (en) 2014-06-26
JP6574463B2 (ja) 2019-09-11
GB201222934D0 (en) 2013-01-30
US20140170408A1 (en) 2014-06-19
RU2015129475A (ru) 2017-01-25
EP2900738A1 (en) 2015-08-05
TWI600538B (zh) 2017-10-01
CA2895406A1 (en) 2014-06-26
TW201425021A (zh) 2014-07-01
ES2590655T3 (es) 2016-11-23
MX2015005716A (es) 2015-08-20
RU2616693C2 (ru) 2017-04-18
US20160271927A1 (en) 2016-09-22
AU2013364187A1 (en) 2015-05-14
BR112015010443B1 (pt) 2021-11-23
EP2900738B1 (en) 2016-06-15
MY182455A (en) 2021-01-25
JP2016509082A (ja) 2016-03-24
JP2018024879A (ja) 2018-02-15
KR20150095686A (ko) 2015-08-21
US9517608B2 (en) 2016-12-13

Similar Documents

Publication Publication Date Title
CN104781320A (zh) 改善断裂韧性的增韧颗粒
JP5806332B2 (ja) プレプレグ及び構造部品用途における使用のための不溶性及び部分的可溶性又は膨潤性強化粒子を含有するエポキシ樹脂系
KR101096855B1 (ko) 섬유 강화 복합 재료용 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
JP5681803B2 (ja) ポリエーテルスルホンで高靭化させたエポキシ樹脂の耐溶媒性の改善
TWI701131B (zh) 混合紗面及其應用以及用於製造經改質預浸體及複合結構之方法
US11192985B2 (en) Composite material and resin composition containing metastable particles
CN105473239A (zh) 复合材料的粘结
CN105764963A (zh) 纤维强化复合材料的制造方法、预浸料、含有颗粒的树脂组合物及纤维强化复合材料
CN106170387A (zh) 复合材料
CN109563289A (zh) 具有热塑性增韧的线型酚醛基环氧树脂基质的复合材料
US20220041825A1 (en) Toughened composite materials capable of delamination propagation resistance
CN114787252A (zh) 预浸料坯、层叠体及一体化成型品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant