CN104646010B - 一种硫化型加氢精制催化剂的工艺改进方法 - Google Patents

一种硫化型加氢精制催化剂的工艺改进方法 Download PDF

Info

Publication number
CN104646010B
CN104646010B CN201510046965.9A CN201510046965A CN104646010B CN 104646010 B CN104646010 B CN 104646010B CN 201510046965 A CN201510046965 A CN 201510046965A CN 104646010 B CN104646010 B CN 104646010B
Authority
CN
China
Prior art keywords
catalyst
refining
active metal
hydrogenation catalyst
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510046965.9A
Other languages
English (en)
Other versions
CN104646010A (zh
Inventor
于海斌
张景成
彭雪峰
南军
耿姗
臧甲忠
朱金剑
张尚强
宋国良
肖寒
张玉婷
张国辉
李晓云
隋芝宇
李佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Offshore Oil Corp CNOOC
CNOOC Energy Technology and Services Ltd
CNOOC Tianjin Chemical Research and Design Institute Co Ltd
Original Assignee
China National Offshore Oil Corp CNOOC
CNOOC Energy Technology and Services Ltd
CNOOC Tianjin Chemical Research and Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Offshore Oil Corp CNOOC, CNOOC Energy Technology and Services Ltd, CNOOC Tianjin Chemical Research and Design Institute Co Ltd filed Critical China National Offshore Oil Corp CNOOC
Priority to CN201510046965.9A priority Critical patent/CN104646010B/zh
Publication of CN104646010A publication Critical patent/CN104646010A/zh
Application granted granted Critical
Publication of CN104646010B publication Critical patent/CN104646010B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种硫化型加氢精制催化剂的工艺改进方法。特征在于:采用含活性金属浸渍溶液浸渍大孔氧化铝粉体,经原位晶化反应后,加入粘合剂混捏,经成型干燥后,在惰性气体的保护下焙烧,得到硫化型加氢精制催化剂。步骤包括所述的浸渍溶液含有活性金属钼酸铵和/或钨酸铵、Ni和/或Co的无机盐前驱体,同时含有有机硫化剂、络合剂和分散剂、粘合剂;浸渍溶液浸渍大孔氧化铝粉体后在密闭容器中进行原位晶化反应一步法制备硫化型催化剂,步骤简单,成本低;活性金属分散均匀。

Description

一种硫化型加氢精制催化剂的工艺改进方法
技术领域
本发明涉及催化技术领域,具体为一种硫化型加氢精制催化剂的工艺改进方法。具体地说,涉及一种使用常规活性金属盐前驱体一步法制备硫化型加氢精制催化剂的工艺方法。
背景技术
石油馏分加氢工艺是目前生产清洁油品的关键技术,其中,高性能的加氢精制催化剂是加氢技术的关键。
传统的石油馏分加氢催化剂是将钴、镍、钨和钼等活性组份负载在多孔载体材料上,制备成为负载型固体催化剂。其中,钴、镍、钨和钼等活性组份以氧化物形式存在,而实际使用时,要使用硫化剂将石油馏分加氢催化剂上活性组份转变成为钴、镍、钨和钼的硫化物形式,才能获得理想的加氢活性和稳定性。因此,石油馏分加氢催化剂在使用前需要经过硫化。
加氢催化剂硫化方法分为两种:器内硫化法和器外硫化法。器内硫化法是将氧化态催化剂装入加氢反应器内,在升温过程中向反应器中通入氢气和硫化剂进行预硫化,这一方法的缺点是:需专门的预硫化设备,硫化时间长,硫化成本高,硫化剂毒性大、易燃,容易对人、对环境造成污染。
器外硫化法是将催化剂地预硫化转移至专门的硫化反应装置上进行或制成的催化剂已是硫化态的催化剂,从而使催化剂装入加氢反应器中即可使用,无须再硫化,成为近年来加氢催化剂制备技术的发展趋势。目前,工业应用较多的加氢催化剂器外硫化技术主要由两种技术路线:
(1)第一种技术路线是在专门的预硫化装置上,在氢气和硫化氢或易分解的有机硫化剂的存在下完成催化剂的预硫化,然后经含氧气体钝化处理制成不自燃的预硫化型加氢精制催化剂;
(2)第二种技术路线是先将硫化剂(由含烯烃组分的石油溶剂、元素硫、植物油、有机硫化物、有机多硫化物、砜、亚砜和硫化促进剂等组分)采用升华、熔融或浸渍的方法引入到氧化态的加氢催化剂的空隙中,然后在惰性气体存在下经升温处理使催化剂部分预硫化,最后将催化剂装入加氢反应器中,在开工升温过程中和氢气的存在下完成催化剂的预硫化。
美国专利US5958816中提出采用硫化床工艺,在专用的预硫化反应器中用H2/H2S气体硫化加氢催化剂,然后用含氧气体或空气钝化,使用时装入反应器直接开工,该专利解决了硫化过程飞温和酸性水释放问题,但工艺流程复杂、加工成本高,空气钝化过程中有硫酸根生成,并残留在催化剂上,影响催化剂的使用寿命。
中国专利申请91101805.7公开了一种将硫掺入烃处理催化剂的孔中的方法,其特点为:先采用溶剂稀释的硫化剂处理催化剂,然后在水蒸气存在下,在高于250℃的温度下硫化处理。所用的硫化剂由元素硫和在氢气存在下易分解出硫化氢的有机硫化合物组成,所用的溶剂为含有烯烃馏分或植物油的溶剂油。中国专利申请85107953公开了一种处理加氢催化剂的方法,其中主要包含先用石油溶剂溶解和稀释的元素硫、多种有机多硫化物在50~150℃浸渍处理加氢催化剂,然后在无氢气的气氛中在低于275℃下处理,将活性金属氧化物进行硫化,最后在氢气的存在下在高于275℃的温度下进行活化。美国专利US6365542公开了一种加氢催化剂器外预硫化的方法,其特点是先用含元素硫和烯烃的油在100~300℃的温度下经过惰性气体处理。
美国专利US5985787公开了一种加氢催化剂的预硫化方法,其特点是硫化剂采用溶剂稀释的含烯烃的油、植物油、有机硫化物、有机多硫化物、元素硫等,其中既要有分解温度低于220℃的硫化物,也要有分解温度高于220℃的硫化物。美国专利US5681782中对过去的催化剂预硫化技术进行了改进,在添加硫化物的过程中加入了一种含氧有机化合物。中国专利申请98801896.9公开了一种加氢催化剂器外硫化的硫化剂,该硫化剂以C4~C16的叔硫醇为主剂,与H2S、CS2、伯或仲硫醇、有机多硫化物、噻吩及其衍生物、亚砜、砜、环丁砜等配合使用。中国专利申请00100400.X公开了一种加氢催化剂的器外预硫化方法,其特点是先将含烯烃的组份、元素硫和助剂混合,在100~220℃加热0.5小时以上,然后用得到的产物浸渍催化剂,并在100~300℃的温度下经过惰性气体处理1小时以上。
以上报道的专利技术均是器外预硫化技术,与器内硫化相比,具有催化剂活性高,节约开工时间,简化开工步骤,对人和环境污染小等优点。但器外预硫化与器内预硫化一样,预硫化过程在氢气作用下进行,氧化态催化剂可能出现氢解反应,而且活性组分与载体结合力往往太强,使的加氢催化剂不能被完全硫化,导致催化剂的活性不能进一步提高。催化剂经过氧化态再预硫化使用,使催化剂的生产步骤增加,生产成本加大,直接影响工艺的经济性。
此外,近年来报道了另一种硫化型加氢精制催化剂的新型制备方法,即采用Mo或W的硫化物前驱体直接制备硫化型加氢精制催化剂。中国专利CN1569331公开了一种改性钴钼基硫化物催化剂及其制备方法,通过配制硫代钼酸铵溶液,共沉淀钼、钴和第三种过渡金属组元,在氮气保护下焙烧,制得黑色粉末状催化剂。该方法的缺点是只能制备粉末状催化剂,不能用于大规模的固定床加氢装置;制备过程有废液产生,存在环保问题,制备成本高。
中国专利CN200410039449.5公开了采用可溶性硫代钼酸盐和硫代钨酸盐溶液将第IVB族金属Mo和W的前驱体引入到加氢催化剂载体的空隙中,并在惰性气体中经加热处理转化为Mo和W的硫化物,然后再引入Co或Ni的可溶性盐溶液,并在惰性气体中经加热处理转化为Co或Ni的硫化物,从而制得负载有金属硫化物的硫化型加氢精制催化剂。中国专利CN200810228363.5采用浸渍溶液浸渍需要的催化剂载体,然后经干燥和热处理即得硫化型加氢精制催化剂,其特征在于所述的浸渍溶液含有金属Mo或W的硫化物前驱体,同时含有Ni或Co无机盐的络合物;所述的热处理过程为在200~350℃下处理1~10小时;干燥和热处理不需惰性气体保护。
上述方法均采用含有金属Mo或W的硫化物前驱体制备硫化型加氢精制催化剂。该类硫化物前驱体非大宗化学品,需要专门设备进行合成,且合成过程中产生大量含硫氮及重金属的废水;该类硫化物前驱体在空气中易氧化,储存安定性差,这将导致催化剂制备工艺路线较长,成本大幅增加。
发明内容
针对现有技术的不足,本发明提供一种硫化型加氢精制催化剂的工艺改进方法,采用含活性金属浸渍溶液浸渍大孔氧化铝粉体,经密闭容器中原位晶化反应后,加入粘合剂混捏,在进行成型干燥后,在惰性气体的保护下焙烧,得到硫化型加氢精制催化剂。该制备方法步骤少,工艺简单,易于形成催化活性高的二类活性相,催化剂加氢性能好。
本发明为一种硫化型加氢精制催化剂的工艺改进方法,其特征在于:包括以下步骤:
采用含活性金属浸渍溶液浸渍大孔氧化铝粉体,经原位晶化反应后,加入粘合剂混捏,经成型干燥后,在惰性气体的保护下焙烧,得到硫化型加氢精制催化剂;
所述的浸渍溶液含有活性金属钼酸铵和/或钨酸铵、Ni和/或Co的无机盐前驱体,同时含有有机硫化剂、络合剂和分散剂;
所述的Ni和/或Co的无机盐前驱体选自硝酸盐、碳酸盐、碱式碳酸盐、醋酸盐中的一种或多种;
所述的硫化剂为水溶性有机含硫化合物,选自硫脲、氨基硫脲、二乙基硫脲、亚乙基硫脲、乙烯基硫脲、硫代氨基脲、二(羟甲基)亚乙基硫脲、硫代乙酰胺、二硫代乙酰胺、2,2'-硫基二乙醇、硫代硫酸铵和二硫代氨基甲酸铵的一种或几种;硫化剂的用量根据催化剂中活性金属的含量确定,以提供足够的硫将活性金属转变为金属硫化物为准;
所述的原位晶化反应过程为在密闭容器中40~85℃下反应4~12小时;
所述的干燥过程为在120~180℃下空气干燥或抽真空干燥4~12小时;
所述的焙烧过程为在氮气保护下400~650℃焙烧1~5小时;
所述的分散剂为聚乙二醇类、多元醇类、烷基醇酰胺类化合物,选自聚乙二醇、烷基酚聚氧乙烯醚、高碳脂肪醇聚氧乙烯醚、脂肪酸聚氧乙烯酯、聚氧乙烯胺、聚氧乙烯酰胺、失水山梨醇酯、蔗糖酯、尼纳乐(Nin01)中的一种或多种;
所述的分散剂在浸渍液中的浓度为0.5~4.0g/100ml;
所述的粘合剂为铝溶胶和/或硅溶胶,用量为氧化铝粉体的10~35重量%。
本发明与现有的技术相比具有如下优点:
(1)活性金属前驱体选用市场上大量供应的钼酸铵和/或钨酸铵、Ni或Co的无机盐,无需专门合成,廉价易得,不存在存储安全、环保等问题,原料成本较低;
(2)采用原位晶化工艺,实现了钼酸铵和/或钨酸铵、Ni或Co的无机盐与硫化剂在氧化铝粉体孔道或颗粒空隙间结合反应,生成活性金属硫化物前驱体,工艺步骤大大简化;
(3)浸渍液中引入有机络合剂,将Ni(Co)与Mo(W)选择性桥连在一起,易于生成高活性的二类Ni(Co)-Mo(W)-S活性相,催化剂性能优于传统的器内硫化催化剂和器外预硫化催化剂;
(4)有机分散剂的存在,使得活性金属能够更好的分散在氧化铝粉体孔道或颗粒空隙间,避免了活性金属团聚造成的活性表面积下降,且一定程度上抑制了高温焙烧过程导致的Mo-O-Al键的产生,活性金属利用率高。
具体实施方式
本发明硫化型加氢精制催化剂的制备方法是采用含活性金属浸渍溶液浸渍大孔氧化铝粉体,经密闭容器中原位晶化反应后,加入粘合剂混捏,经成型干燥后,在惰性气体的保护下焙烧,得到硫化型加氢精制催化剂。
本发明硫化型加氢精制催化剂制备过程中,所述的浸渍法为本领域常规方法,将所需金属盐、硫化剂、有机络合剂和分散剂混合搅拌溶解,配制成适宜pH值的澄清溶液,然后采用饱和浸渍或过量浸渍等方式浸渍即可。
本发明硫化型加氢精制催化剂具体制备方法如下:
1、浸渍液的配置:将钼酸铵和/或钨酸铵、Ni或Co的无机盐、硫化剂、有机络合剂和分散剂混合搅拌溶解,配成澄清溶液。
2、采用浸渍液浸渍大孔氧化铝粉体:采用浸渍法将浸渍液浸渍到大孔氧化铝粉体上,原位晶化反应过程为密闭容器中40~85℃下反应4~12小时,再在120~180℃下空气干燥或抽真空干燥4~12小时,最后在氮气保护下400~650℃焙烧1~5小时,即得硫化型加氢精制催化剂。
下面通过实施例进一步描述本发明的技术特点,但这些实施例不能限制本发明。
实施例1硫化型催化剂A的制备
取硝酸镍、钼酸铵和氨基三乙酸溶于水中得透明溶液,依次加入聚乙二醇-400和硫代乙酰胺,混合搅拌溶解配成澄清溶液,溶液中聚乙二醇-400的浓度为3.5g/100ml,镍和钼(以氧化物计)的浓度分别为4.5和26.0g/100ml。
取混合溶液100ml喷浸100g大孔氧化铝粉体(山东铝业公司产大孔拟薄水铝石,以重量计干基为68%),在密闭反应釜中75℃下原位晶化反应5h后,在空气中晾干至松散状粉体;然后加入20g铝溶胶(固含量为30重量%),在混捏机中混捏30min,然后在挤条机上挤成1.5mm三叶草条,130℃空气中干燥8h,最后在氮气保护下480℃焙烧3小时,即得硫化型催化剂A,主要物理性质见表1。
实施例2硫化型催化剂B的制备
取硝酸镍、钼酸铵、钨酸铵和氨基三亚甲基膦酸溶于水中得透明溶液,依次加入脂肪酸聚氧乙烯酯和硫代硫酸铵,混合搅拌溶解配成澄清溶液,溶液中脂肪酸聚氧乙烯酯的浓度为2.8g/100ml,镍、钼和钨(以氧化物计)的浓度分别为4.5、8和18.0g/100ml。
取混合溶液100ml喷浸100g大孔氧化铝粉体(山东铝业公司产大孔拟薄水铝石,以重量计干基为68%),在密闭反应釜中50℃下原位晶化反应6h后,在空气中晾干至松散状粉体;然后加入10g铝溶胶和10g硅溶胶(固含量均为30重量%),在混捏机中混捏30min,然后在挤条机上挤成1.5mm三叶草条,125℃空气中干燥10h,最后在氮气保护下500℃焙烧4小时,即得硫化型催化剂B,主要物理性质见表1。
实施例3硫化型催化剂C的制备
取碱式碳酸镍、碱式碳酸钴、钼酸铵、钨酸铵、柠檬酸和乙醇胺溶于水中的透明溶液,依次加入蔗糖酯和亚乙基硫脲,混合搅拌配成澄清溶液溶液中蔗糖酯的浓度为1.0g/100ml,镍、钴、钼和钨(以氧化物计)的浓度分别为3.5、1.0、8.0和18.0g/100ml。
取混合溶液100ml喷浸100g大孔氧化铝粉体(山东铝业公司产大孔拟薄水铝石,以重量计干基为68%),在密闭反应釜中65℃下原位晶化反应4h后,在空气中晾干至松散状粉体;然后加入25g硅溶胶(固含量为25重量%),在混捏机中混捏30min,然后在挤条机上挤成1.5mm三叶草条,150℃空气中干燥6h,最后在氮气保护下550℃焙烧2小时,即得硫化型催化剂C,主要物理性质见表1。
对比例1氧化型催化剂D的制备
称取拟薄水铝石(山东铝业公司产大孔拟薄水铝石,以重量计干基为72%)1000g,田菁粉20g,柠檬酸30g,稀硝酸(重量浓度3%)800ml,在混捏机中混捏30min,然后在挤条机上挤成1.5mm三叶草条,干燥后在550℃焙烧3小时,即得所需催化剂载体1。
称取氧化钼和碱式碳酸镍,加去离子水60ml混合均匀,加入85%磷酸4ml,加热到75℃,恒温一小时,得到深绿色澄清透明溶液,再加入偏钨酸铵搅拌,溶解后即得浸渍液,浸渍液中镍、钼和钨(以氧化物计)的浓度分别为4.5、8和18.0g/100ml。按吸水率90ml/100g喷淋浸渍载体1,120℃干燥8小时,500℃焙烧3小时,得催化剂E,主要物理性质见附表1。
对比例2硫化型型催化剂E的制备
称取四硫代钼酸铵、四硫代钨酸铵、乙醇胺和蒸馏水,搅拌下溶解,得到血红色的澄清溶液A。称取碱式碳酸镍、乙醇胺和酒石酸,加热搅拌下溶解,得到蓝绿色澄清溶液B。将溶液A与溶液B混合得到溶液C,镍、钼和钨(以氧化物计)的浓度分别为4.5、8和18.0g/100ml。用该溶液浸渍载体1,在室温下放置24小时晾干。将晾干后的催化剂置于管式炉中,在350℃下通氮气处理4小时,得催化剂F。
实施例5:硫化型催化剂的活性评价
在100ml加氢反应装置上进行催化剂的柴油加氢活性评价,催化剂的装载量为100ml,评价用原油为焦化柴油,其密度为0.860g/cm3,硫含量为3825μg/g,氮含量为2620μg/g,十六烷值51.2,馏程为183~378℃。
将100ml硫化型催化剂装入加氢反应器中,接通氢气,保持压力为6.0MPa,氢气流量600ml/min,以15℃/h的升温速度升至150℃,恒温1小时,然后以10℃/h的升温速度将反应器温度升至320℃,保持该温度2小时使催化剂活化。开始进原料油,进油量为150ml/h,再以10℃/h的升温速度升至350℃,恒温24小时后取样分析。评价结果见表2。
实施例6:氧化型催化剂的活性评价
在100ml加氢反应装置上进行氧化型催化剂的柴油加氢活性评价,催化剂的装载量为100ml,评价用硫化油为航煤和二硫化碳的混合物,其密度为0.798g/cm3,硫含量为20000μg/g,氮含量为1.0μg/g,馏程为161~276℃。评价用原油为催化裂化柴油与实施例5相同。
将100ml氧化型催化剂装入加氢反应器中,接通氢气,保持压力为5.5MPa,氢气流量600ml/min,以15℃/h的升温速度升至150℃,恒温1小时,开始进硫化油,进油量为100ml/h,再以15℃/h的升温速度升至320℃,恒温4小时后换进原料油,恒温24小时后取样分析。评价结果见附表2。
表1载体及催化剂的各项物理性质
表2催化剂的加氢活性评价数据

Claims (1)

1.一种硫化型加氢精制催化剂的工艺改进方法,其特征在于:包括以下步骤:
采用含活性金属浸渍溶液浸渍大孔氧化铝粉体,经原位晶化反应后,加入粘合剂混捏,经成型干燥后,在惰性气体的保护下焙烧,得到硫化型加氢精制催化剂;
所述的浸渍溶液含有活性金属钼酸铵和/或钨酸铵、Ni和/或Co的无机盐前驱体,同时含有有机硫化剂、络合剂和分散剂;
所述的Ni和/或Co的无机盐前驱体选自硝酸盐、碳酸盐、碱式碳酸盐、醋酸盐中的一种或多种;
所述的硫化剂为水溶性有机含硫化合物,选自硫脲、氨基硫脲、二乙基硫脲、亚乙基硫脲、乙烯基硫脲、硫代氨基脲、二(羟甲基)亚乙基硫脲、硫代乙酰胺、二硫代乙酰胺、2,2'-硫基二乙醇、硫代硫酸铵和二硫代氨基甲酸铵的一种或几种;硫化剂的用量根据催化剂中活性金属的含量确定,以提供足够的硫将活性金属转变为金属硫化物为准;
所述的原位晶化反应过程为在密闭容器中40~85℃下反应4~12小时;
所述的干燥过程为在120~180℃下空气干燥或抽真空干燥4~12小时;
所述的焙烧过程为在氮气保护下400~650℃焙烧1~5小时;
所述的分散剂为聚乙二醇类、多元醇类、烷基醇酰胺类化合物,选自聚乙二醇、烷基酚聚氧乙烯醚、高碳脂肪醇聚氧乙烯醚、脂肪酸聚氧乙烯酯、聚氧乙烯胺、聚氧乙烯酰胺、失水山梨醇酯、蔗糖酯、尼纳乐(Nin01)中的一种或多种;
所述的分散剂在浸渍液中的浓度为0.5~4.0g/100ml;
所述的粘合剂为铝溶胶和/或硅溶胶,用量为氧化铝粉体的10~35重量%。
CN201510046965.9A 2015-01-29 2015-01-29 一种硫化型加氢精制催化剂的工艺改进方法 Active CN104646010B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510046965.9A CN104646010B (zh) 2015-01-29 2015-01-29 一种硫化型加氢精制催化剂的工艺改进方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510046965.9A CN104646010B (zh) 2015-01-29 2015-01-29 一种硫化型加氢精制催化剂的工艺改进方法

Publications (2)

Publication Number Publication Date
CN104646010A CN104646010A (zh) 2015-05-27
CN104646010B true CN104646010B (zh) 2017-09-05

Family

ID=53237942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510046965.9A Active CN104646010B (zh) 2015-01-29 2015-01-29 一种硫化型加氢精制催化剂的工艺改进方法

Country Status (1)

Country Link
CN (1) CN104646010B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106607038B (zh) * 2015-10-23 2019-10-25 中国石油化工股份有限公司 一种预硫化型加氢脱硫催化剂及其制备方法
CN105618080A (zh) * 2016-01-30 2016-06-01 凯姆德(北京)能源环境科技有限公司 一种处理反渗透浓水的臭氧催化氧化催化剂及其制备方法
CN107971034B (zh) * 2016-10-21 2020-05-19 中国石油化工股份有限公司 一种硫化型加氢催化剂及其制备方法和应用
CN109794257B (zh) * 2017-11-16 2022-03-22 国家能源投资集团有限责任公司 耐硫变换催化剂及其制备方法
CN111298811B (zh) * 2018-12-11 2023-02-28 中国石油天然气股份有限公司 绿色环保型预硫化重整预加氢催化剂及其制备方法与应用
CN109794265A (zh) * 2018-12-25 2019-05-24 中国石油天然气股份有限公司 硫化型加氢精制催化剂及其制备方法、馏分油加氢精制方法
CN109647442A (zh) * 2018-12-25 2019-04-19 中国石油天然气股份有限公司 完全硫化型加氢精制催化剂及其制备方法、馏分油加氢精制方法
CN111822007B (zh) * 2019-04-19 2022-08-12 中国石油化工股份有限公司 一种加氢处理催化剂的制备方法
CN113578350A (zh) * 2020-04-30 2021-11-02 中国石油天然气股份有限公司 完全硫化型加氢改质催化剂、其制备方法及应用
CN111992225B (zh) * 2020-09-27 2023-02-10 威尔(福建)生物有限公司 一种Ni-Pd/C双金属催化剂的制备方法及其在邻硝基苯氧丙酮环化反应中的应用
CN112337488B (zh) * 2020-10-28 2022-07-15 中海油天津化工研究设计院有限公司 硫化镍系加氢催化剂及裂解汽油加氢处理方法
CN115999585B (zh) * 2022-12-28 2024-04-26 中国石油大学(华东) 一种原子分散Mo为助剂的负载型硫化态加氢催化剂及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399700B1 (ko) * 2006-01-17 2014-05-26 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 나프타 수소첨가탈황을 위한 고온 알루미나 지지체를 가진 선택적 촉매
CN101279296A (zh) * 2007-04-04 2008-10-08 中国石油化工股份有限公司 一种硫化型催化剂及其制备方法
CN101491765B (zh) * 2008-01-23 2012-01-25 中国石油化工股份有限公司 一种硫化型加氢催化剂的制备方法
CN103769168B (zh) * 2012-10-24 2015-09-30 中国石油化工股份有限公司 一种硫化型加氢处理催化剂的制法
CN105142787B (zh) * 2013-04-23 2017-04-19 国际壳牌研究有限公司 制备硫化的催化剂的方法

Also Published As

Publication number Publication date
CN104646010A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
CN104646010B (zh) 一种硫化型加氢精制催化剂的工艺改进方法
CN104646034B (zh) 一种硫化型加氢精制催化剂的制备方法
CA2563937C (en) Hydrotreating catalyst containing a group v metal
JP2002536166A (ja) 水素化処理触媒の製造
CN101279296A (zh) 一种硫化型催化剂及其制备方法
CN103769198B (zh) 一种硫化型加氢裂化催化剂的制备方法
CN110479313B (zh) 加氢催化剂及其制备方法和应用以及加氢精制的方法
CN106512984B (zh) 一种高活性柴油加氢脱硫催化剂的制备方法
CN104841493A (zh) 一种加氢催化剂的现场外硫化处理方法
CN109647442A (zh) 完全硫化型加氢精制催化剂及其制备方法、馏分油加氢精制方法
CN108568305A (zh) 一种加氢精制催化剂及其制备方法和应用
CN103769197A (zh) 一种硫化型加氢裂化催化剂的制法
CN1557556A (zh) 一种加氢催化剂的现场外预硫化方法
CN103769169B (zh) 一种硫化型加氢处理催化剂的制备方法
CN106479560A (zh) 一种双组分过渡金属硫化物纳米管及其制备方法和应用
CN101590437A (zh) 加氢催化剂的器外预硫化方法
CN101618330B (zh) 一种硫化型催化剂的制备方法
CN103769168B (zh) 一种硫化型加氢处理催化剂的制法
CN106607038B (zh) 一种预硫化型加氢脱硫催化剂及其制备方法
CN108421554A (zh) 加氢精制催化剂及其制备方法和应用
CN103769171B (zh) 硫化型加氢处理催化剂的制备方法
CN109794265A (zh) 硫化型加氢精制催化剂及其制备方法、馏分油加氢精制方法
CN109569662A (zh) 硫化型加氢催化剂及其制备方法和应用
CN102836727A (zh) 一种具有高脱氮和脱芳烃活性加氢催化剂的制备方法
CN103769199A (zh) 硫化型加氢裂化催化剂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 100010 Beijing, Chaoyangmen, North Street, No. 25, No.

Applicant after: China National Offshore Oil Corporation

Applicant after: CNOOC TIANJIN CHEMICAL RESEARCH & DESIGN INSTITUTE CO., LTD.

Applicant after: CNOOC Energy Technology Co., Ltd.

Address before: 100010 Beijing, Chaoyangmen, North Street, No. 25, No.

Applicant before: China National Offshore Oil Corporation

Applicant before: CNOOC Tianjin Chemical Research & Design Institute

Applicant before: CNOOC Energy Technology Co., Ltd.

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant