CN104576364A - 垂直型npn器件的制造方法 - Google Patents

垂直型npn器件的制造方法 Download PDF

Info

Publication number
CN104576364A
CN104576364A CN201310509002.9A CN201310509002A CN104576364A CN 104576364 A CN104576364 A CN 104576364A CN 201310509002 A CN201310509002 A CN 201310509002A CN 104576364 A CN104576364 A CN 104576364A
Authority
CN
China
Prior art keywords
type
vertical
base
npn device
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310509002.9A
Other languages
English (en)
Inventor
慈朋亮
李娟娟
钱文生
胡君
刘冬华
石晶
段文婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201310509002.9A priority Critical patent/CN104576364A/zh
Publication of CN104576364A publication Critical patent/CN104576364A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明公开了一种垂直型NPN器件的制造方法,其基区下方的N型埋层是通过在基区两侧的注入,然后通过热推进形成连通,基区正下方不进行埋层注入,这样形成的器件既具有低的集电区电阻,同时也拥有较高的击穿电压,本发明所述垂直型NPN器件的制造方法,适用于BCD工艺,仅需修改集电区埋层的离子注入掩膜版,不需其他的离子注入,工艺简单易于实施,不增加制造成本。

Description

垂直型NPN器件的制造方法
技术领域
本发明涉及半导体制造领域,特别是指一种基于BCD(Bipolar-CMOS-DMOS)工艺的垂直型NPN器件的制造方法。
背景技术
常规的双极型晶体管(bipolar)如图1所示,集电区埋层2上N型掺杂的外延形成的N型集电区3,采用高掺杂的集电区埋层2(NBL),以降低集电区3电阻,采用高浓度高能量N型注入(N-SINK),连接集电区埋层2,形成集电极引出端。在N型外延上方注入中浓度的掺杂P型杂质形成基区5,然后重N型掺杂构成发射极,最终完成双极型晶体管的制作。在集成工艺中,由于NBL注入浓度非常高,会导致器件正常工作时候,基区与NBL之间产生大量的碰撞电离,影响器件的开态击穿电压(on-BV)。而为了得到较高的on-BV,必须降低此垂直型NPN管下方NBL浓度,但是这样会影响到集电区的电阻,并且可能会影响到整个集成工艺平台上其它的器件。
发明内容
本发明所要解决的技术问题是提供一种垂直型NPN器件的制造方法。
为解决上述问题,本发明所述的一种垂直型NPN器件的制造方法,包含如下工艺步骤:
第一步,在轻掺杂的P型衬底上,进行N型埋层的注入,埋层注入利用掩膜版避开所述垂直型NPN器件的基区区域;
第二步,进行热过程推进,使注入的N型杂质向基区下方扩散,使得所述垂直型NPN器件P型基区下方的N型杂质浓度提高,N型埋层形成连通;
第三步,生长N型外延层;
第四步,利用掩膜版定义集电区沉阱,进行N型沉阱的注入;
第五步,利用掩膜版定义基区,进行P型基区的注入;
第六步,进行局部场氧化,形成场氧;
第七步,利用掩膜版进行发射区以及集电区接触注入区的杂质注入;再利用掩膜版进行基区接触注入区杂质注入。
进一步地,所述第一步中,P型衬底的体浓度为1x1015~9x1015CM-3,N型埋层注入的杂质为磷、砷或锑,其体浓度为1x1018~5x1019CM-3
进一步地,所述第二步中,N型埋层热推进的温度为900~1500℃,时间为10~500min。
进一步地,所述第三步中,N型外延的体浓度为1x1015~1x1017CM-3
进一步地,所述第四步中,N型沉阱用于连接集电区下的N型埋层,其体浓度为5x1018~5x1020CM-3
进一步地,所述第五步中,P型基区的体浓度为5x1016~9x1017CM-3
进一步地,所述第七步中,发射区以及集电区接触注入区的体浓度为1x1020~1x1021CM-3;基区接触注入区的体浓度为1x1020~1x1021CM-3
本发明所述的垂直型NPN器件的制造方法,其N型埋层不采用大面积普注的方式,而是避开NPN器件的作为基区的区域,在其外围进行注入,然后通过热推进使外围的N型注入向基区下方扩散,使N型注入区连通,形成所述垂直型NPN器件的N型埋层,工艺简单易于实施,既保证了器件较高的击穿电压,同时也具有较低的集电区电阻。
附图说明
图1~7是本发明所述的垂直型NPN器件制造方法步骤图;
图8是TCAD模拟的传统的垂直型NPN器件与本发明工艺制造的器件净掺杂浓度分布图;
图9是TCAD模拟的传统的垂直型NPN器件与本发明工艺制造的器件击穿电压曲线图;
图10是本发明所述的垂直型NPN器件制造方法工艺流程图。
附图标记说明
1是P型衬底,2是埋层注入区,3是N型外延,4是N型沉阱,5是P型基区,6是场氧,7是N型发射区,8是基区接触注入区,9是集电区接触注入区。
具体实施方式
本发明所述的所述的一种垂直型NPN器件的制造方法,包含如下工艺步骤:
第一步,如图1所示,在体浓度为1x1015~9x1015CM-3的轻掺杂的P型衬底1上,进行N型埋层2的注入,N型埋层2注入的杂质为磷、砷或锑,其体浓度为1x1018~5x1019CM-3。埋层2注入利用掩膜版避开后续将要作为所述垂直型NPN器件的基区的区域。
第二步,如图2所示,进行N型埋层的热推进,使注入的N型杂质向基区下方扩散(图中基区未示出,因基区还未形成,后续基区形成于埋层之上的外延层中,可参考图5),使得所述垂直型NPN器件P型基区下方的N型杂质浓度提高,N型埋层形成连通.
第三步,如图3所示,生长N型外延层3;所述N型外延层3的体浓度为1x1015~1x1017CM-3
第四步,如图4所示,利用掩膜版定义集电区N型沉阱,进行N型沉阱4的注入;所述N型沉阱4用于连接集电区下的N型埋层,其体浓度为5x1018~5x1020CM-3
第五步,如图5所示,利用掩膜版定义基区,进行P型基区5的注入;P型基区5的体浓度为5x1016~9x1017CM-3
第六步,如图6所示,进行局部场氧化,制作场氧6。
第七步,如图7所示,利用掩膜版进行发射区7、基区接触注入区8以及集电区接触注入区9的杂质注入。发射区7以及集电区接触注入区9都为重掺杂N型区,其体浓度为1x1020~1x1021CM-3;再利用掩膜版进行基区接触注入区8的P型杂质注入,基区接触注入区8的体浓度为1x1020~1x1021CM-3
利用上述工艺制作出的垂直型NPN器件,利用TCAD(Technology Computer AidedDesign)进行仿真得到如图8所示的掺杂浓度分布图。图中(a)是基于传统工艺制作的垂直型NPN器件的杂质分布图,(b)是本发明工艺制造的垂直型NPN器件的杂质分布图,N型埋层注入区域不包括P型基区下方,通过高温推进使注入的杂质向P型基区的下方扩散。从图中可以看出,本发明的N型埋层往靠近发射区下方的方向上,其浓度是逐渐变淡的,存在分布梯度,而不是像(a)中传统工艺普注掺杂形成的均匀的N型埋层。图9是传统工艺与本发明形成的器件的on-BV仿真曲线图,其中NBL-NBL表示本发明的P型基区下方两者NBL之间的距离,传统工艺形成的P型基区下方NBL的体浓度非常高,器件在工作状态下,P型基区与NBL之间会产生大量的碰撞电离,而本发明P型基区下方的NBL不是直接离子注入形成,基区下方的NBL浓度较低,从图9的仿真结果证明,本发明相对于传统工艺形成的器件,在保证较低的集电区电阻情况下,具有更高的on-BV值。
以上仅为本发明的优选实施例,并不用于限定本发明。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种垂直型NPN器件的制造方法,其特征在于,包含如下工艺步骤:
第一步,在轻掺杂的P型衬底上,进行N型埋层的注入,埋层注入利用掩膜版避开所述垂直型NPN器件的基区区域;
第二步,进行热过程推进,使注入的N型杂质向基区下方扩散,使得所述垂直型NPN器件P型基区下方的N型杂质浓度提高,N型埋层形成连通;
第三步,生长N型外延层;
第四步,利用掩膜版定义集电区沉阱,进行N型沉阱的注入;
第五步,利用掩膜版定义基区,进行P型基区的注入;
第六步,进行局部场氧化,形成场氧;
第七步,利用掩膜版进行发射区以及集电区接触注入区的杂质注入;再利用掩膜版进行基区接触注入区杂质注入。
2.如权利要求1所述的垂直型NPN器件的制造方法,其特征在于:所述第一步中,所述P型衬底的体浓度为1x1015~9x1015CM-3,N型埋层注入的杂质为磷、砷或锑,其体浓度为1x1018~5x1019CM-3
3.如权利要求1所述的垂直型NPN器件的制造方法,其特征在于:所述第二步中,N型埋层热推进的温度为900~1500℃,时间为10~500min。
4.如权利要求1所述的垂直型NPN器件的制造方法,其特征在于:所述第三步中,N型外延的体浓度为1x1015~1x1017CM-3
5.如权利要求1所述的垂直型NPN器件的制造方法,其特征在于:所述第四步中,N型沉阱用于连接集电区下的N型埋层,其体浓度为5x1018~5x1020CM-3
6.如权利要求1所述的垂直型NPN器件的制造方法,其特征在于:所述第五步中,P型基区的体浓度为5x1016~9x1017CM-3
7.如权利要求1所述的垂直型NPN器件的制造方法,其特征在于:所述第七步中,发射区以及集电区接触注入区的体浓度为1x1020~1x1021CM-3;基区接触注入区的体浓度为1x1020~1x1021CM-3
CN201310509002.9A 2013-10-24 2013-10-24 垂直型npn器件的制造方法 Pending CN104576364A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310509002.9A CN104576364A (zh) 2013-10-24 2013-10-24 垂直型npn器件的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310509002.9A CN104576364A (zh) 2013-10-24 2013-10-24 垂直型npn器件的制造方法

Publications (1)

Publication Number Publication Date
CN104576364A true CN104576364A (zh) 2015-04-29

Family

ID=53092140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310509002.9A Pending CN104576364A (zh) 2013-10-24 2013-10-24 垂直型npn器件的制造方法

Country Status (1)

Country Link
CN (1) CN104576364A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140129A (zh) * 2015-09-22 2015-12-09 上海华虹宏力半导体制造有限公司 Ldmos器件埋层的工艺方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856003A (en) * 1997-11-17 1999-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming pseudo buried layer for sub-micron bipolar or BiCMOS device
CN101276784A (zh) * 2008-04-29 2008-10-01 无锡友达电子有限公司 采用磷埋及深磷埋技术的双极型纵向npn管制作工艺
KR100925642B1 (ko) * 2002-06-29 2009-11-06 매그나칩 반도체 유한회사 바이폴라 트랜지스터의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856003A (en) * 1997-11-17 1999-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming pseudo buried layer for sub-micron bipolar or BiCMOS device
KR100925642B1 (ko) * 2002-06-29 2009-11-06 매그나칩 반도체 유한회사 바이폴라 트랜지스터의 제조방법
CN101276784A (zh) * 2008-04-29 2008-10-01 无锡友达电子有限公司 采用磷埋及深磷埋技术的双极型纵向npn管制作工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140129A (zh) * 2015-09-22 2015-12-09 上海华虹宏力半导体制造有限公司 Ldmos器件埋层的工艺方法
CN105140129B (zh) * 2015-09-22 2019-01-04 上海华虹宏力半导体制造有限公司 Ldmos器件埋层的工艺方法

Similar Documents

Publication Publication Date Title
CN102110709B (zh) BiCMOS工艺中的寄生垂直型PNP三极管及其制造方法
CN104022162B (zh) Bcd工艺中的隔离型横向齐纳二极管及其制造方法
CN102723353B (zh) 高压功率ldmos器件及其制造方法
CN102412126A (zh) 超高压ldmos的工艺制作方法
CN103178087A (zh) 超高压ldmos器件结构及制备方法
CN103855210A (zh) 射频横向双扩散场效应晶体管及其制造方法
CN102376775B (zh) BiCMOS工艺中的寄生PIN器件及制造方法
CN103560149B (zh) 绝缘栅双极型晶体管及其制造方法
CN104282762A (zh) 射频横向双扩散场效应晶体管及其制作方法
CN102054866B (zh) 横向高压mos器件及其制造方法
CN104900526A (zh) Vdmos的制造方法和vdmos
CN104576364A (zh) 垂直型npn器件的制造方法
CN103579296B (zh) 半导体装置及其制造方法
CN102280495A (zh) 一种齐纳二极管及其制造方法
CN104282763A (zh) 射频横向双扩散场效应晶体管及其制作方法
CN104201203B (zh) 高耐压ldmos器件及其制造方法
CN103107186B (zh) 一种BiCMOS工艺中寄生N-I-P型PIN器件结构及其制造方法
CN106158924A (zh) 一种稳压二极管及其制作方法
CN104752499A (zh) 射频ldmos器件及工艺方法
CN102956479B (zh) 绝缘栅双极晶体管结构及其制作方法
CN103107094B (zh) 一种耗尽型功率场效应晶体管及其制备方法
CN102376757B (zh) SiGe HBT工艺中的横向型寄生PNP器件及制造方法
CN102446978B (zh) BiCMOS工艺中的PIN器件
CN106169506A (zh) Ddd mos器件结构及其制造方法
CN103811544B (zh) 漂移区具有横向浓度梯度的ldmos管及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150429

WD01 Invention patent application deemed withdrawn after publication