CN104471084B - 取向性电磁钢板的制造方法 - Google Patents

取向性电磁钢板的制造方法 Download PDF

Info

Publication number
CN104471084B
CN104471084B CN201380037789.1A CN201380037789A CN104471084B CN 104471084 B CN104471084 B CN 104471084B CN 201380037789 A CN201380037789 A CN 201380037789A CN 104471084 B CN104471084 B CN 104471084B
Authority
CN
China
Prior art keywords
mass
annealing
sec
steel plate
manufacture method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380037789.1A
Other languages
English (en)
Other versions
CN104471084A (zh
Inventor
新垣之启
今村猛
末广龙一
渡边诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of CN104471084A publication Critical patent/CN104471084A/zh
Application granted granted Critical
Publication of CN104471084B publication Critical patent/CN104471084B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/026Rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H7/00Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种取向性电磁钢板的制造方法,其中,对以质量%计含有C:0.001%~0.10%、Si:1.0%~5.0%、Mn:0.01%~0.5%、S和/或Se:0.01%~0.05%、sol.Al:0.003%~0.050%和N:0.0010%~0.020%的钢坯进行热轧,通过1次冷轧或夹着中间退火的2次以上的冷轧制成最终板厚,实施一次再结晶退火后,涂布退火分离剂,实施精制退火;该制造方法中,在上述一次再结晶退火的加热过程中的550℃~700℃间以40℃/秒~200℃/秒的平均升温速度进行快速加热,并且在250℃~550℃间的任一温度区域以10℃/秒以下的升温速度保持1秒~10秒,由此实现二次再结晶晶粒的微细化,得到可稳定地实现低铁损的取向性电磁钢板。

Description

取向性电磁钢板的制造方法
技术领域
本发明涉及铁损特性优异的取向性电磁钢板的制造方法。
背景技术
取向性电磁钢板是晶体取向高度集中在高斯取向({110}<001>)的软磁性材料,主要用作变压器的铁芯、电动机的铁芯等。其中,对于变压器中使用的取向性电磁钢板来说,为了降低空载损耗(能量损失),强烈要求铁损低。作为降低铁损的手段,已知降低板厚、增加Si添加量、提高晶体取向的取向性、对钢板赋予张力、使钢板表面平滑化、使二次再结晶组织晶粒细化等是有效的。
作为上述手段中的将二次再结晶晶粒细化的技术,提出了专利文献1~专利文献4等中公开的在脱碳退火时进行快速加热的方法、或者在即将进行脱碳退火之前进行快速加热处理而改善一次再结晶织构的方法等。例如,在专利文献1中公开了一种得到低铁损的取向性电磁钢板的技术,其中,在即将对轧制至最终板厚的冷轧钢板进行脱碳退火之前,在PH2O/PH2为0.2以下的非氧化性气氛中以100℃/秒以上的加热速度进行加热以使温度达到700℃以上,由此得到低铁损的取向性电磁钢板。另外,在专利文献3等中公开了一种得到覆膜特性和磁特性优异的电磁钢板的技术,其中,以95℃/秒以上的升温速度将600℃以上的温度区域加热至800℃以上,并且对该温度区域的气氛进行适当控制,由此得到覆膜特性和磁特性优异的电磁钢板。
这些通过快速加热来改善一次再结晶织构的技术对作为快速加热温度范围的大致室温至700℃以上的温度范围明确地规定了升温速度。该技术思想可理解为:通过以短时间升温至再结晶温度附近,从而抑制在通常的加热速度下优先形成的γ纤维({111}纤维组织)的发达,促进成为二次再结晶的核的{110}<001>组织的产生等等,实现一次再结晶织构的改善。通过该技术的适用,二次再结晶晶粒被细化,能够改善铁损。
另外,在进行上述快速加热的技术中,如专利文献5所公开的技术那样,有通过适当地控制轧制条件从而能够以50℃/秒以上体现出快速加热的效果的技术,认为以大致80℃/秒以上或者更高的升温速度可得到较大的效果。但是,为了提高升温速度,需要感应加热或通电加热等特殊且大型的加热设备,而且存在需要在短时间内投入大量的能量的问题。另外,还存在下述问题:由于快速加热导致的急剧的温度变化,钢板的形状恶化,制造线中通板性降低。
现有技术文献
专利文献
专利文献1:日本特开平07-062436号公报
专利文献2:日本特开平10-298653号公报
专利文献3:日本特开2003-027194号公报
专利文献4:日本特开2000-204450号公报
专利文献5:日本特开平07-062437号公报
发明内容
发明要解决的课题
本发明是鉴于现有技术中的上述问题而进行的,其目的在于,通过使一次再结晶退火中的升温速度在现有技术那样的高达80℃/秒以上的情况下可得到与更高的升温速度同等的效果、且在小于80℃/秒的比较低的情况下也可体现出快速加热的效果,从而提供一种与现有技术相比可更有效地实现二次再结晶晶粒的微细化、而且能够稳定地得到低铁损的取向性电磁钢板的制造方法。
用于解决课题的方案
为了解决上述课题,发明人对于一次再结晶退火中的热循环的观点、特别是升温速度(加热方式)从各种观点出发进行了研究。可以认为:如上所述,在一次再结晶退火中的升温过程中快速加热至约700℃的温度的目的在于,以短时间通过γ纤维{111}纤维组织的再结晶容易优先进行的温度区域的550℃、580℃之类的温度范围,从而可相对地促进高斯组织{110}<001>的再结晶。
与此相对,比升温过程中的{222}(以往与{111}等同)优先发达的550℃~700℃的温度区域更低的温度区域中,发生组织的恢复和位错的多边形化,虽然位错密度降低,但对于再结晶生成而言不充分。因此,即使长时间保持在上述温度区域中,{222}的再结晶也几乎不会进行。但是发现,在上述温度区域中,越是应变蓄积量高的组织,其位错密度越会大幅地降低,因此通过短时间的保持而使一次再结晶织构发生较大的变化,能够有效地体现出二次再结晶晶粒的微细化效果,从而开发得到本发明。
即,本发明涉及一种取向性电磁钢板的制造方法,其中,对下述成分组成的钢坯进行热轧,在实施热轧板退火后或者不实施热轧板退火的情况下,通过1次冷轧或夹着中间退火的2次以上的冷轧制成最终板厚,之后实施一次再结晶退火,之后涂布退火分离剂,实施精制退火,所述成分组成中含有C:0.001质量%~0.10质量%、Si:1.0质量%~5.0质量%、Mn:0.01质量%~0.5质量%、选自S和Se中的1种或2种:合计0.01质量%~0.05质量%、sol.Al:0.003质量%~0.050质量%和N:0.0010质量%~0.020质量%,剩余部分由Fe和不可避免的杂质构成,该取向性电磁钢板的制造方法的特征在于,在上述一次再结晶退火的加热过程中的550℃~700℃间以40℃/秒~200℃/秒的平均升温速度进行快速加热,并且在250℃~550℃间的任一温度区域以10℃/秒以下的升温速度保持1秒~10秒。
本发明的取向性电磁钢板的制造方法中的上述钢坯的特征在于,除了上述成分组成以外,上述钢坯进一步含有选自Cu:0.01质量%~0.2质量%、Ni:0.01质量%~0.5质量%、Cr:0.01质量%~0.5质量%、Sb:0.01质量%~0.1质量%、Sn:0.01质量%~0.5质量%、Mo:0.01质量%~0.5质量%、Bi:0.001质量%~0.1质量%、Ti:0.005质量%~0.02质量%、P:0.001质量%~0.05质量%和Nb:0.0005质量%~0.0100质量%中的1种或2种以上。
发明的效果
根据本发明,即使在一次再结晶退火的升温过程中的升温速度比较低的情况下,也能够体现出与以高升温速度进行快速加热的现有技术同等或更高的二次再结晶晶粒的微细化效果,因此能够容易且稳定地得到低铁损的取向性电磁钢板。
附图说明
图1是示出退火温度对于Al镇静钢中的退火时间和再结晶晶粒的数量所产生的影响的曲线图。
图2是示出加热方式对于550℃~700℃间的升温速度与铁损的关系所产生的影响的曲线图。
图3是示出加热方式对于{110}反转强度(インバース強度)所产生的影响的曲线图。
具体实施方式
首先,对开发得到本发明的实验进行说明。
<实验1>
对含有C:0.05质量%、Si:3.4质量%、Mn:0.05质量%、Al:0.020质量%、N:0.0100质量%、S:0.0030质量%、Se:0.01质量%、Sb:0.01质量%、Ti:0.001质量%、剩余部分由Fe和不可避免的杂质构成的成分组成的钢坯进行热轧,制成热轧板,实施热轧板退火,通过夹着1100℃的中间退火的2次冷轧制成最终板厚为0.30mm的冷轧板,之后从该冷轧板(卷材)长度方向、宽度方向的中央部切出30片L:300mm×C:100mm的试验片。
接下来,对于上述试验片实施了兼带脱碳退火的一次再结晶退火,其中,利用通电加热装置以各种升温速度加热至700℃的温度,之后以30℃/秒加热至800℃,在湿氢气氛中保持60秒。需要说明的是,上述一次再结晶退火中的加热按照以下三种方式进行:加热方式1,从室温至700℃以一定的升温速度连续地升温,从700℃至800℃间以一定的升温速度进行加热;加热方式2,在至上述700℃的加热途中的450℃下保持3秒;和加热方式3,在至上述700℃的加热途中的450℃的温度下保持15秒。需要说明的是,加热方式2、3中的升温速度是指进行上述保持的前后的升温速度,加热方式2、3中的气氛条件等全部与加热方式1相同。
接下来,在一次再结晶(脱碳)退火后的试验片表面涂布以MgO为主要成分的退火分离剂,实施1150℃×10小时的二次再结晶退火(精制退火),之后进行磷酸盐系的绝缘张力涂层的涂布/烧结。
对于如此得到的精制退火后的试验片,利用SST(单片测试仪)测定铁损W17/50(以商用频率50Hz励磁至磁通密度1.7T时的铁损),将其结果示于图2。由该图可知,在加热途中的450℃下保持3秒的加热方式2的情况下,与连续升温的加热方式1的情况相比可得到良好的铁损,例如,在加热方式2的情况下即使升温速度为40℃/秒,也可得到与加热方式1的升温速度80℃/秒同等的铁损。与此相对,在加热途中的450℃下保持15秒的加热方式3的情况下,全部试验片的铁损W17/50均为1.10W/kg以上(未图示),进而升温速度为100℃/秒以上时二次再结晶自身无法发生。
<实验2>
从实验1中得到的冷轧卷材的同一位置采集同一尺寸的试验片,实施了兼带脱碳退火的一次再结晶退火,其中,利用通电加热装置在下述两个条件下加热后,从700℃至800℃以升温速度30℃/秒进行加热,在湿氢气氛中保持60秒,上述两个条件为:从室温至700℃以退火速度100℃/秒连续加热;和,从室温至700℃以退火速度100℃/秒进行加热时,在加热途中的400℃、500℃、600℃的任一温度下保持3秒。对于如此得到的一次再结晶退火板,利用X射线衍射法测定了反转强度,结果确认到:如图3所示,在400℃和500℃进行保持的情况下,与在600℃进行保持的情况和以40℃/秒连续加热的情况相比{110}反转强度更高,与以100℃/秒进行快速加热时同等或在其之上,即二次再结晶时成为核的高斯取向({110}<001>)晶粒的再结晶得到促进。
关于发生这种现象的机理,有如下考虑。
一般来说,认为引起再结晶的驱动力为应变能,即,应变能的释放容易在应变能高的部分发生,在技术文献(白岩、寺崎、小玉、“Alキルド鋼での等温焼鈍中の再結晶挙動(Al镇静钢中的等温退火中的再结晶行为)”、日本金属学会志、第35卷、第1号、p.20)中被认可的{222}优先进行再结晶的现象显示出在{222}组织中蓄积有高应变能(参照图1)。
此处,将冷轧后的钢板在位错发生多边形化、应变能减少、组织恢复的温度区域进行短时间保持的情况下,与其它晶体取向相比,应变能的减少在应变能高的{222}增大。其结果,在以产生恢复的温度进行保持时,组织所致的应变能蓄积的差异丧失,再结晶时的{222}组织的优先生长性降低。从一次再结晶退火后形成的织构的方面出发,在这样的加热途中进行保持时的效果与以高升温速度进行快速加热的效果是相同的。
另一方面,在组织发生恢复的温度区域进行所需以上的保持时,应变能降低,用于发生{222}组织的再结晶的驱动力大幅降低。作为被高斯晶粒蚕食的组织,需要存在一定量的{222}组织,因此由于过度地抑制{222}组织,无法得到对于二次再结晶而言充分的一次再结晶组织的可能性高。因此,在升温速度比较慢的情况下,认为仅有在组织恢复温度区域保持极短时间的情况得到了与升温速度高的情况同等的效果,认为升温速度高的情况下也得到了与升温速度更高的条件同等的效果。
接下来,对本发明作为对象的取向性电磁钢板的成分组成进行说明。
C:0.001质量%~0.10质量%
C是对于产生高斯取向晶粒而言有用的成分,为了体现出该作用,需要含有0.001质量%以上。另一方面,若C超过0.10质量%而含有,则有可能在脱碳退火中引起脱碳不良。因此,C的范围为0.001质量%~0.10质量%。优选为0.01质量%~0.08质量%的范围。
Si:1.0质量%~5.0质量%
Si具有提高钢的电阻、降低铁损的效果,至少需要含有1.0质量%。另一方面,若添加超过5.0质量%,则难以进行冷轧。因此,Si的范围为1.0质量%~5.0质量%。优选为2.0质量%~4.5质量%的范围。
Mn:0.01质量%~0.5质量%
Mn是对于提高钢的热加工性而言有效的元素,除此以外,在存在S或Se的情况下,形成MnS或MnSe等析出物,可发挥作为抑制剂(晶粒生长抑制剂)的功能。通过含有0.01质量%以上,从而可得到上述效果。另一方面,超过0.5质量%的添加会导致使MnS或MnSe等析出物固溶所需要的坯料加热温度为高温,因而是不优选的。因此,Mn为0.01质量%~0.5质量%的范围。优选为0.01质量%~0.10质量%的范围。
S和Se中的1种或2种:合计0.01质量%~0.05质量%
S和Se是有用成分,它们与Mn、Cu结合而形成MnS、MnSe、Cu2-xS、Cu2-xSe,作为钢中的分散第二相发挥出抑制剂的作用。这些S、Se的合计含量若小于0.01质量%,则其添加效果不足;另一方面若超过0.05质量%,则会导致坯料加热时的固溶不完全,不仅如此,还会成为制品表面的缺陷的原因。因此,不论是单独添加还是复合添加,这些元素的含量的合计均为0.01质量%~0.05质量%的范围。
sol.Al:0.003~0.050质量%
Al是一种有用成分,其在钢中形成AlN,作为分散第二相起到抑制剂的作用,然而若添加量小于0.003质量%,则无法确保充分的析出量,得不到上述效果。另一方面,若添加超过0.050质量%,会使AlN的固溶所需要的坯料加热温度为高温,并且在热轧以后的热处理中AlN发生粗大化,导致其失去作为抑制剂的作用。因此,以sol.Al计,Al为0.003质量%~0.050质量%的范围。优选为0.01质量%~0.04质量%的范围。
N:0.0010质量%~0.020质量%
N与Al形成AlN,其是起到抑制剂的作用所必要的成分。但是,若添加量小于0.0010质量%,则AlN的析出不充分;另一方面,若添加超过0.020质量%,则坯料加热时会产生起泡(ふくれ)等。因此,N为0.001质量%~0.020质量%的范围。
在本发明作为对象的取向性电磁钢板中,上述成分以外的剩余部分为Fe和不可避免的杂质。其中,除了上述必须的成分外,出于提高磁特性的目的,本发明的取向性电磁钢板还可以含有选自Cu:0.01质量%~0.2质量%、Ni:0.01质量%~0.5质量%、Cr:0.01质量%~0.5质量%、Sb:0.01质量%~0.1质量%、Sn:0.01质量%~0.5质量%、Mo:0.01质量%~0.5质量%、Bi:0.001质量%~0.1质量%、Ti:0.005质量%~0.02质量%、P:0.001质量%~0.05质量%和Nb:0.0005质量%~0.0100质量%中的1种或2种以上。
这些物质是在晶界或表面发生偏析或者形成碳氮化物、从而具有作为辅助性抑制剂的作用的元素,通过添加这些元素,能够抑制二次再结晶过程的高温区域中的一次晶粒的粗大化。但是,添加量小于上述范围的下限值时,上述添加效果小;相反地,若超过上述范围的上限值,则容易发生覆膜的外观不良和二次再结晶不良。
接下来,对本发明的取向性电磁钢板的制造方法进行说明。
本发明的取向性电磁钢板的制造方法是由下述一系列的工序构成的制造方法:对具有上述成分组成的钢坯进行热轧,在实施热轧板退火后或者不实施热轧板退火的情况下,通过1次冷轧或夹着中间退火的2次以上的冷轧制成最终板厚,之后实施一次再结晶退火,之后涂布退火分离剂,实施二次再结晶退火。
对上述钢坯的制造方法没有特别限制,可以利用现有公知的精炼工艺对上述成分组成的钢进行熔炼,利用连续铸造法、铸锭-开坯轧制法等进行制造。
之后将上述钢坯供于热轧,关于在热轧前的钢坯的再加热温度,由于需要使抑制剂成分完全固溶,因而优选为1300℃以上。
对于热轧后的热轧板,在实施热轧板退火后、或者不实施热轧板退火,通过1次冷轧或夹着中间退火的2次以上的冷轧而制成最终板厚的冷轧板。需要说明的是,关于上述热轧以后至冷轧为止的制造条件,没有特别限制,根据常规方法进行即可。
接下来,对于上述制成最终板厚的冷轧板,实施一次再结晶退火。关于一次再结晶退火中的加热,需要在550℃~700℃间以40℃/秒~200℃/秒的平均升温速度进行快速加热,并且作为其前阶段,在250℃~550℃间的任一温度区域以10℃/秒以下的升温速度保持1秒~10秒。
此处,使进行快速加热的温度区域为550℃~700℃的范围的理由是:如上述技术文献中所公开的那样,该温度区域是{222}优先发生再结晶的温度范围,通过在该温度范围进行快速加热,能够促进成为二次再结晶的核的{110}<001>取向的发生,其结果,使二次再结晶组织晶粒细化,铁损得到改善。
另外,使上述温度范围的平均升温速度为40℃/秒~200℃/秒的理由是:在小于40℃/秒的情况下,铁损的改善效果不充分;另一方面,即使高于200℃/秒,铁损改善效果也饱和。
另外,在250℃~550℃间的任一温度区域将10℃/秒以下的升温速度保持1秒~10秒的理由是:与连续升温的现有技术相比,即使以低的升温速度在550℃~700℃间进行加热,也能够得到铁损的改善效果。需要说明的是,只要钢板温度不偏离250℃~550℃的范围,则上述10℃/秒以下的升温速度也可以为负的升温速度。
即,本发明的技术思想为:通过在发生位错密度的降低、且不发生再结晶的温度区域进行短时间保持,从而使{222}的再结晶优势性降低。因此,在几乎不会预见到位错的移动的小于250℃的情况下,未得到上述效果;另一方面,若超过550℃,则{222}的再结晶开始产生,因此即使在超过550℃的温度下进行保持也无法促进{110}<001>取向的发生。另外,关于保持时间,在小于1秒的情况下保持的效果不充分;另一方面,若超过10秒,则恢复过度地进行,有可能引起二次再结晶不良。
需要说明的是,一般来说,对最终冷轧后的钢板实施的一次再结晶退火大多与脱碳退火一起进行实施。本发明中也可以为兼带脱碳退火的一次再结晶退火。即,可以在以适合本发明的升温速度加热至特定温度后,例如在PH2O/PH2为0.1以上的气氛下实施脱碳退火。另外,在无法进行上述退火的情况下,可以在非氧化性气氛下以适合本发明的升温速度进行一次再结晶退火后,在上述气氛下另行实施脱碳退火。
对于满足上述条件而进行了一次再结晶退火的钢板,之后在钢板表面涂布退火分离剂并使其干燥,之后实施使其发生二次再结晶的精制退火。作为上述退火分离剂,例如,可以使用以MgO为主要成分且根据需要适宜添加有TiO2等的物质;或以SiO2、Al2O3为主要成分的物质;等等。需要说明的是,对精制退火的条件没有特别限制,根据常规方法进行即可。
对于精制退火后的钢板来说,优选之后对钢板表面涂布烧结绝缘覆膜、或者在对钢板表面涂布绝缘覆膜后实施兼顾烧结和形状矫正的平坦化退火,以制成制品。需要说明的是,对于上述绝缘覆膜的种类没有特别限制,但在钢板表面形成用于赋予拉伸张力的绝缘覆膜的情况下,优选使用日本特开昭50-79442号公报、日本特开昭48-39338号公报等中公开的含有磷酸盐-铬酸-胶态二氧化硅的涂布液,以800℃左右进行烧结。另外,作为上述退火分离剂,在使用以SiO2、Al2O3为主要成分的物质时,由于精制退火后的钢板表面未形成镁橄榄石覆膜,因此可以重新涂布以MgO为主要成分的水浆料,实施形成镁橄榄石覆膜的退火,然后形成绝缘覆膜。
根据上述所说明的本发明的制造方法,可以在制品卷材的几乎整个全长稳定地使二次再结晶组织晶粒细化,可以赋予良好的铁损特性。
实施例1
将含有C:0.04质量%、Si:3.3质量%、Mn:0.03质量%、S:0.008质量%、Se:0.01质量%、Al:0.03质量%、N:0.01质量%、Cu:0.03质量%和Sb:0.01质量%的钢坯在1350℃加热40分钟后,进行热轧,制成板厚为2.2mm的热轧板,实施1000℃×2分钟的热轧板退火后,通过夹着1100℃×2分钟的中间退火的2次冷轧制成最终板厚为0.23mm的冷轧卷材,进行电解蚀刻,而实施在钢板表面在与轧制方向成90°的方向形成深度为20μm的线状槽的磁畴细化处理。
从如此得到的冷轧卷材的长度方向和宽度方向中央部采集L:300mm×C:100mm的试样,在实验室中使用感应加热装置实施了兼带脱碳退火的一次再结晶退火。需要说明的是,该一次再结晶退火中,如表1所示,利用从室温(RT)至700℃之间以20℃/秒~300℃/秒的一定升温速度连续地加热的方式(No.1、2、9、11、13)、以及在上述温度间的加热途中的T1~T2间以规定的升温速度加热规定时间的方式(No.3~8、10、12)这两种方式进行加热后,在700℃至820℃以升温速度40℃/秒进行加热,在湿氢气氛中实施820℃×2分钟的脱碳。
接下来,对于上述一次再结晶退火后的试样,使以MgO为主要成分并添加了TiO25质量%的退火分离剂为水浆料状并进行涂布·干燥,之后实施最终精制退火,进行磷酸盐系的绝缘张力涂层的涂布/烧结,制成取向性电磁钢板。
对于如此得到的各试样,利用单片磁测定法(SST)测定铁损W17/50后,进行酸洗,将钢板表面的绝缘覆膜和镁橄榄石覆膜剥去,测定二次再结晶晶粒的粒径。需要说明的是,铁损特性的测定中,对于每1个加热条件进行20片的测定,用平均值进行评价。另外,二次再结晶的粒径是利用截线法对300mm长的试验片进行测定的。
将上述测定的结果一并示于表1。由该结果可知,以符合本发明的条件进行了一次再结晶退火的钢板的二次再结晶粒径小,且铁损特性也良好,特别是在RT~700℃间的升温速度低的50℃/秒的情况下,铁损降低效果大。
实施例2
将具有表2所示的成分组成的钢坯在1400℃加热60分钟后,进行热轧,制成板厚为2.3mm的热轧板,实施1100℃×3分钟的热轧板退火后,通过包括在途中于200℃以上缠绕至卷材上的处理的温轧制,制成最终板厚为0.23mm的冷轧板,进行电解蚀刻而实施在钢板表面形成线状槽的磁畴细化处理。
接下来,以相同的表2所示的各种升温速度从室温加热至750℃,在750℃至840℃以升温速度10℃/秒进行加热,之后在PH2O/PH2=0.3的湿氢气氛中保持2分钟,从而实施兼带脱碳退火的一次再结晶退火,之后使以MgO为主要成分且添加有TiO210质量%的退火分离剂为水浆料状并进行涂布/干燥,卷取成卷材,实施最终精制退火,之后进行磷酸盐系的绝缘张力涂层的涂布,实施兼顾烧结和形状矫正的平坦化退火,制成取向性电磁钢板的制品卷材。
从如此得到的制品卷材的长度方向、宽度方向中央部采集L:320mm×C:30mm的尺寸的试验片,利用爱泼斯坦(エプスタイン)试验测定铁损W17/50,将其结果一并列于表2中。由表2可知,在一次再结晶退火的加热符合本发明条件的情况下实施了加热的No.3~6、10~12和15~18的钢板中,铁损特性均优异。
工业实用性
本发明的技术还能够用于薄钢板的织构控制。

Claims (2)

1.一种取向性电磁钢板的制造方法,其中,对下述成分组成的钢坯进行热轧,在实施热轧板退火后或者不实施热轧板退火的情况下,通过1次冷轧或夹着中间退火的2次以上的冷轧制成最终板厚,之后实施一次再结晶退火,之后涂布退火分离剂,实施精制退火,所述成分组成中含有C:0.001质量%~0.10质量%、Si:1.0质量%~5.0质量%、Mn:0.01质量%~0.5质量%、选自S和Se中的1种或2种:合计0.01质量%~0.05质量%、sol.Al:0.003质量%~0.050质量%和N:0.0010质量%~0.020质量%,剩余部分由Fe和不可避免的杂质构成,该取向性电磁钢板的制造方法的特征在于,
在所述一次再结晶退火的加热过程中的550℃~700℃间以40℃/秒~200℃/秒的平均升温速度进行快速加热,并且在250℃~550℃间的任一温度区域以10℃/秒以下的升温速度保持1秒以上且小于10秒间。
2.如权利要求1所述的取向性电磁钢板的制造方法,其特征在于,除了所述成分组成以外,所述钢坯进一步含有选自Cu:0.01质量%~0.2质量%、Ni:0.01质量%~0.5质量%、Cr:0.01质量%~0.5质量%、Sb:0.01质量%~0.1质量%、Sn:0.01质量%~0.5质量%、Mo:0.01质量%~0.5质量%、Bi:0.001质量%~0.1质量%、Ti:0.005质量%~0.02质量%、P:0.001质量%~0.05质量%和Nb:0.0005质量%~0.0100质量%中的1种或2种以上。
CN201380037789.1A 2012-07-26 2013-07-25 取向性电磁钢板的制造方法 Active CN104471084B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012165523 2012-07-26
JP2012-165523 2012-07-26
PCT/JP2013/070187 WO2014017591A1 (ja) 2012-07-26 2013-07-25 方向性電磁鋼板の製造方法

Publications (2)

Publication Number Publication Date
CN104471084A CN104471084A (zh) 2015-03-25
CN104471084B true CN104471084B (zh) 2016-06-29

Family

ID=49997400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380037789.1A Active CN104471084B (zh) 2012-07-26 2013-07-25 取向性电磁钢板的制造方法

Country Status (8)

Country Link
US (1) US9748029B2 (zh)
EP (1) EP2878689B1 (zh)
JP (1) JP5679090B2 (zh)
KR (1) KR101707539B1 (zh)
CN (1) CN104471084B (zh)
IN (1) IN2015DN00612A (zh)
RU (1) RU2597464C2 (zh)
WO (1) WO2014017591A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672273B2 (ja) 2012-07-26 2015-02-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN104471084B (zh) 2012-07-26 2016-06-29 杰富意钢铁株式会社 取向性电磁钢板的制造方法
EP2878688B1 (en) 2012-07-26 2019-07-03 JFE Steel Corporation Method for producing grain-oriented electrical steel sheet
JP6041110B2 (ja) * 2014-03-17 2016-12-07 Jfeスチール株式会社 鉄損特性に優れる方向性電磁鋼板の製造方法
JP6256693B2 (ja) * 2014-03-20 2018-01-10 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
KR102044321B1 (ko) * 2017-12-26 2019-11-13 주식회사 포스코 방향성 전기강판 및 그의 제조방법
BR112020018594A2 (pt) * 2018-03-20 2020-12-29 Nippon Steel Corporation Método para fabricação de chapa de aço elétrico de grão orientado e chapa de aço elétrico de grão orientado
CN111868273B (zh) * 2018-03-20 2022-12-13 日本制铁株式会社 方向性电磁钢板的制造方法以及方向性电磁钢板
BR112020018664A2 (pt) * 2018-03-22 2020-12-29 Nippon Steel Corporation Chapa de aço elétrica com grão orientado e método para produzir a chapa de aço elétrica com grão orientado
KR102120277B1 (ko) * 2018-09-27 2020-06-08 주식회사 포스코 방향성 전기강판 및 그 제조방법
EP3913073A4 (en) * 2019-01-16 2022-09-21 Nippon Steel Corporation PROCESS FOR THE PRODUCTION OF A CORNORATED ELECTRICAL STEEL SHEET
WO2020149336A1 (ja) 2019-01-16 2020-07-23 日本製鉄株式会社 方向性電磁鋼板の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105926A (ja) * 1986-10-23 1988-05-11 Kawasaki Steel Corp 一方向性けい素鋼板の製造方法
KR100241005B1 (ko) * 1995-12-23 2000-03-02 이구택 1회 냉간압연에 의한 방향성 전기강판의 제조방법
KR100273095B1 (ko) * 1996-12-09 2000-12-01 이구택 저온 슬라브 가열방식의 방향성 전기강판 제조방법
CN101454465A (zh) * 2006-05-24 2009-06-10 新日本制铁株式会社 高磁通密度的方向性电磁钢板的制造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789262A (fr) 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
JPS5652117B2 (zh) 1973-11-17 1981-12-10
JPS5099914A (zh) * 1974-01-07 1975-08-08
US4975127A (en) 1987-05-11 1990-12-04 Kawasaki Steel Corp. Method of producing grain oriented silicon steel sheets having magnetic properties
US4898626A (en) * 1988-03-25 1990-02-06 Armco Advanced Materials Corporation Ultra-rapid heat treatment of grain oriented electrical steel
JP2983129B2 (ja) 1993-08-24 1999-11-29 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP2983128B2 (ja) 1993-08-24 1999-11-29 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP3011609B2 (ja) 1994-05-18 2000-02-21 新日本製鐵株式会社 磁気特性の優れたグラス被膜の少ない一方向性電磁鋼板の製造方法
JP3392664B2 (ja) 1996-10-31 2003-03-31 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP3456862B2 (ja) 1997-04-25 2003-10-14 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP3537339B2 (ja) 1999-01-14 2004-06-14 新日本製鐵株式会社 皮膜特性と磁気特性に優れた方向性電磁鋼板及びその製造方法
JP3481567B2 (ja) * 2000-08-08 2003-12-22 新日本製鐵株式会社 B8が1.88t以上の方向性電磁鋼板の製造方法
JP4598320B2 (ja) 2001-07-12 2010-12-15 新日本製鐵株式会社 方向性電磁鋼板の製造方法
JP5320690B2 (ja) * 2006-05-24 2013-10-23 新日鐵住金株式会社 磁束密度の高い方向性電磁鋼板の製造方法
JP2008001979A (ja) 2006-05-24 2008-01-10 Nippon Steel Corp 方向性電磁鋼板の製造方法とその製造方法に用いる脱炭焼鈍炉
BRPI0719586B1 (pt) * 2006-11-22 2017-04-25 Nippon Steel Corp folha de aço elétrica de grão orientado excelente na adesão de revestimento e método de produção da mesma
JP4833906B2 (ja) 2007-04-20 2011-12-07 新日本製鐵株式会社 誘導加熱設備
JP2010163634A (ja) 2009-01-13 2010-07-29 Chugai Ro Co Ltd ストリップ材処理装置
JP5417936B2 (ja) * 2009-03-31 2014-02-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5988027B2 (ja) 2011-07-28 2016-09-07 Jfeスチール株式会社 極薄方向性電磁鋼板の製造方法
JP5991484B2 (ja) * 2011-12-06 2016-09-14 Jfeスチール株式会社 低鉄損方向性電磁鋼板の製造方法
CN104471084B (zh) 2012-07-26 2016-06-29 杰富意钢铁株式会社 取向性电磁钢板的制造方法
JP5672273B2 (ja) 2012-07-26 2015-02-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105926A (ja) * 1986-10-23 1988-05-11 Kawasaki Steel Corp 一方向性けい素鋼板の製造方法
KR100241005B1 (ko) * 1995-12-23 2000-03-02 이구택 1회 냉간압연에 의한 방향성 전기강판의 제조방법
KR100273095B1 (ko) * 1996-12-09 2000-12-01 이구택 저온 슬라브 가열방식의 방향성 전기강판 제조방법
CN101454465A (zh) * 2006-05-24 2009-06-10 新日本制铁株式会社 高磁通密度的方向性电磁钢板的制造方法

Also Published As

Publication number Publication date
EP2878689B1 (en) 2018-09-05
US9748029B2 (en) 2017-08-29
KR101707539B1 (ko) 2017-02-16
KR20150015044A (ko) 2015-02-09
EP2878689A1 (en) 2015-06-03
RU2597464C2 (ru) 2016-09-10
WO2014017591A1 (ja) 2014-01-30
IN2015DN00612A (zh) 2015-06-26
CN104471084A (zh) 2015-03-25
RU2015105332A (ru) 2016-09-10
JP5679090B2 (ja) 2015-03-04
US20150170813A1 (en) 2015-06-18
JPWO2014017591A1 (ja) 2016-07-11
EP2878689A4 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
CN104471084B (zh) 取向性电磁钢板的制造方法
CN104160044B (zh) 取向性电磁钢板的制造方法
KR102120572B1 (ko) 무 방향성 전자 강판의 제조 방법
CN106414780B (zh) 取向性电磁钢板的制造方法
KR102535436B1 (ko) 주석 함유하는 비방향성 실리콘 강 시트의 제조 방법, 이로부터 수득된 강 시트 및 상기 강 시트의 용도
CN104220607B (zh) 取向性电磁钢板的制造方法
CN103781920B (zh) 铁损特性优异的取向性电磁钢板的制造方法
KR101698381B1 (ko) 방향성 전자 강판의 제조 방법
CN107208171A (zh) 无取向性电磁钢板的制造方法
CN104471085A (zh) 取向性电磁钢板的制造方法
CN104662180A (zh) 晶粒取向电磁钢板的制造方法
RU2593243C1 (ru) Способ для изготовления листа неориентированной электромагнитной стали
CN104937118A (zh) 磁特性优异的半工艺无取向性电磁钢板的制造方法
CN106460085B (zh) 取向性电磁钢板的制造方法
CN105008555B (zh) 方向性电磁钢板的制造方法
KR20180113556A (ko) 방향성 전자 강판의 제조 방법
CN110291214A (zh) 方向性电磁钢板的制造方法
JP5068579B2 (ja) 高磁束密度方向性電磁鋼板の製造方法
WO2019131853A1 (ja) 低鉄損方向性電磁鋼板とその製造方法
JPS6242968B2 (zh)
JP2008261022A (ja) 方向性電磁鋼板脱炭焼鈍板及びその製造方法
KR20240004679A (ko) 방향성 전자 강판의 제조 방법
KR20140118298A (ko) 방향성 전기강판 및 그 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant