CN104470503A - 聚集粒子 - Google Patents

聚集粒子 Download PDF

Info

Publication number
CN104470503A
CN104470503A CN201380030619.0A CN201380030619A CN104470503A CN 104470503 A CN104470503 A CN 104470503A CN 201380030619 A CN201380030619 A CN 201380030619A CN 104470503 A CN104470503 A CN 104470503A
Authority
CN
China
Prior art keywords
aggregate particles
particles
excipient
nanoparticle shape
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380030619.0A
Other languages
English (en)
Inventor
M.M.范奥尔特
洪若健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glaxo Group Ltd
GlaxoSmithKline Intellectual Property Development Ltd
Original Assignee
Glaxo Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaxo Group Ltd filed Critical Glaxo Group Ltd
Publication of CN104470503A publication Critical patent/CN104470503A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/02Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of powders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/138Aryloxyalkylamines, e.g. propranolol, tamoxifen, phenoxybenzamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/439Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom the ring forming part of a bridged ring system, e.g. quinuclidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1611Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Otolaryngology (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及包含纳米微粒状药物粒子的聚集粒子。本发明特别涉及包含芜地溴铵和任选三苯乙酸维兰特罗和/或糠酸氟替卡松的纳米微粒状药物粒子的聚集粒子。本发明的聚集粒子可进一步包含纳米微粒状赋形剂粒子和一种或多种粘合剂。本发明还涉及包含所述聚集粒子的适合吸入的粉末组合物、生产所述聚集粒子的方法和所述粉末组合物在呼吸系统疾病,如哮喘和COPD的治疗中的用途。

Description

聚集粒子
发明领域
下列发明涉及包含纳米微粒状药物粒子的聚集粒子。本发明特别涉及包含芜地溴铵(umeclidinium bromide)和任选三苯乙酸维兰特罗(vilanterol trifenatate)和/或糠酸氟替卡松的纳米微粒状药物粒子的聚集粒子。本发明的聚集粒子还可包含纳米微粒状赋形剂粒子和一种或多种粘合剂。本发明还涉及包含所述聚集粒子的适合吸入的粉末组合物、生产所述聚集粒子的方法和所述粉末组合物在呼吸系统疾病,如哮喘和COPD的治疗中的用途。
发明背景
DPIs和基于混悬剂的MDIs中所用的传统粉末组合物通常含有已研磨至所需空气动力学尺寸的活性药剂。在DPI中,通常将该活性剂与粗粒载体/稀释剂,如乳糖混合。可能存在其它添加剂材料以充当物理或化学稳定剂、分散剂、掩味剂等。在基于混悬剂的MDI中,将活性剂悬浮在低沸点液体推进剂中。推进剂配方还可包括改进产品性能的其它材料,如表面活性剂等。
不断努力改进现有吸入递送系统的性能,包括这些系统中所用的组合物的性能。例如,改进当前的粒子基系统以提供可有效雾化以保持均一剂量并容易与载体材料分离以生成具有在肺系中靶向定点递送所需的尺寸的粒子的粉末的愿望近年来已导致相当努力地设计更好的吸入粒子。这些努力的一个目标是制造化学和物理上更稳定、具有更高的分散、雾化和成本效率的粒子以优化吸入雾化和递送性能。
通过研磨减小尺寸的一种备选方法是在研究中已取得一定成功的喷雾干燥。喷雾干燥是可直接产生所需尺寸范围的粒子的单步连续法。这种方法适用于生产吸入递送的药粉,参见例如美国专利No. 4,590,206, Broadhead, J.等人, “Spray Drying of Pharmaceuticals”, Drug Development and Industrial Pharmacy, 18(11&12), 1169-1206 (1992), M. Sacchetti, M. Van Oort, Spray Drying and Supercritical Fluid Particle Generation Techniques, “Inhalation Aerosols: Physical and Biological Basis for Therapy”, Marcel Dekker, 1996和专利公开WO 96/32149、WO 97/41833、WO 97/44013、WO 98/31346和WO 99/16419。
可以由溶液或悬浮液生成粒子。WO 96/09814描述了例如在乙醇中的布地奈德和乳糖的喷雾干燥,公开PCT申请WO 2001/49263、US 6,001,336、US 5,976,574(来自有机悬浮液的疏水药物)和US 7,267,813(包含两种或更多种药物活性化合物的组合的结晶可吸入粒子)也描述了喷雾干燥粒子。
尽管喷雾干燥适用于产生可吸入大小的粒子,但固态性质(特别是结晶度)难以控制。喷雾干燥法根据喷的是溶液还是悬浮液以及该方法的实施条件,可能产生非晶粒子。这样的非晶喷雾干燥粒子可能具有物理和/或化学稳定性问题并具有提高的吸湿倾向,所有这些对药剂来说都是不合意的。具有治疗活性材料且其中含或不含赋形剂的喷雾干燥溶液可能由于在雾化微滴内的快速沉淀而产生非晶材料。此外,尽管可能产生结晶材料,但所得结晶产物可能是动力学优先的形式而非更热力学稳定的形式。因此,可能产生不合意的多晶型物。在这一领域中需要进一步的改进。
当使用多种材料时,通过喷雾干燥可再现地获得结晶材料更复杂,组分之一可能按需要结晶,而相同粒子中的另一组分没有。
近年来,已经将注意力转向纳米粒子药物递送。纳米粒子在吸入疗法中可提供某些优点,特别是它们的提高的溶出速率,这在药物活性成分在呼吸道内存在的环境中难溶的情况或需要快速释放的情况中是合意的。由于它们的极小尺寸和大表面积,纳米粒子倾向于快速溶解,因此它们已用于非常疏水的材料以助于更快溶解,或用于需要快速起效的情况,如速释药物。
药物活性材料可以仅作为纳米粒子递送,或作为并入充当递送媒介物的更大复合粒子中的纳米粒子组分递送。例如,US 2003-0166509描述了纳米粒子的喷雾干燥以形成可吸入的更大尺寸的粒子。该纳米粒子截留在沉淀的赋形剂的骨架网络中,这构成可吸入大小的更大粒子。该可吸入粒子被描述为实现了药物在递送于肺中的靶点时的“持续作用”,因为这些复合粒子的降解比裸纳米粒子慢并随着发生这种降解释放截留的纳米粒子中的材料。通常,由水性悬浮液喷雾干燥纳米粒子。为了确保悬浮液原料的均匀性,这些方法通常在液相中包括表面活性剂。尽管常用,但表面活性剂的使用可能增加不良临床副作用的风险。因此,可能必须在粒子制成后除去表面活性剂,如果这种除去是有可能的,这会提高制造成本或复杂性。尽管如此,可以将纳米粒子制成基本结晶,这也避免了在非晶粒子中常发现的不稳定性和吸湿性问题。
WO 2012/051426公开了聚集纳米微粒状药物制剂、生产所述制剂的方法及其用途。
本发明利用喷雾干燥技术,其能在改进的聚集粒子的生成中实现控制和效率,这可提供一个或多个下列益处:提高吸入组合物的物理和/或化学性质,特别是结晶度的控制;提高制造和/或递送效率;制造中更高的灵活性,这允许对各种药物活性材料和赋形剂使用单一技术平台;改进的药物递送特性;更长的贮存寿命;为配方师、医护人员和/或患者提供更大的选择。
发明概述
下列发明涉及包含纳米微粒状药物粒子的聚集粒子。
第一方面,本发明涉及包含芜地溴铵的纳米微粒状药物粒子的聚集粒子。
在本发明的另一方面中,该聚集粒子进一步包含三苯乙酸维兰特罗的纳米微粒状药物粒子。
在本发明的另一方面中,该聚集粒子进一步包含糠酸氟替卡松的纳米微粒状药物粒子。
本发明的聚集粒子可进一步包含纳米微粒状赋形剂粒子和一种或多种粘合剂。
本发明还涉及包含所述聚集粒子的适合吸入的粉末组合物、生产所述聚集粒子的方法和所述粉末组合物在呼吸系统疾病,如哮喘和COPD的治疗中的用途。
附图简述
图1显示输入的原料药(化合物A、化合物B和化合物C)的典型XRPD图。
图2显示输入的赋形剂在珠磨之前的典型XRPD图。
图3显示表1的样品1的聚集粒子的扫描电子显微照片。
图4显示样品1(喷雾干燥粉末)的XRPD图。
图5显示表1的样品2、3和4的聚集粒子的扫描电子显微照片。
图6样品2、3和4(喷雾干燥粉末)的XRPD图。
图7表1的样品5、6和7的聚集粒子的扫描电子显微照片。
图8样品5、6和7(喷雾干燥粉末)的XRPD图。
图9表1的样品8、9和10的聚集粒子的扫描电子显微照片。
图10样品8、9和10(喷雾干燥粉末)的XRPD图。
图11样品5和7聚集体和掺合物在稳定性存储后的总杂质。
图12 样品10掺合物在稳定性存储后的细粒剂量百分比。
图13 样品10掺合物在稳定性存储后的总杂质。
图14表12的样品12、13和14的聚集粒子的扫描电子显微照片。
图15样品12、13和14(喷雾干燥粉末)的XRPD图。
图16 表15的样品12、13和14的聚集粒子-乳糖掺合物在装入泡罩条后的扫描电子显微照片。
发明详述
本发明涉及包含芜地溴铵的纳米微粒状药物粒子和任选纳米微粒状赋形剂粒子和任选粘合剂的聚集粒子。本发明还涉及包含所述聚集粒子的适合吸入的粉末组合物、生产所述聚集粒子的方法和所述粉末组合物在呼吸系统疾病,如哮喘和COPD的治疗中的用途。
本发明公开了通过利用喷雾干燥技术的方法制成的聚集粒子。作为本发明的另一方面的这些方法可提高吸入组合物的物理和/或化学性质,特别是结晶度的控制并提高制造和递送效率。
本文所述的方法可以有利地在该方法全程中基本保持药物和赋形剂粒子的预选基本结晶形式。这消除了制成其中组分为不合意结晶形式(这可能影响产品性能,如稳定性(贮存寿命))的吸入粉末组合物的风险。
本发明的聚集粒子和包含所述粒子的粉末组合物可提供比传统系统改进的性能,如改进的物理和化学稳定性。例如,三苯乙酸维兰特罗与一种或多种其它药物活性剂或载体一起并入聚集粒子构造中已表明与包含微粉化药物粒子和粗粒载体的传统组合物相比显著改进了这种β-激动剂的化学稳定性特性。它们与传统组合物相比还具有改进的递送效率,如提高的细粒剂量(%FPD)分数。在聚集粒子包含多于一种药物的纳米粒子的情况下,药物之间的%FPD变化较小。
本文所用的术语“标称剂量的%FPD”是指标称剂量中小于5微米的百分比。
在相同聚集粒子中并入多种治疗活性药物还确保各活性剂沉积到肺组织中的相同靶向位置,这可提供协同效应。
由大表面积的纳米粒子构成的聚集粒子与包含微粉化药物粒子的传统组合物相比还可能具有提高的溶出速率。具有相对较高的水溶性的赋形剂的并入可进一步提高该聚集粒子的溶出速率。这与微粉化药物相比可改进吸入药物的药代动力学和安全特性。
第一方面,本发明涉及包含芜地溴铵的纳米微粒状药物粒子的聚集粒子。
除非另行规定或从其使用情境中显而易见,本文所用的术语“纳米微粒状”应是指尺寸小于1微米的粒子。
本文所用的术语“药物”是指在疾病或病症的治疗或预防中具有治疗或预防作用的材料。
在本发明的另一方面中,该聚集粒子进一步包含三苯乙酸维兰特罗的纳米微粒状药物粒子。
umeclidinium与维兰特罗的比率可以为大约10:1至1:1,例如大约10:1、5:1、2.5:1和1.25:1。在本发明的另一方面中,umeclidinium与维兰特罗的比率为5:1。
在本发明的另一方面中,该聚集粒子进一步包含糠酸氟替卡松的纳米微粒状药物粒子。
umeclidinium与糠酸氟替卡松的比率可以为大约1:4至2:1,例如大约1:1.6、1:3、1.25:1和1.25:2。在本发明的另一方面中,umeclidinium与糠酸氟替卡松的比率为1.25:1。
本文所用的术语“芜地溴铵”是指4-[羟基(二苯基)甲基]-1-{2-[(苯基甲基)氧基]乙基}-1-氮鎓(azonia)双环[2.2.2]辛烷溴化物。
本文所用的术语“umeclidinium”是指4-[羟基(二苯基)甲基]-1-{2-[(苯基甲基)氧基]乙基}-1-氮鎓(azonia)双环[2.2.2]辛烷。
本文所用的术语“糠酸氟替卡松”是指6α,9α-二氟-17α-[(2-呋喃基羰基)氧基]-11β-羟基-16α-甲基-3-氧代-雄甾-1,4-二烯-17β-硫代甲酸(carbothioic acid)S-氟甲基酯。
本文所用的术语“三苯乙酸维兰特罗”是指4-{(1R)-2-[(6-{2-[(2,6-二氯苄基)氧基]乙氧基}-己基)氨基]-1-羟乙基}-2-(羟甲基)酚三苯乙酸盐。
本文所用的术语“维兰特罗”是指4-{(1R)-2-[(6-{2-[(2,6-二氯苄基)氧基]乙氧基}-己基)氨基]-1-羟乙基}-2-(羟甲基)酚。
一方面,本发明提供包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松的纳米微粒状药物粒子的聚集粒子。
在另一方面中,本发明提供包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松的纳米微粒状药物粒子的聚集粒子,其中umeclidinium与维兰特罗的比率为5:1且其中umeclidinium与糠酸氟替卡松的比率为1.25:1。
在本发明的再一方面中,该纳米微粒状药物粒子具有预选的基本结晶形式。
本文所用的术语“预选的基本结晶形式”是指例如通过XRPD测得的形成聚集粒子前的材料样品具有的所需结晶形式。
本发明的聚集粒子可以仅含纳米微粒状药物粒子或可进一步包含赋形剂的纳米微粒状粒子。一种或多种赋形剂可并入聚集粒子制备法中。合适的赋形剂包括,但不限于,氨基酸,如亮氨酸、异亮氨酸、缬氨酸和甘氨酸、糖,如乳糖、蔗糖、葡萄糖和海藻糖、硬脂酸盐,例如硬脂酸镁、硬脂酸钠、硬脂酸和硬脂酸钙、脂肪酸酯、糖醇,如甘露醇、山梨糖醇、肌醇、木糖醇、赤藓糖醇、乳糖醇和麦芽糖醇、胆固醇、环糊精、EDTA、抗坏血酸、维生素E衍生物、二-酮基-哌嗪、掩味剂、阿斯巴甜、三氯蔗糖和柠檬酸。特别优选的赋形剂包括独自或组合的乳糖、亮氨酸、甘露醇和硬脂酸镁。在本发明的另一方面中,聚集粒子包含纳米微粒状赋形剂粒子,所述赋形剂粒子包含乳糖或亮氨酸和硬脂酸镁。
一方面,本发明提供包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松的纳米微粒状药物粒子和一种或多种赋形剂的纳米微粒状赋形剂粒子的聚集粒子。
一方面,本发明提供包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松的纳米微粒状药物粒子和亮氨酸和/或硬脂酸镁的纳米微粒状赋形剂粒子的聚集粒子。
在另一方面中,本发明提供包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松的纳米微粒状药物粒子和一种或多种赋形剂的纳米微粒状赋形剂粒子的聚集粒子,其中umeclidinium与维兰特罗的比率为5:1,且另外其中umeclidinium与糠酸氟替卡松的比率为1.25:1。
在另一方面中,本发明提供包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松的纳米微粒状药物粒子和亮氨酸和/或硬脂酸镁的纳米微粒状赋形剂粒子的聚集粒子,其中umeclidinium与维兰特罗的比率为5:1,且另外其中umeclidinium与糠酸氟替卡松的比率为1.25:1。
令人惊讶地,本发明的聚集粒子可以在不存在均质化表面活性剂的情况下制备,其可以在形成分散体之前、之中或之后添加到非水液体分散体中。均质化表面活性剂的不存在使得不需要萃出这种添加剂的进一步的步骤,由此简化该方法。萃取也经证实困难且吸入递送用的粉末组合物中的任何残留表面活性剂可能造成安全问题或产品稳定性风险。
在本发明的另一方面中,该聚集粒子基本不含悬浮均质化表面活性剂。
本文所用的术语“均质化表面活性剂”是指溶解在非水液体分散介质中、降低该液体与分散在该液体介质中的固体材料之间的界面张力并在尺寸缩减过程,例如珠磨中使用的化合物。
本发明的聚集粒子可能含有选自聚合物、葡聚糖、取代葡聚糖、脂质和/或表面活性剂的一种或多种粘合剂。聚合粘合剂包括,但不限于PLGA、PLA、PEG、壳聚糖、PVP、PVA、透明质酸、DPPC和DSPC。
本文所用的术语“粘合剂”是指溶解在非水液体分散介质中的有助于保持各个聚集粒子的结构完整性的材料。
粘合剂还可能有助于赋予聚集粒子某些特性。例如,本发明的聚集体可以使用肺内源性的粘合剂材料,如DPPC或卵磷脂,它们被批准为公认安全(“GRAS”)。由于它们是肺内源性的,这些材料有可能不被视为外来的。此外,通过小心选择粘合剂材料,可以改变活性治疗成分的溶出速率,可能影响该组合物的药代动力学和药效学(PK/PD)特征。
该粘合剂还可能有助于确立稳定和化学均匀的表面。因此,可以赋予该气溶胶组合物极其可预测的性能和粉末流动特性,因为该粘合剂可能控制复合粒子的外部物理特性和相应地物理稳定性。
粘合剂在并入该聚集粒子时占聚集粒子组成的0.1至30 %w/w。粘合剂优选为聚集粒子组成的20%w/w或更少,如15、10、5、2.5或1%w/w。
该粘合剂还可能包含一定量的在聚集粒子形成前溶解在非水液体中的纳米微粒状赋形剂和/或纳米微粒状药物。
本发明的聚集粒子可以是基本球形或不规则的,聚集粒子的特定形状可能影响产物性能。例如,当与粗粒载体,如乳糖掺合并由干粉吸入器递送时,纳米微粒状药物和(当存在时)纳米微粒状赋形剂粒子的基本球形聚集粒子可能具有比不规则形状的聚集粒子改进的分散性质。
在本发明的另一方面中,该聚集粒子是基本球形的。
在本发明的另一方面中,该聚集粒子是基本非球形或不规则的。
本发明的聚集粒子以适合沉积到呼吸道的所需区域上的尺寸制备。本文中公开的聚集粒子通常具有小于100微米的质量中位空气动力学直径。局部递送至肺的细支气管区域的聚集粒子通常具有小于10微米,例如大约3至大约10微米,如大约3至大约6微米,例如大约4至大约5微米的质量中位空气动力学直径。递送至肺泡区的聚集粒子通常具有小于大约3微米的质量中位空气动力学直径。例如,肺泡递送组合物具有1至3微米,例如大约1至2微米的质量中位空气动力学直径。
本文所用的术语“质量中位空气动力学直径”是指粒子群的按质量计的中值尺寸,其中例如如通过激光衍射,例如Malvern, Sympatec测定,50%的粒子高于这一直径且50%低于这一直径。
本文所用的术语“X10”是指粒度分布中的直径——其中粒子群的10%低于这一尺寸。
本文所用的术语“X50”是指粒度分布中的中值直径,其中粒子群的一半高于这一值,一半低于这一值。
本文所用的术语“X90”是指粒度分布中的直径——其中粒子群的90%低于这一尺寸。
在本发明的另一方面中,该聚集粒子具有大约1微米至大约6微米的质量中位空气动力学直径。
本发明的聚集粒子可含有0.01%w/w至100%w/w的纳米微粒状药物粒子,如10、20、30、40、50、60、70、80、90%w/w的纳米微粒状药物粒子。
本发明的聚集粒子通常通过经吸入器,如定量吸入器(MDI)或干粉吸入器(DPI)吸入给药。该聚集粒子可以不经进一步配制而递送,或它们可以与一种或多种可药用赋形剂混合以提供用于递送的组合物。合适的赋形剂包括,但不限于,氨基酸,如亮氨酸、异亮氨酸、缬氨酸和甘氨酸、糖,如乳糖、蔗糖、葡萄糖和海藻糖、聚(氨基酸),如三亮氨酸(trileucine)、硬脂酸盐,如硬脂酸镁、硬脂酸钙和硬脂酸钠、糖脂肪酸酯、糖醇,如甘露醇、山梨糖醇、肌醇、木糖醇、赤藓糖醇、乳糖醇和麦芽糖醇、糖酸、胆固醇、环糊精、EDTA、维生素E及其衍生物,如生育酚,如α-生育酚、γ-生育酚和生育三烯酚、二-酮基哌嗪、掩味剂,如阿斯巴甜、和无机材料。优选的赋形剂包括,但不限于,乳糖、亮氨酸、硬脂酸镁及其组合。
与聚集粒子混合以提供粉末组合物的赋形剂,如乳糖,例如一水合α-乳糖可构成该制剂的大约1%w/w至大约99%w/w,例如大约91%w/w至大约99%w/w,如92%w/w。这种赋形剂,例如乳糖的粒度通常比本发明的聚集粒子大得多。当载体是乳糖时,其通常作为具有60-90微米MMD(质量中值直径)的磨碎乳糖存在。
乳糖组分可能包含细乳糖粒级。“细”乳糖粒级是指具有小于7微米,如小于6微米,例如小于5微米的粒度的乳糖粒级。“细”乳糖粒级的粒度可能小于4.5微米。细乳糖粒级如果存在,可占总乳糖组分的2至10%w/w,如3至6%w/w“细”乳糖,例如4.5%w/w“细”乳糖。
硬脂酸镁(MgSt)如果存在于该组合物中,通常以该组合物总重量的大约0.2至2%w/w,例如0.6至2%w/w或0.5至1.75%w/w,例如0.6%、0.75%、1%、1.25%或1.5%w/w的量使用。硬脂酸镁通常具有1至50微米,更特别1-20微米,例如1-10微米的粒度。硬脂酸镁的商业来源包括Peter Greven、Covidien/Mallinckodt和FACI。
在本发明的另一方面中,提供包含聚集粒子和一种或多种可药用赋形剂的粉末组合物。
在本发明的另一方面中,提供包含与乳糖和/或硬脂酸镁掺合的聚集粒子的粉末组合物。
一方面,本发明提供包含聚集粒子的粉末组合物,所述聚集粒子包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松的纳米微粒状药物粒子。
在另一方面中,本发明提供包含聚集粒子的粉末组合物,所述聚集粒子包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松的纳米微粒状药物粒子,其中umeclidinium与维兰特罗的比率为5:1,且另外其中umeclidinium与糠酸氟替卡松的比率为1.25:1。
在再进一步的方面中,本发明提供包含聚集粒子的粉末组合物,所述聚集粒子包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松的纳米微粒状药物粒子和一种或多种赋形剂的纳米微粒状赋形剂粒子。
在再进一步的方面中,本发明提供包含聚集粒子的粉末组合物,所述聚集粒子包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松的纳米微粒状药物粒子和亮氨酸和/或硬脂酸镁的纳米微粒状赋形剂粒子。
在再进一步的方面中,本发明提供包含聚集粒子的粉末组合物,所述聚集粒子包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松的纳米微粒状药物粒子和一种或多种赋形剂的纳米微粒状赋形剂粒子,其中umeclidinium与维兰特罗的比率为5:1,且另外其中umeclidinium与糠酸氟替卡松的比率为1.25:1。
在再进一步的方面中,本发明提供包含聚集粒子的粉末组合物,所述聚集粒子包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松的纳米微粒状药物粒子和亮氨酸和/或硬脂酸镁的纳米微粒状赋形剂粒子,其中umeclidinium与维兰特罗的比率为5:1,且另外其中umeclidinium与糠酸氟替卡松的比率为1.25:1。
通过干粉吸入器给药的聚集粒子或包含聚集粒子的粉末组合物可并入在安装在合适的吸入装置内的药品包装上提供的多个密封剂量容器中。如本领域中已知,这些容器可以一次一个地破裂、剥开或以其它方式打开并通过在吸入装置的管嘴上吸气给予干粉组合物的剂量。
该药品包装可呈不同的形式,例如圆盘形或细长条。代表性的吸入装置是GlaxoSmithKline出售的DISKHALER™和DISKUSTM装置。例如在GB 2242134A中描述了DISKUSTM吸入装置。
聚集粒子或其粉末组合物也可以以吸入装置中的容积储库(bulk reservoir)形式提供,该装置随之带有计量机构以从该储备向吸入通道计量出一定剂量的组合物,其中在该装置的管嘴处吸气的患者能够吸入该计量的剂量。这种类型的示例性市售装置是AstraZeneca的TURBUHALER™、Schering的TWISTHALER™和Innovata的CLICKHALER™。
此外,聚集粒子或其粉末组合物可存在于胶囊或药筒(每个胶囊/药筒为一剂),然后通常由患者按需要将它们置于吸入装置中。该装置具有破坏、刺穿或以其它方式打开胶囊的工具以便当患者在装置管嘴处吸气时能将该剂量携带到患者肺部。作为这种装置的市售实例,可以提到GlaxoSmithKline的ROTAHALER™和Boehringer Ingelheim的HANDIHALER™。
除了从无源装置(passive device)给药外,聚集粒子或其粉末组合物可以从有源装置(active device)递送,该装置利用非来自患者吸气努力的能量递送或打散该制剂剂量。
本发明的聚集粒子及其粉末组合物还可借助合适的液化推进剂以气溶胶形式从加压包装,如定量吸入器给药。气溶胶组合物通常包含悬浮在液化推进剂,如氟碳化合物或含氢的氯氟烃或其混合物,特别是氢氟烷烃,尤其是1,1,1,2-四氟乙烷、1,1,1,2,3,3,3-七氟-正丙烷或其混合物中的本发明的聚集粒子或其粉末组合物。该气溶胶组合物可任选含有本领域中公知的附加制剂赋形剂,如例如WO94/21229和WO98/34596中描述的表面活性剂,例如油酸、卵磷脂或低聚乳酸衍生物,和/或助溶剂,例如乙醇。加压制剂通常装在用阀(例如计量阀)密封并组装到带有管嘴的致动器上的罐子(例如铝罐)中。
通常作为全自动工艺的一部分将聚集粒子与载体掺合制备粉末组合物和/或将聚集粒子或其粉末组合物并入密封剂量容器,如泡罩包装中。涉及机械力的此类加工会使聚集粒子破裂以致细粒剂量降低。已经令人惊讶地发现,在聚集粒子构造中掺入纳米微粒状硬脂酸镁改进了这些粒子的稳健性,以降低加工过程中的破裂风险。
可以通过扫描电子显微术(SEM)观察与聚集粒子构造中存在硬脂酸镁相关的降低的破裂风险。可以比较加工之前和之后的聚集粒子或粉末组合物的样品。类似地,可以比较含有不同量的硬脂酸镁的样品以表明提高硬脂酸镁的量使得加工后的聚集粒子更呈球形和更完整。加工后更完整的聚集粒子具有更高的细粒剂量。
不希望受制于理论,但推测,聚集体变形和破裂导致细粒剂量降低而非提高,因为聚集体粒子的碎片由于它们的更大表面积和降低的质量而更强粘附到载体粒子上。也可能产生更大的机械联锁。这样的碎片在随后由干粉吸入器(DPI)雾化时无法分离。这通过使用Next Generation Impactor (NGI)生成的沉积数据证实,其表明对于表现不佳的组合物(即其中在加工后存在聚集粒子破裂迹象),药物阶段沉积(drug stage deposition)与载体乳糖沉积重合。
在另一方面中,本发明提供硬脂酸镁在聚集粒子中以改进该聚集粒子的稳健性的用途,其中该聚集粒子包含一种或多种药物活性成分的纳米微粒。
在另一方面中,本发明提供硬脂酸镁在干粉组合物中以改进所述聚集粒子的稳健性的用途,其中所述干粉组合物包含含有一种或多种药物活性成分的纳米微粒的聚集粒子。
一方面,硬脂酸镁以纳米微粒形式存在。纳米微粒状硬脂酸镁(MgSt)如果存在于该聚集粒子中,通常以聚集粒子总重量的大约1.0至75%w/w,例如大于或等于10、20、30、40、50、60或70%w/w%的量使用。一方面,聚集粒子包含大约20.0至40.0%w/w的量的纳米微粒状硬脂酸镁。
另一方面,本发明提供包含一种或多种药物活性成分的纳米微粒状药物粒子和纳米微粒状赋形剂粒子的聚集粒子,其中所述赋形剂是硬脂酸镁,且另外其中该聚集粒子具有大于0.5MPa(兆帕)的聚集体强度。
合适的药物活性成分包括例如,但不限于,β-激动剂,如昔美酸沙美特罗、维兰特罗盐(例如三苯乙酸盐)和福莫特罗盐(例如富马酸盐);抗胆碱能药,如umeclidinium盐(例如溴化物)、噻托溴铵(tiotropium)盐(例如溴化物)和异丙托铵(ipratropium)盐(例如溴化物);和皮质类固醇,如丙酸氟替卡松、糠酸氟替卡松、糠酸莫米松和环索奈德。优选的药物活性成分组合包括a) 芜地溴铵和三苯乙酸维兰特罗,b) 芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松,和c) 芜地溴铵和糠酸氟替卡松。
另一方面,提供包含本发明的聚集粒子和一种或多种可药用赋形剂,如乳糖的粉末组合物。
再一方面,提供包含本发明的聚集粒子或粉末组合物的吸入器,其中该吸入器是干粉吸入器或定量吸入器。
可作为以MPa为单位测得的聚集体强度显示聚集粒子的特定样品的稳健性,并可以使用单轴力试验(Uniaxial Force Test)方法评估。这种方法利用质构仪压缩聚集粒子样品并测量使聚集粒子变形所需的力。在另一方面中,通过使用质构仪的单轴力试验方法测定聚集粒子样品的聚集体强度,其包括以下步骤:
a) 在试验冲模(8毫米直径,17.0毫米深度)中装入聚集粒子,避免压实该聚集粒子;然后
b) 将上冲头置于起始位置——刚刚接触所述聚集粒子的上表面;然后
c) 启动试验程序,其中所述上冲头以恒定0.5毫米/秒压缩所述聚集粒子直至实现240MPa的应力,此后以5毫米/秒移开所述上冲头。
在本发明的另一方面中,提供包含芜地溴铵的纳米微粒状药物粒子的聚集粒子的制备方法,所述方法包括:
(a) 形成纳米微粒状药物粒子和任选纳米微粒状赋形剂粒子在非水液体中的分散体,其中所述纳米微粒状药物粒子和(当存在时)所述纳米微粒状赋形剂粒子在所述非水液体中具有小于10毫克/毫升的溶解度,且其中所述纳米微粒状药物粒子和(当存在时)所述纳米微粒状赋形剂粒子具有预选的基本结晶形式,然后
(b) 任选将一种或多种粘合剂添加到步骤(a)的分散体中;然后
(c) 喷雾干燥所述分散体以生成聚集粒子,其中所述纳米微粒状药物和(当存在时)纳米微粒状赋形剂粒子已保持它们的预选的基本结晶形式。
在另一方面中,可通过包括下列步骤的方法制备包含硬脂酸镁纳米粒子的本发明的聚集粒子:
(a) 形成一种或多种药物活性成分的纳米微粒状药物粒子和纳米微粒状赋形剂粒子在非水液体中的分散体,其中所述赋形剂是硬脂酸镁,且其中所述纳米微粒状药物粒子和纳米微粒状赋形剂粒子在所述非水液体中具有小于10毫克/毫升的溶解度;然后
(b) 喷雾干燥所述分散体以生成具有大于0.5MPa的聚集体强度的聚集粒子。
该方法的步骤(a)中的非水液体可以是各药物和赋形剂在其中具有小于10毫克/毫升的溶解度的任何非水液体。合适的非水分散介质包括,但不限于醇,如乙醇和丙醇,酮,如丙酮和甲乙酮,酯,如乙酸乙酯和乙酸异丙酯,烷烃(线性或环状),如异辛烷、环己烷和甲基环己烷,氯化烃,如p11和p12,氟化烃,如p134a和p227,和醚,如甲基-叔丁基醚(MTBE)和环戊基-甲基-醚(CPME)。各种分散介质的混合物在本发明的范围内,包括上列介质种类的混合物,以实现该药物和赋形剂粒子所需的环境。特别优选的非水液体是选自异辛烷、环己烷、乙酸异丙酯及其混合物的那些。
本文所用的术语“非水液体”是指是除水之外的液体(例如有机液体)的物质。
步骤(a)中的非水液体(药物和/或赋形剂粒子在其中具有小溶解度)的选择可提供额外优点,如改进聚集粒子的结晶度和球度。在少量药物和/或赋形剂粒子溶解在该分散体中的情况下,该分散体中的其余未溶解的结晶药物和赋形剂粒子可以在喷雾干燥步骤的过程中充当晶种并促进溶解的药物和/或赋形剂材料转化成所需晶型。
在本发明的一个方面中,在珠磨机,如Cosmo Drais 2中制备药物和(当存在时)赋形剂粒子的纳米微粒。将要研磨的药物和(当存在时)赋形剂粒子悬浮在非水液体中。上文已经描述了合适的非水液体以及药物和赋形剂材料在这种介质中的溶解度。
珠磨机由给定材料和珠粒尺寸的珠粒在尺寸合适的容器中制成。在本发明的一个方面中,该磨机中所用的珠粒是尼龙或钇稳定的氧化锆珠。在研磨室中可以使用任何合适的珠粒尺寸,例如0.3毫米或0.4毫米的珠粒。使用蠕动泵使该悬浮液循环经过研磨室。在珠磨机中可以使用尺寸合适的筛网,如0.15毫米的筛网,以留住珠粒。选择研磨速度以运行至适当结果,例如最大值的80%。由此研磨该悬浮液并再循环直至药物粒度降至所需尺寸。可以选择珠磨机的运行条件以获得药物和任选赋形剂的尺寸合适的纳米粒子。
在本发明的一个方面中,聚集粒子的制备方法进一步包括形成所述纳米微粒状药物粒子和任选纳米微粒状赋形剂粒子的步骤,其中所述形成步骤包括在非水液体中珠磨所述药物和(当存在时)所述赋形剂的较大粒子以生成纳米微粒状药物粒子和(当存在时)纳米微粒状赋形剂粒子。
在本发明的另一方面中,分开研磨药物和赋形剂的粒子。如果研磨多于一种药物,可以分开研磨各药物,或可以一起研磨所有药物。然后在喷雾干燥前混合磨碎的药物和赋形剂粒子的分散体。
在本发明的再一方面中,一起同时研磨一种或多种药物和赋形剂的粒子。这种“共研磨”法有利地提供纳米微粒状药物和纳米微粒状赋形剂的密切混合。
本发明的非水液体分散体中的纳米微粒状药物和赋形剂材料的有效平均粒度通常小于1000纳米,例如小于大约500纳米、400纳米、300纳米、250纳米、100纳米或50纳米。在本发明的另一方面中,该非水分散体中50%或更多的纳米微粒状药物粒子和/或50%或更多的纳米微粒状赋形剂粒子在喷雾干燥前具有小于1000纳米的平均粒度。在本发明的另一方面中,纳米微粒状药物粒子具有小于大约400纳米的有效平均粒度。在本发明的另一方面中,纳米微粒状赋形剂粒子具有小于大约400纳米的有效平均粒度。
本文所用的术语“小于大约1000纳米的有效平均粒度”是指在通过光散射技术测量时至少50%的药物粒子具有小于大约1000纳米的重均粒度。
最终加工阶段涉及通过分散体的喷雾干燥制备聚集粒子。合适的喷雾干燥器包括Niro Mobile Minor和PSD-1喷雾干燥器。可以使用并流和混合流干燥配置。因此,配有可操作的Watson Marlow蠕动泵505的PSD-1型Niro Pharmaceutical喷雾干燥器可用于此用途。该喷雾干燥器可配有合适的喷雾喷嘴,如具有120盖(cap)的Spraying Systems双流体SU-4 60/100或旋转喷嘴。
借助喷雾喷嘴,双流体喷嘴可以使用氮气作为雾化气体。适用于此用途的入口温度也为80至180℃。根据非水原料的物理化学性质和原料进料速率,可以使用其它入口温度。
该悬浮液原料可以以所需进料速率供应,并按需要设定入口温度。示例性进料速率为30至120毫升/分钟。旋转喷嘴可以以最多35000 RPM运行。
也可以使用氮气作为雾化气体和干燥气体。
可以在干燥器出口使用旋风器或袋滤器收集聚集粒子并可以通过扫描电子显微镜(SEM)测定单个粒子的尺寸。
本发明的聚集粒子或粉末组合物可用于疗法,例如用于治疗呼吸系统疾病,如哮喘和COPD。
在另一方面中,本发明提供用于治疗哮喘或COPD的聚集粒子。
在另一方面中,本发明提供用于治疗哮喘或COPD的包含聚集粒子和一种或多种可药用赋形剂的粉末组合物。
在另一方面中,本发明提供治疗呼吸系统疾病,如哮喘或COPD的方法,其包括给予需要治疗的人类对象治疗有效量的聚集粒子或其粉末组合物。
在另一方面中,本发明提供聚集粒子用于制备用于治疗呼吸系统疾病,如哮喘或COPD的药物的用途。
本文所用的术语“治疗”是指预防疾病、改善或稳定疾病、减少或消除疾病的症状、减慢或消除疾病的进程、和预防或延迟之前染病的人类对象的疾病复发。
实施例
给出下列实施例以例示本发明。但是,应该理解的是,本发明不限于这些实施例中描述的具体条件或细节。
化合物A(也作API-A)是芜地溴铵,也称作4-[羟基(二苯基)甲基]-1-{2-[(苯基甲基)氧基]乙基}-1-氮鎓(azonia)双环[2.2.2]辛烷溴化物,其可根据并入本文作为参考的国际专利公开No. WO 2005/104745(US 2007/0185155 A1)中的实施例84制备。
化合物B(也作API-B)是糠酸氟替卡松,也称作6α,9α-二氟-17α-[(2-呋喃基羰基)氧基]-11β-羟基-16α-甲基-3-氧代-雄甾-1,4-二烯-17β-硫代甲酸(carbothioic acid)S-氟甲基酯,其可根据并入本文作为参考的国际专利公开No. WO02/12265(US 2003/045512 A1)中的实施例1制备。
化合物C(也作API-C)是三苯乙酸维兰特罗,也称作4-{(1R)-2-[(6-{2-[(2,6-二氯苄基)氧基]乙氧基}-己基)氨基]-1-羟基乙基}-2-(羟基甲基)酚三苯乙酸盐,其可根据并入本文作为参考的国际专利公开No. WO 03/024439(US 2005/075394A)中的实施例78(i)制备。
样品制备
使用非水珠磨法、接着喷雾干燥制备表1中所列的除样品5外的聚集粒子。
使用Netzsch MiniCer磨机或Drais Cosmo 2磨机。使用表2中所列的参数设置该磨机。将药物和赋形剂称入合适的容器。将非水液体介质添加到该容器中并摇振内容物直至明显润湿所有粉末。将该悬浮液倒入磨机储器中,其中液体媒介物已再循环。将该悬浮液研磨所需持续时间,然后收集。在所有实施例中,药物和赋形剂材料在磨机中一起共研磨。悬浮液在环境条件下储存在密封容器中直至实施喷雾干燥。表4列举所制备的悬浮液。
使用Buchi B-290干燥器或Niro PSD-1干燥器进行喷雾干燥。表3列举所用的干燥器参数。喷雾干燥有利地适合制造这样的聚集粒子。不依赖于药物和赋形剂,可以通过喷雾干燥条件控制聚集体的尺寸。与喷雾干燥有关的灵活性和控制能够制成具有合意的空气动力学性质的粒子,由此实现药物的高效递送。将粉末收集在旋风器下方的容器中。
化合物A、B和C的盐和底物(base)之间的转换系数分别为1.194、1和1.592。
1: 聚集粒子制备
a所列浓度是针对底物形式的各药物。
2: 研磨参数
3: 喷雾干燥器和运行参数
样品分析
通过X-射线粉末衍射(XRPD)测量表1中描述的粉末样品的结晶度和形式。
通过使用Sympatec粒度仪的干式激光衍射法测量粉末样品的粒度分布(PSD)。
使用利用来自Stable Micro Systems的质构仪开发的单轴力试验方法测量聚集粒子稳健性。这种方法测量多孔粒子的宏观结构的崩塌而非固有的机械性质。表5列举方法组件和设置。该质构仪是能够容纳一系列单面测力盒的高灵敏力/位移仪。设计该设备以将不同探针连接到测力传感器上以随探针距离、速度和分布(profile)测量受试样品的拉伸或压缩。用于该压缩试验的设备包括Manesty F压片工具(冲头和冲模)以及可获自该质构仪的制造商(Stable Micro Systems)的配件。借助偏离校正(deflection correction)或框架刚度校准自动进行与测力盒和其它组件的变形有关的误差的补偿。在各分析前用硬脂酸镁在丙酮中的悬浮液润滑冲头面和模孔。在测试前使溶剂蒸发。
5: 单轴力试验组件和设置
仪器 质构仪TA.HD Plus或类似物;单轴,单面,力/距离分析。用位于顶部的测力盒驱动上冲头
测力盒 250kg位于上冲头上
下冲头 8毫米直径,圆形,平的,平面
上冲头 8毫米直径,圆形,平的,平面
试验冲模 8毫米直径x 17.0毫米深度,使用下冲头下方的间隔物实现深度
试验速度 0.5毫米/秒
试验后速度 5毫米/秒
测量模式 压缩力
冲头/冲模摩擦极限 对于未润滑工具,小于或等于200克反作用力
在成批测试前,通过将其相对于下冲头面的位置去皮(taring),校准上冲头位置,即冲头的面对面接触为零位。随后,相对于该零位测量冲模表面位置。这提供该冲模的精确装填深度测量。下面概述方法程序:
a. 将受试样品装入冲模直至与冲模表面刚好齐平,不将样品压密或压实。这通过将翻转过的粉末倒入冲模直至其略高于冲模表面、然后使用平叶片刮除多余部分实现。
b. 将上冲头移至试验起始位置——与之前校准的冲模表面位置齐平。上冲头因此刚刚接触松散填充的受试样品的表面。
c. 启动试验程序。上冲头以恒定0.5毫米/秒压缩样品直至达到240MPa的应力。然后以5毫米/秒移开该冲头。在试验过程中以每秒通常50个点记录应力(MPa)vs 距离(毫米)。
d. 在试验后,压缩的样品作为硬质压实体推出并称重。
采用下列公式测定聚集粒子强度:
其中Vo是该床的压实体积(在0.02MPa的外加压力下的体积),V是在外加应力P下的连续体积,a和b是常数。常数1/b(压力单位)涉及单个粉末粒子的屈服应力。
通过对照P绘制P/C,可以推导常数a和b,1/a是斜率,1/ab是截距。已经发现1/b x 0.7与平均聚集体强度(压力单位(MPa))相关联。在表6至9中例示这些计算的应用。
表6  C的计算
表7 P/C的计算
表8 1/a、1/ab、a和b的计算
表9 1/b和聚集粒子强度的计算
注: MPa = 兆帕。
通过级联撞击测定表1中描述的所选粉末的空气动力学性能。使用Turbula Type T2F掺合机将由聚集粒子构成的粉末与载体乳糖掺合。将掺合物装入泡罩条并安装在Diskus装置中。将剂量送入以60L/min运行的Next Generation Impactor或以60L/min运行的Fast Screening Impactor(两者都可购自MSP Corp (Shoreview, MN,USA))。空气动力学性能结果作为标称剂量的细粒剂量百分比(%FPD)列在表11中。
材料
L-亮氨酸获自Sigma Aldrich并在用于悬浮液制备前使用研钵和研杵粗磨。一水合乳糖获自Freisland Foods Domo Ltd.。异辛烷、环己烷和乙酸异丙酯获自Sigma Aldrich。硬脂酸镁等级是LIGA, MF-2-V premium。
图1和2分别显示输入的APIs和输入的赋形剂的XRPD图。
实施例 1
这一实施例的目的是示范制备由两种不同的原料药和赋形剂构成的三组分聚集粒子的技术。样品1由化合物A、化合物B和亮氨酸构成(表1和4)。
图3显示样品1喷雾干燥粒子的典型SEM显微照片。粒子形状大致不规则。
图4显示喷雾干燥后的样品1的XRPD图。这种制备方法保持输入粉末的预选的结晶度并产生基本结晶产物。表10列出PSD结果。结果表明这些粒子在可吸入尺寸范围内。
实施例 2
这一实施例的目的是示范制备由三种不同的纳米微粒状药物构成的三组分吸入粒子的技术。样品2至5通过在不同媒介物中珠磨APIs、然后喷雾干燥而制成。喷雾干燥粉末中的目标API含量为50%w/w化合物A、40% w/w化合物B和10%w/w化合物C。
图5显示样品2、3和4的典型SEM显微照片。该喷雾干燥粒子的形状为球形至不规则。样品2、3和4表明APIs在媒介物中的溶解度如何影响聚集粒子的形状。APIs在环己烷和在乙酸异丙酯 (IPAc):环己烷的25:75和50:50混合物中的室温(22℃)溶解度测量表明当从环己烷体系移向50:50 IPAc:环己烷体系时,溶液中的总API百分比从0.1%提高至大约0.8%。在喷雾干燥过程中,沉淀出低量的溶解API并充当粘合剂以改进聚集粒子的结构完整性。改进的结构完整性表现为聚集粒子球度的提高(参见图5中的样品4)。改进的粒子稳健性/球度可能改进制备过程中的控制并产生更一致的产品性能。
图6显示喷雾干燥后的样品2、3和4的XRPD图。这种制备方法保持输入粉末的预选结晶度并产生基本结晶产物。XRPD图还表明可如何通过选择适当的媒介物来调节粉末的结晶度。
表10列出样品3和4的PSD结果。在喷雾干燥后,该三组分粒子在可吸入尺寸范围内。由于样品5使用具有更大表面张力的水性媒介物制备,这种样品的尺寸分布相对大于使用有机媒介物制成的样品。
测定所选聚集粒子的空气动力学性能。使用样品3和4制备聚集粒子在乳糖载体中的大约2%w/w掺合物。使用Turbula掺合机制备掺合物。表11描述通过HPLC分析测得的掺合物的含量。为了比较,使用微粉化APIs和高剪切掺合机在类似强度下制备传统掺合物(样品11)。将掺合物装入泡罩条并从Diskus装置送入以60升/分钟运行的Next Generation Impactor。表11列出测得的细粒剂量(%FPD)。
由于药物在传统掺合物中作为离散粒子存在,该掺合物中的APIs表现出较高的%细粒剂量变化。相反,由于APIs结合在聚集粒子中,样品3和4中的APIs表现出几乎相等的细粒剂量。从产品开发角度看,这种方法提高了性能的可预测性,以使聚集粒子中的药物每次具有相同的%细粒剂量。这可提供治疗优点,如增强的效力/协同作用,因为这允许共沉积至气道的相同区域。相反,离散掺合的微粉化API的性能依赖于各药物的粒度分布以及各药物与该掺合物的所有组分的相互作用,这使得非常难定向相同性能(targeting identical performance)。
实施例 3
这一实施例的目的是示范制备由三种纳米微粒状药物和纳米微粒状赋形剂构成的四组分吸入粒子的技术。
样品6和7使用共研磨法,其中药物和赋形剂在异辛烷中一起珠磨。样品6在喷雾干燥的聚集粒子中包含92.5%w/w亮氨酸,而样品7包含10%w/w MgSt。在这两种情况下,聚集粒子内的化合物A:化合物B:化合物C的比率都保持在5:4:1,改变赋形剂含量。
图7显示喷雾干燥粒子的典型SEM显微照片。该喷雾干燥粒子的形状为球形至不规则。PSD结果(表10)表明喷雾干燥粒子在可吸入尺寸范围内。这些结果表明在控制API含量和APIs之间的比率的同时多么容易在一定浓度范围内将赋形剂并入聚集粒子中。
在图8中提供样品6和7的XRPD图。可通过优化非水媒介物进一步增强样品7的结晶度。
实施例 4
这一实施例的目的是示范制备由三种纳米微粒状药物和两种纳米微粒状赋形剂构成的五组分吸入粒子的技术。样品8、9和10使用共研磨法,其中药物和赋形剂一起珠磨。样品8和9在异辛烷中研磨,而样品10使用25:75乙酸异丙酯:环己烷的混合物作为媒介物制备。
图9显示喷雾干燥粒子的典型SEM显微照片。该喷雾干燥粒子的形状为球形至不规则。PSD结果(表10)表明喷雾干燥粒子在可吸入尺寸范围内。这些结果表明多么容易将多种赋形剂并入聚集粒子中。
在图10中提供样品8、9和10的XRPD图。
实施例 5
这一实施例的目的是例证由这种制备方法提供的化学稳定性益处。通过对散装粉末的等分试样施以稳定性存储(stability storage),评估作为纯聚集粒子和作为乳糖掺合物的样品5和样品7的化学稳定性(描述在表11中)。使用Turbula掺合机以乳糖中大约2% w/w聚集粒子的浓度制备掺合物。等分试样无保护地存储在25℃/60%RH下或在硅胶干燥剂包覆下存储在30℃/65%RH和40℃/75%RH下。一开始和在所选时间点(最多3个月)测量聚集体的总杂质。为了比较,使用微粉化APIs和Turbula掺合机制备传统掺合物。该掺合物在乳糖中含有2%w/w API-A、1.7%w/w API-B和0.4%w/w API-C并平行测试。图11显示化学稳定性结果。不在这种传统掺合物上进行空气动力学性能测试。尽管包覆保护,该微粉化API掺合物仍表现出总杂质的增加。在30℃/65%RH下3个月后,杂质从大约0.5%面积/面积增加至大约4.4%面积/面积。这主要归因于API-C和乳糖之间的化学相互作用。含有样品5和样品7的组在同样3个月存储期间没有表现出明显的杂质增加。将API-C配制到聚集粒子中提供与传统微粉化API方法相比改进的化学稳定性。
实施例 6
这一实施例的目的是例证由这种制备方法提供的稳定性益处。评估样品10的物理和化学稳定性。使用样品10制备聚集粒子在乳糖载体中的4%w/w掺合物(2%w/w总API)。使用Turbula掺合机制备该掺合物。表11描述通过HPLC分析测定的该掺合物的含量。使用半自动装填设备将掺合物装入泡罩条并施以稳定性测试。泡罩条无保护地或在硅胶干燥剂包覆下在30℃/65%RH室中放置最多6个月。通过使用Diskus装置将剂量送入以60升/分钟运行的Fast Screening Impactor,在所选时间点评估制剂的物理稳定性。图12显示物理稳定性结果。在保护或无保护的泡罩条中都没有观察到制剂性能的明显改变。
通过在所选时间点测试总杂质,测试泡罩条的化学稳定性。图13显示化学稳定性结果。在保护或无保护的泡罩条中都没有观察到总杂质的明显增加。如在实施例5中,使用这种聚集纳米粒子法没有观察到与乳糖载体一起配制微粉化API-C时一般伴随着的杂质增加。
10: 粉末组合物的粒度分布
NT = 未测试。
11: 粉末组合物的物理性质和空气动力学性能
a使用微粉化APIs. bDiskus装置送入在60 LPM下的NGI或FSI
c基于聚集体中的API含量和2%目标掺合物强度计算的含量
d掺合物中的MgSt浓度为大约0.2%w/w. %FPD = < 5微米的细粒剂量百分比。
实施例 7
这一实施例的目的是例证MgSt对聚集粒子的稳健性和性能的影响。制备由化合物A和不同浓度的MgSt和亮氨酸构成的三组分聚集体(见表12和13)。图14显示喷雾干燥粒子的典型SEM显微照片。该喷雾干燥粒子的形状为球形至不规则。表14中的PSD结果表明喷雾干燥粒子在可吸入尺寸范围内。XRPD图提供在图15中并发现基本结晶。
使用上述单轴力试验方法评估样品12、13和14的聚集体强度。这一数据指示聚集粒子的稳健性。如表15中可见,令人惊讶地发现,随着MgSt浓度提高和亮氨酸浓度降低,聚集粒子强度提高。
通过以2%w/w聚集体浓度(1%w/w API-A浓度)将聚集粒子与乳糖载体掺合并使用半自动装填设备将该掺合物装入泡罩条,评估空气动力学性能。将剂量从Diskus装置送入以60升/分钟运行的Fast Screening Impactor。观察到随着MgSt浓度提高和聚集粒子强度提高,细粒剂量提高(表15)。不希望受制于理论,但推测,观察到的可吸入剂量的改进部分归因于提高的聚集粒子稳健性,以致在掺合和装填步骤的过程中不容易破裂。硬脂酸镁的掺入还可减少聚集粒子粘附到载体(例如乳糖)表面上。图16显示掺合粉末在装入泡罩条后的SEMs。随着MgSt浓度和聚集体强度提高,在SEMs中观察到更大量的球形构造。
12: 用不同的 MgSt 浓度制成的聚集粒子
a所列浓度是针对盐形式的化合物A。
13: 样品 11 12 13 的悬浮液原料
a所列浓度是针对API-A的盐形式。
14: 样品 11 12 13 的粒度分布
15: 样品 11 12 13 的物理性质和空气动力学性能
%FPD = < 5微米的细粒剂量百分比。

Claims (58)

1.包含芜地溴铵(umeclidinium bromide)的纳米微粒状药物粒子的聚集粒子。
2.权利要求1的聚集粒子,其进一步包含三苯乙酸维兰特罗的纳米微粒状药物粒子。
3.权利要求2的聚集粒子,其中umeclidinium与维兰特罗的比率为5: 1。
4.权利要求1至3中任一项的聚集粒子,其进一步包含糠酸氟替卡松的纳米微粒状药物粒子。
5.权利要求4的聚集粒子,其中umeclidinium与糠酸氟替卡松的比率为1.25:1。
6.权利要求1至5中任一项的聚集粒子,其中所述纳米微粒状药物粒子具有预选的基本结晶形式。
7.权利要求1至6中任一项的聚集粒子,其中所述聚集粒子进一步包含一种或多种赋形剂的纳米微粒状赋形剂粒子。
8.权利要求7的聚集粒子,其中所述纳米微粒状赋形剂粒子包含乳糖、亮氨酸和硬脂酸镁中的一种或多种。
9.权利要求8的聚集粒子,其中所述纳米微粒状赋形剂粒子包含乳糖。
10.权利要求8或权利要求9的聚集粒子,其中所述纳米微粒状赋形剂粒子包含硬脂酸镁。
11.权利要求8至10中任一项的聚集粒子,其中所述纳米微粒状赋形剂粒子包含亮氨酸。
12.权利要求7至11中任一项的聚集粒子,其中所述纳米微粒状赋形剂粒子具有预选的基本结晶形式。
13.权利要求1至12中任一项的聚集粒子,其中所述聚集粒子基本不含悬浮均质化表面活性剂。
14.权利要求1至13中任一项的聚集粒子,其中所述聚集粒子进一步包含一种或多种粘合剂。
15.权利要求14的聚集粒子,其中所述粘合剂包含一定量的药物。
16.权利要求14或15的聚集粒子,其中所述粘合剂包含一定量的赋形剂。
17.权利要求1至16中任一项的聚集粒子,其中所述聚集粒子是基本球形的。
18.权利要求1至16中任一项的聚集粒子,其中所述聚集粒子是基本非球形或不规则的。
19.权利要求1至18中任一项的聚集粒子,其中所述聚集粒子具有小于大约100微米的质量中位空气动力学直径。
20.权利要求1至19中任一项的聚集粒子,其中所述聚集粒子具有大约1微米至大约6微米的质量中位空气动力学直径。
21.权利要求1至20中任一项的聚集粒子,其中所述纳米微粒状药物粒子具有小于大约1000纳米的有效平均粒度。
22.权利要求21的聚集粒子,其中所述纳米微粒状药物粒子具有小于大约400纳米的有效平均粒度。
23.权利要求1至22中任一项的聚集粒子,其中所述聚集粒子包含大约0.01%w/w至大约100%w/w的量的纳米微粒状药物粒子。
24.粉末组合物,其包含权利要求1至23中任一项的聚集粒子和一种或多种可药用赋形剂。
25.权利要求24的粉末组合物,其中所述可药用赋形剂包含乳糖。
26.权利要求24或25的粉末组合物,其中所述可药用赋形剂包含乳糖和硬脂酸镁。
27.吸入器,其包含根据权利要求1至23中任一项的聚集粒子或根据权利要求24至26中任一项的粉末组合物,其中所述吸入器是干粉吸入器或定量吸入器。
28.根据权利要求1至23中任一项的聚集粒子的制备方法,所述方法包括:
(a) 形成纳米微粒状药物粒子和任选纳米微粒状赋形剂粒子在非水液体中的分散体,其中所述纳米微粒状药物粒子和当存在时所述纳米微粒状赋形剂粒子在所述非水液体中具有小于10毫克/毫升的溶解度,且其中所述纳米微粒状药物粒子和当存在时所述纳米微粒状赋形剂粒子具有预选的基本结晶形式,然后
(b) 任选将一种或多种粘合剂添加到步骤(a)的分散体中;然后
(c) 喷雾干燥所述分散体以生成聚集粒子,其中所述纳米微粒状药物和当存在时纳米微粒状赋形剂粒子已保持它们的预选的基本结晶形式。
29.权利要求28的方法,其进一步包括形成所述纳米微粒状药物粒子和任选纳米微粒状赋形剂粒子的步骤,其中所述形成步骤包括在非水液体中珠磨所述药物和当存在时所述赋形剂的较大粒子以生成纳米微粒状药物粒子和当存在时纳米微粒状赋形剂粒子。
30.权利要求29的方法,其中所述药物和当存在时赋形剂粒子在所述非水液体中一起同时研磨。
31.权利要求29的方法,其中所述药物和当存在时赋形剂粒子在所述非水液体中分开研磨并在喷雾干燥前合并/混合。
32.权利要求28至31中任一项的方法,其中所述非水分散体中50%或更多的所述纳米微粒状药物粒子和/或50%或更多的所述纳米微粒状赋形剂粒子在喷雾干燥前具有小于1000纳米的平均粒度。
33.权利要求32的方法,其中所述纳米微粒状药物粒子具有小于大约400纳米的有效平均粒度。
34.权利要求28至33中任一项的方法,其中所述非水液体选自异辛烷、环己烷、乙酸异丙酯及其混合物。
35.权利要求28至34中任一项的方法,其中所述方法基本不含悬浮均质化表面活性剂。
36.如权利要求1至23中任一项所述的聚集粒子,其用于疗法。
37.如权利要求1至23中任一项所述的聚集粒子,其用于治疗呼吸系统疾病,如哮喘或COPD。
38.如权利要求24至26中任一项所述的粉末组合物,其用于疗法。
39.如权利要求24至26中任一项所述的粉末组合物,其用于治疗呼吸系统疾病,如哮喘或COPD。
40.治疗呼吸系统疾病,如哮喘或COPD的方法,其包括给予需要治疗的人类对象治疗有效量的如权利要求1至23中任一项所述的聚集粒子。
41.治疗呼吸系统疾病,如哮喘或COPD的方法,其包括给予需要治疗的人类对象治疗有效量的如权利要求24至26中任一项所述的粉末组合物。
42.如权利要求1至23中任一项所述的聚集粒子用于制备用于治疗呼吸系统疾病,如哮喘或COPD的药物的用途。
43.包含一种或多种药物活性成分的纳米微粒状药物粒子和纳米微粒状赋形剂粒子的聚集粒子,其中所述赋形剂是硬脂酸镁,且另外其中所述聚集粒子具有大于0.5MPa的聚集体强度。
44.根据权利要求43的聚集粒子,其中所述一种或多种药物活性成分选自β-激动剂、抗胆碱能药和皮质类固醇。
45.根据权利要求43或44的聚集粒子,其包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松中的一种或多种。
46.根据权利要求45的聚集粒子,其包含芜地溴铵、三苯乙酸维兰特罗和糠酸氟替卡松。
47.根据权利要求45或46的聚集粒子,其中所述聚集粒子包含大约1.0至75.0%w/w的量的硬脂酸镁。
48.根据权利要求47的聚集粒子,其中所述聚集粒子包含大约20.0至40.0%w/w的量的硬脂酸镁。
49.根据权利要求43至48中任一项的聚集粒子,其中所述聚集粒子具有小于大约100微米的质量中位空气动力学直径。
50.根据权利要求49的聚集粒子,其中所述聚集粒子具有大约1微米至大约6微米的质量中位空气动力学直径。
51.根据权利要求43至50中任一项的聚集粒子,其中所述纳米微粒状药物和赋形剂粒子具有小于大约1000纳米的有效平均粒度。
52.根据权利要求51的聚集粒子,其中所述纳米微粒状药物和赋形剂粒子具有小于大约400纳米的有效平均粒度。
53.根据权利要求43至52中任一项的聚集粒子,其中通过使用质构仪的单轴力试验方法测定聚集体强度,其包括以下步骤:
a) 在试验冲模(8毫米直径,17.0毫米深度)中装入聚集粒子,避免压实该聚集粒子;然后
b) 将上冲头置于起始位置——刚刚接触所述聚集粒子的上表面;然后
c) 启动试验程序,其中所述上冲头以恒定0.5毫米/秒压缩所述聚集粒子直至实现240MPa的应力,此后以5毫米/秒移开所述上冲头。
54.粉末组合物,其包含根据权利要求43至53中任一项的聚集粒子和一种或多种可药用赋形剂。
55.根据权利要求54的粉末组合物,其中所述可药用赋形剂包含乳糖。
56.吸入器,其包含根据权利要求43至53中任一项的聚集粒子或根据权利要求54至55中任一项的粉末组合物,其中所述吸入器是干粉吸入器或定量吸入器。
57.根据权利要求43至53中任一项的聚集粒子的制备方法,所述方法包括:
(a) 形成一种或多种药物活性成分的纳米微粒状药物粒子和纳米微粒状赋形剂粒子在非水液体中的分散体,其中所述赋形剂是硬脂酸镁,且其中所述纳米微粒状药物粒子和纳米微粒状赋形剂粒子在所述非水液体中具有小于10毫克/毫升的溶解度;然后
(b) 喷雾干燥所述分散体以生成具有大于0.5MPa的聚集体强度的聚集粒子。
58.硬脂酸镁在根据权利要求43至53中任一项的聚集粒子中以改进所述聚集粒子的稳健性的用途。
CN201380030619.0A 2012-04-13 2013-04-11 聚集粒子 Pending CN104470503A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261623672P 2012-04-13 2012-04-13
US61/623672 2012-04-13
US201361774698P 2013-03-08 2013-03-08
US61/774698 2013-03-08
PCT/EP2013/057555 WO2013153146A1 (en) 2012-04-13 2013-04-11 Aggregate particles

Publications (1)

Publication Number Publication Date
CN104470503A true CN104470503A (zh) 2015-03-25

Family

ID=48325595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380030619.0A Pending CN104470503A (zh) 2012-04-13 2013-04-11 聚集粒子

Country Status (11)

Country Link
US (1) US9763965B2 (zh)
EP (1) EP2836204B1 (zh)
JP (1) JP6267685B2 (zh)
KR (1) KR20140147891A (zh)
CN (1) CN104470503A (zh)
AU (1) AU2013246926B2 (zh)
BR (1) BR112014025518B1 (zh)
CA (1) CA2869849A1 (zh)
ES (1) ES2814336T3 (zh)
RU (1) RU2666963C2 (zh)
WO (1) WO2013153146A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111840256A (zh) * 2019-04-29 2020-10-30 上海谷森医药有限公司 一种雾化吸入剂及其制备方法
CN112203641A (zh) * 2018-06-07 2021-01-08 金德瓦药物控释有限公司 氟替卡松和维兰特罗制剂以及吸入器
CN115768404A (zh) * 2020-06-09 2023-03-07 广州谷森制药有限公司 含乌美溴铵和三苯乙酸维兰特罗的药物制剂

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201205632D0 (en) * 2012-03-30 2012-05-16 Vectura Ltd Method and apparatus
CN103933049A (zh) * 2014-04-02 2014-07-23 上海新亚药业有限公司 包含三氟甲磺酸维兰特罗药物制剂
US20170119744A1 (en) 2014-06-18 2017-05-04 Cipla Limited Pharmaceutical Composition Comprising a Beta-2-Agonist and Anticholinergic Agent
CN105534925B (zh) * 2016-01-07 2018-11-09 中山大学 表面纳米级粗糙结构的颗粒及其制备方法和应用
TR201712424A2 (tr) * 2017-08-21 2019-03-21 Arven Ilac Sanayi Ve Ticaret Anonim Sirketi Kuru toz i̇nhalasyon bi̇leşi̇mleri̇
CN112203649A (zh) * 2018-06-07 2021-01-08 金德瓦药物控释有限公司 氟替卡松和维兰特罗制剂以及吸入器
US20210393598A1 (en) * 2018-11-12 2021-12-23 Kindeva Drug Delivery L.P. Umeclidinium and vilanterol formulation and inhaler
WO2021009572A1 (en) * 2019-07-12 2021-01-21 Kindeva Drug Delivery L.P. Aerosol formulation, canister and inhaler containing the formulation, and method of use
CN114206317A (zh) * 2019-07-12 2022-03-18 金德瓦药物控释有限公司 气雾剂制剂、含有该制剂的罐和吸入器以及使用方法
WO2023247952A1 (en) * 2022-06-21 2023-12-28 Hovione Scientia Limited Crystalline pharmaceutical composition for inhalation comprising sugar and lipid composite particles and process for manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101189001A (zh) * 2005-02-15 2008-05-28 伊兰制药国际有限公司 纳米微粒苯并二氮杂䓬气雾剂及注射剂
WO2011067212A1 (en) * 2009-12-01 2011-06-09 Glaxo Group Limited Combinations of a muscarinic receptor antagonist and a beta-2 adrenoreceptor agonist

Family Cites Families (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171918A (en) 1981-04-17 1982-10-22 Eisai Co Ltd Theophyllin gradually releasing composition
DE3268533D1 (en) 1981-07-24 1986-02-27 Fisons Plc Inhalation drugs, methods for their production and pharmaceutical formulations containing them
GB9004781D0 (en) 1990-03-02 1990-04-25 Glaxo Group Ltd Device
US6582728B1 (en) 1992-07-08 2003-06-24 Inhale Therapeutic Systems, Inc. Spray drying of macromolecules to produce inhaleable dry powders
KR100321649B1 (ko) 1993-03-17 2002-07-22 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 에스테르,아미드또는머캅토에스테르로부터유도된분산보조제를함유하는에어로졸제제
US6051256A (en) 1994-03-07 2000-04-18 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
NZ292980A (en) 1994-09-29 1999-02-25 Andaris Ltd Smooth, spherical water-soluble microparticles as therapeutic or diagnostic vehicles
US5611344A (en) 1996-03-05 1997-03-18 Acusphere, Inc. Microencapsulated fluorinated gases for use as imaging agents
US5874064A (en) 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US5985248A (en) 1996-12-31 1999-11-16 Inhale Therapeutic Systems Processes for spray drying solutions of hydrophobic drugs and compositions thereof
JP3884484B2 (ja) 1997-01-16 2007-02-21 マサチューセッツ インスティチュート オブ テクノロジー 吸入用粒子の調製
US6126919A (en) 1997-02-07 2000-10-03 3M Innovative Properties Company Biocompatible compounds for pharmaceutical drug delivery systems
US6045829A (en) 1997-02-13 2000-04-04 Elan Pharma International Limited Nanocrystalline formulations of human immunodeficiency virus (HIV) protease inhibitors using cellulosic surface stabilizers
WO1998035666A1 (en) 1997-02-13 1998-08-20 Nanosystems Llc Formulations of nanoparticle naproxen tablets
US20020039594A1 (en) 1997-05-13 2002-04-04 Evan C. Unger Solid porous matrices and methods of making and using the same
JPH1179985A (ja) 1997-09-01 1999-03-23 Kyorin Pharmaceut Co Ltd 喘息治療用の粉末吸入剤
BR9812693A (pt) 1997-09-29 2000-08-22 Inhale Therapeutic Syst Uso de um agente bioativo, processo para formar uma microestrutura perfurada, microestrutura perfurada, processo para aumentar a dispersibilidade de um pó, pó de microestrutura perfurada, pó tendo dispersibilidade aumentada, sistema de inalação para a administração pulmonar de um agente bioativo a um paciente, e, processo para a liberação pulmonar de um ou mais agentes bioativos
US20070160675A1 (en) 1998-11-02 2007-07-12 Elan Corporation, Plc Nanoparticulate and controlled release compositions comprising a cephalosporin
US7521068B2 (en) * 1998-11-12 2009-04-21 Elan Pharma International Ltd. Dry powder aerosols of nanoparticulate drugs
NZ511527A (en) 1998-11-13 2002-10-25 Jago Res A Dry powder for inhalation
IT1309592B1 (it) 1999-03-05 2002-01-24 Chiesi Farma Spa Particelle veicolo modificate da utilizzarsi nella preparazione diformulazioni farmaceutiche sotto forma di polimeri per inalazione e
BR9917246A (pt) 1999-03-05 2002-03-26 Chiesi Farma Spa Composições farmacêuticas avançadas em pó para inalação
FI20002217A (fi) 1999-12-30 2001-07-01 Orion Yhtymae Oyj Inhalaatiopartikkelit
PE20011227A1 (es) 2000-04-17 2002-01-07 Chiesi Farma Spa Formulaciones farmaceuticas para inhaladores de polvo seco en la forma de aglomerados duros
DE60131399T3 (de) * 2000-06-27 2019-11-14 Vectura Ltd. Herstellungsverfahren für partikel zur verwendung in einer arzneizusammensetzung
CA2413330A1 (en) 2000-06-28 2002-01-03 Smithkline Beecham P.L.C. Wet milling process
GB0019172D0 (en) 2000-08-05 2000-09-27 Glaxo Group Ltd Novel compounds
US6759398B2 (en) 2000-08-05 2004-07-06 Smithkline Beecham Corporation Anti-inflammatory androstane derivative
SI1775305T1 (sl) 2000-08-05 2015-01-30 Glaxo Group Limited S-fluorometil ester 6alfa,9alfa-difluoro-17alfa-((2-furanilkarboksil)oksi)- 11beta-hidroksi-16alfa-metil-3-okso-androst-1,4-dien-17-karbotiojske kisline kot protivnetno sredstvo
TWI283182B (en) 2000-08-07 2007-07-01 Nektar Therapeutics Inhalable spray dried 4-helix bundle protein powders having minimized aggregation
AU6294501A (en) 2000-09-20 2002-04-02 Rtp Pharma Inc Spray drying process and compositions of fenofibrate
FI20002215A0 (fi) 2000-10-06 2000-10-06 Orion Yhtymae Oyj Yhdistelmäpartikkelit
US8048451B2 (en) 2000-11-30 2011-11-01 Vectura Limited Pharmaceutical compositions for inhalation
ES2689704T3 (es) 2000-11-30 2018-11-15 Vectura Limited Partículas para usar en una composición farmacéutica
AU2002222118A1 (en) 2000-11-30 2002-06-11 Vectura Limited Pharmaceutical compositions for inhalation
GB0106403D0 (en) 2001-03-15 2001-05-02 Pharmaceutical Profiles Labelling of dry powder formulations for inhalation
UA77656C2 (en) 2001-04-07 2007-01-15 Glaxo Group Ltd S-fluoromethyl ester of 6-alpha, 9-alpha-difluoro-17-alpha-[(2-furanylcarbonyl)oxy]-11-beta-hydroxy-16- alpha-methyl-3-oxoandrosta-1,4-dien-17-beta-carbothioacid as anti-inflammatory agent
ES2438985T3 (es) 2001-09-14 2014-01-21 Glaxo Group Limited Formulación de inhalación que comprende derivados de fenetanolamina para el tratamiento de enfermedades respiratorias
EP1487417A4 (en) 2001-09-17 2010-03-17 Glaxo Group Ltd DRY POWDER DRUG FORMULATIONS
US6753017B2 (en) 2001-11-07 2004-06-22 Jrs Pharma Lp Process for preparing dry extracts
US20030166509A1 (en) 2001-11-20 2003-09-04 Advanced Inhalation Research, Inc. Compositions for sustained action product delivery and methods of use thereof
EP1481211B1 (en) 2001-11-29 2009-04-22 J. Rettenmaier & Söhne GmbH + Co. KG Process for co-spray drying liquid herbal extracts with dry silicified mcc
WO2003077886A1 (fr) 2002-03-20 2003-09-25 Hosokawa Micron Corporation Procede de fabrication de particules composites contenant un produit chimique
JP4142318B2 (ja) * 2002-03-20 2008-09-03 株式会社ホソカワ粉体技術研究所 薬物含有複合粒子の製造方法
DE10214031A1 (de) 2002-03-27 2004-02-19 Pharmatech Gmbh Verfahren zur Herstellung und Anwendung von Mikro- und Nanoteilchen durch aufbauende Mikronisation
DE10218110A1 (de) 2002-04-23 2003-11-20 Jenapharm Gmbh Verfahren zum Herstellen von Kristallen von Arzneimittelhilfsstoffen, danach erhältliche Kristalle und deren Verwendung in pharmazeutischen Formulierungen
SE527191C2 (sv) 2003-06-19 2006-01-17 Microdrug Ag Inhalatoranordning samt kombinerade doser av tiotropium och fluticason
WO2005004845A1 (en) 2003-07-11 2005-01-20 Glaxo Group Limited Pharmaceutical formulations comprising magnesium stearate
UY28417A1 (es) 2003-07-17 2005-02-28 Glaxo Group Ltd Antagonistas de los receptores muscarinicos de la acetilcolina
DE10338402A1 (de) 2003-08-18 2005-03-17 Boehringer Ingelheim Pharma Gmbh & Co. Kg Sprühgetrocknetes, amorphes BIBN 4096, Verfahren zu dessen Herstellung sowie dessen Verwendung als Inhalativum
DK1677795T3 (da) 2003-10-14 2011-04-18 Glaxo Group Ltd Muskarine acetylcholin-receptor-antagonister
GB0324918D0 (en) * 2003-10-24 2003-11-26 Glaxo Group Ltd Composition
GB0326632D0 (en) 2003-11-14 2003-12-17 Jagotec Ag Dry powder formulations
JO3102B1 (ar) 2004-03-17 2017-09-20 Chiesi Framaceutici S P A صيغ صيدلانية لوسائل استنشاق بها مسحوق جاف تشتمل على مكون فعال بقوة منخفضة الجرعة
MY144753A (en) 2004-04-27 2011-10-31 Glaxo Group Ltd Muscarinic acetylcholine receptor antagonists
GB0409703D0 (en) 2004-04-30 2004-06-02 Vectura Ltd Pharmaceutical compositions
SI1891974T1 (sl) 2004-05-31 2010-11-30 Almirall Sa Kombinacije ki obsegajo antimuskarinska sredstvain PDE innhibitorje
ES2257152B1 (es) 2004-05-31 2007-07-01 Laboratorios Almirall S.A. Combinaciones que comprenden agentes antimuscarinicos y agonistas beta-adrenergicos.
WO2007011396A2 (en) 2004-10-29 2007-01-25 President And Fellows Of Harvard College Particles for treatment of pulmonary infection
GB0425758D0 (en) 2004-11-23 2004-12-22 Vectura Ltd Preparation of pharmaceutical compositions
PE20061162A1 (es) 2004-12-06 2006-10-14 Smithkline Beecham Corp Compuestos derivados olefinicos de 8-azoniabiciclo[3.2.1]octanos
PE20060826A1 (es) 2004-12-06 2006-10-08 Smithkline Beecham Corp Derivado oleofinico de 8-azoniabiciclo[3.2.1]octano y combinacion farmaceutica que lo comprende
WO2006086130A2 (en) 2005-02-10 2006-08-17 Glaxo Group Limited Process for crystallizing lactose particles for use in pharmaceutical formulations
DE102005028696A1 (de) 2005-06-21 2006-12-28 Pulmotec Gmbh Verwendung eines Hilfsstoffs zur Einstellung der Abrasionsfestigkeit eines verfestigten Wirkstoffpräparats
WO2007106111A2 (en) 2005-07-01 2007-09-20 Elan Pharma International Limited Nanoparticulate and controlled release compositions comprising nilvadipine
WO2007008851A2 (en) 2005-07-13 2007-01-18 Jens Korsgaard Fluid vaporizer
GB0515584D0 (en) 2005-07-28 2005-09-07 Glaxo Group Ltd Medicament dispenser
CA2617909C (en) 2005-08-05 2014-02-04 3M Innovative Properties Company Compositions exhibiting improved flowability
GB0525254D0 (en) 2005-12-12 2006-01-18 Jagotec Ag Powder compositions for inhalation
AR058289A1 (es) 2005-12-12 2008-01-30 Glaxo Group Ltd Colector para ser usado en dispensador de medicamento
WO2010009146A1 (en) 2008-07-15 2010-01-21 University Of Kansas Nanoclusters for delivery of poorly water soluble drug nanoparticles
JP2009519975A (ja) 2005-12-16 2009-05-21 ユニバーシティ・オブ・カンザス 治療薬を送達するナノクラスター
AU2007208998A1 (en) 2006-01-27 2007-08-02 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin A method of producing porous microparticles
RU2403059C2 (ru) * 2006-02-22 2010-11-10 Маннкайнд Корпорейшн Способ улучшения фармацевтических свойств микрочастиц, содержащих дикетопиперазин и активный агент
US20090061006A1 (en) 2006-03-31 2009-03-05 Carola Leuschner Layered Nanoparticles for Sustained Release of Small Molecules
JP5071956B2 (ja) 2006-06-27 2012-11-14 ホソカワミクロン株式会社 薬物封入ナノ粒子の造粒物及び造粒方法
KR20090031618A (ko) 2006-07-12 2009-03-26 엘란 코포레이션, 피엘씨 나노입자형 모다피닐 제제
GB0615108D0 (en) 2006-07-28 2006-09-06 Glaxo Group Ltd Novel formulations
EP2049086A2 (en) 2006-08-09 2009-04-22 Glaxo Group Limited Process for manufacturing lactose
US20090298742A1 (en) 2006-08-09 2009-12-03 Glaxo Group Limited Process for manufacturing lactose
GB0621957D0 (en) 2006-11-03 2006-12-13 Vectura Group Plc Inhaler devices and bespoke pharmaceutical compositions
DE102006053375A1 (de) * 2006-11-10 2008-05-15 Boehringer Ingelheim Pharma Gmbh & Co. Kg Verfahren zur Mischung von Pulvern
GB0622818D0 (en) 2006-11-15 2006-12-27 Jagotec Ag Improvements in or relating to organic compounds
JP2010510988A (ja) 2006-11-28 2010-04-08 マリナス ファーマシューティカルズ ナノ粒子製剤とその製造方法およびその利用
EP1935436A1 (en) 2006-12-12 2008-06-25 Dublin City University Nanoparticle clusters and methods for forming same
EP1944018A1 (en) 2007-01-10 2008-07-16 CHIESI FARMACEUTICI S.p.A. Micronised particles of low-dosage strength active agents for powder formulations for inhalation
GB0709811D0 (en) 2007-05-22 2007-07-04 Vectura Group Plc Pharmaceutical compositions
US20100329996A1 (en) 2007-09-12 2010-12-30 Glaxo Group Limited Novel Combination of Therapeutic Agents
EP2050437A1 (en) 2007-10-15 2009-04-22 Laboratoires SMB Improved pharmaceutical dry powder compositions for inhalation.
EP2080508A1 (en) 2008-01-15 2009-07-22 CHIESI FARMACEUTICI S.p.A. Dry powder formulation comprising an anticholinergic drug
DE102008035212A1 (de) 2008-07-29 2010-02-18 Hydac Filtertechnik Gmbh Hydraulische Ventilvorrichtung
BRPI0920707A2 (pt) 2008-10-02 2015-12-29 Respivert Ltd compostos
EP2191821A1 (en) 2008-11-26 2010-06-02 CHIESI FARMACEUTICI S.p.A. Microparticles comprising a salt of 8-hydroxy-2-[[(1R)-2-(4-methoxyphenyl)-1-methylethyl]amino]ethyl]-2(1H)-quinolinone having improved adhesion properties for dry powder inhalation
UY32297A (es) 2008-12-22 2010-05-31 Almirall Sa Sal mesilato de 5-(2-{[6-(2,2-difluoro-2-fenilitoxi) hexil]amino}-1-hidroxietil)-8-hidroxiquinolin-2( 1h)-ona como agonista del receptor b(beta)2 acrenérgico
TWI491416B (zh) 2008-12-24 2015-07-11 Daiichi Sankyo Co Ltd 吸入用乾燥粉末醫藥組成物
EP2400950B1 (en) 2009-02-26 2019-05-22 Glaxo Group Limited Pharmaceutical formulations comprising 4-{(1 r)-2-[(6-{2-[(2,6-dichlorobenzyl)oxy]ethoxy}hexyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol
WO2010097114A1 (en) 2009-02-26 2010-09-02 Glaxo Group Limited Novel combination of therapeutic agents
WO2010124198A2 (en) 2009-04-24 2010-10-28 Schering Corporation Agglomerate formulations useful in dry powder inhalers
EP2253306A1 (en) 2009-05-18 2010-11-24 Royal College of Surgeons in Ireland Orodispersible dosage forms containing solid drug dispersions
KR20170070274A (ko) * 2009-05-29 2017-06-21 펄 테라퓨틱스 인코포레이티드 지속형 무스카린 안타고니스트 및 지속형 b₂아드레날린 수용체 아고니스트의 폐 전달용 조성물, 및 연관된 방법 및 시스템
CA2784207C (en) 2009-12-14 2018-06-05 Chiesi Farmaceutici S.P.A. Antibiotic microparticles for inhalation
MY162391A (en) 2010-04-01 2017-06-15 Chiesi Farm Spa Process for preparing carrier particles for dry powders for inhalation
MX2012012045A (es) 2010-04-21 2012-12-17 Chiesi Farma Spa Proceso para proporcionar particulas con cargas electrostaticas reducidas.
WO2011160920A1 (en) 2010-06-22 2011-12-29 Chiesi Farmaceutici S.P.A. Dry powder formulation comprising an antimuscarinic drug
TR201901644T4 (tr) 2010-09-30 2019-02-21 Chiesi Farm Spa İnhalasyon için kuru toz formülasyonlarında magnesyum stearat. kullanımı.
WO2012051426A2 (en) 2010-10-15 2012-04-19 Glaxo Group Limited Aggregate nanoparticulate medicament formulations, manufacture and use thereof
CN102247336B (zh) 2011-06-02 2013-03-13 陈彦 一种蟾蜍噻咛干粉吸入剂及其制备方法、应用
KR20140041699A (ko) 2011-06-08 2014-04-04 글락소 그룹 리미티드 우메클리디늄 및 코르티코스테로이드를 포함하는 조합물
CN103561731A (zh) 2011-06-08 2014-02-05 葛兰素集团有限公司 包含芜地溴铵的干粉吸入器组合物
GB201222679D0 (en) 2012-12-17 2013-01-30 Glaxo Group Ltd Pharmaceutical combination products
GB201305825D0 (en) * 2013-03-28 2013-05-15 Vectura Ltd New use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101189001A (zh) * 2005-02-15 2008-05-28 伊兰制药国际有限公司 纳米微粒苯并二氮杂䓬气雾剂及注射剂
WO2011067212A1 (en) * 2009-12-01 2011-06-09 Glaxo Group Limited Combinations of a muscarinic receptor antagonist and a beta-2 adrenoreceptor agonist

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112203641A (zh) * 2018-06-07 2021-01-08 金德瓦药物控释有限公司 氟替卡松和维兰特罗制剂以及吸入器
CN111840256A (zh) * 2019-04-29 2020-10-30 上海谷森医药有限公司 一种雾化吸入剂及其制备方法
CN115768404A (zh) * 2020-06-09 2023-03-07 广州谷森制药有限公司 含乌美溴铵和三苯乙酸维兰特罗的药物制剂

Also Published As

Publication number Publication date
WO2013153146A1 (en) 2013-10-17
AU2013246926B2 (en) 2016-07-21
BR112014025518A2 (pt) 2017-07-25
BR112014025518B1 (pt) 2022-05-24
JP2015512925A (ja) 2015-04-30
US9763965B2 (en) 2017-09-19
EP2836204A1 (en) 2015-02-18
RU2014140539A (ru) 2016-06-10
RU2666963C2 (ru) 2018-09-13
ES2814336T3 (es) 2021-03-26
EP2836204B1 (en) 2020-07-08
AU2013246926A1 (en) 2014-11-13
JP6267685B2 (ja) 2018-01-24
CA2869849A1 (en) 2013-10-17
KR20140147891A (ko) 2014-12-30
US20150083127A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
CN104470503A (zh) 聚集粒子
US6780508B1 (en) Powder particles with smooth surface for use in inhalation therapy
JP4792457B2 (ja) 高度に呼吸に適したインスリンのマイクロ粒子
Duret et al. Solid dispersions of itraconazole for inhalation with enhanced dissolution, solubility and dispersion properties
RU2371171C2 (ru) Фармацевтические препаративные формы для ингаляторов сухого порошка, содержащие низкодозовый активный ингредиент
JP6306145B2 (ja) 吸入可能な製剤におけるステアリン酸塩の使用
NO346315B1 (no) Pulverformulering som skal administreres ved å anvende en medium- eller høy-motstands multidose tørrpulverinhalator-anordning
AU2008334547B2 (en) Organic compounds
CN105338960A (zh) 用于吸入施用的包含抗胆碱能药、皮质类固醇和β-肾上腺素能药的干粉制剂
Lin et al. Development of fine solid-crystal suspension with enhanced solubility, stability, and aerosolization performance for dry powder inhalation
CA2951483C (en) Inhalation particles comprising a combination of an anticholinergic, a corticosteroid and a beta-adrenergic
KR102452773B1 (ko) 흡입용 의약 조성물
US20120097160A1 (en) Agglomerate formulations including active pharmaceutical agents with targeted particle sizes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150325