CN104189968A - 用于处理时间相关的测量信号的方法及装置 - Google Patents

用于处理时间相关的测量信号的方法及装置 Download PDF

Info

Publication number
CN104189968A
CN104189968A CN201410459751.XA CN201410459751A CN104189968A CN 104189968 A CN104189968 A CN 104189968A CN 201410459751 A CN201410459751 A CN 201410459751A CN 104189968 A CN104189968 A CN 104189968A
Authority
CN
China
Prior art keywords
pulse
signal
profile
pulse generator
fluid containment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410459751.XA
Other languages
English (en)
Other versions
CN104189968B (zh
Inventor
克里斯蒂安·索勒姆
布·奥尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gambro Lundia AB
Original Assignee
Gambro Lundia AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gambro Lundia AB filed Critical Gambro Lundia AB
Publication of CN104189968A publication Critical patent/CN104189968A/zh
Application granted granted Critical
Publication of CN104189968B publication Critical patent/CN104189968B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3413Diafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3441Substitution rate control as a function of the ultrafiltration rate
    • A61M1/3444Substitution rate control as a function of the ultrafiltration rate in which the collected ultra-filtrate expels an equal volume of substitution fluid from a reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3441Substitution rate control as a function of the ultrafiltration rate
    • A61M1/3448Substitution rate control as a function of the ultrafiltration rate by mechanically linked pumps in both ultra-filtrate and substitution flow line
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3601Extra-corporeal circuits in which the blood fluid passes more than once through the treatment unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • A61M1/3656Monitoring patency or flow at connection sites; Detecting disconnections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • A61M1/3659Cannulae pertaining to extracorporeal circulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • A61M1/3659Cannulae pertaining to extracorporeal circulation
    • A61M1/3661Cannulae pertaining to extracorporeal circulation for haemodialysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/38Removing constituents from donor blood and storing or returning remainder to body, e.g. for transfusion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/002Calibrating, i.e. establishing true relation between transducer output value and value to be measured, zeroing, linearising or span error determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2846Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Abstract

本发明涉及用于处理时间相关的测量信号的方法及装置。一种处理从流体容纳系统中的压力传感器获得的时间相关的测量信号的方法,该流体容纳系统与第一脉冲发生器和第二脉冲发生器相关联,压力传感器设置在流体容纳系统中以检测源自第一脉冲发生器的第一脉冲和源自第二脉冲发生器的第二脉冲,第一脉冲包括第一脉冲发生器的至少一个基频及其谐波,该方法包括:接收时间相关的测量信号d(n);获得单个第一脉冲轮廓u(n),该单个第一脉冲轮廓u(n)是第一脉冲的预测的时间信号轮廓并包含至少一个基频和一组谐波;参照d(n)调节u(n)的幅度和相位二者中的至少一个;以及通过从d(n)中减去经如此调节的u(n)在时域中对d(n)进行滤波,以在d(n)中基本上消除第一脉冲同时保留第二脉冲。

Description

用于处理时间相关的测量信号的方法及装置
本申请是申请日为2009年6月26日,申请号为200980124257.5(国际申请号为PCT/EP2009/004641),发明名称为“用于处理时间相关的测量信号的方法及装置”的专利申请的分案申请。
技术领域
本发明通常涉及处理从流体容纳系统中获得的时间相关的测量信号,尤其涉及对这种测量信号进行滤波,用于去除源自特定脉冲发生器的压力脉冲。本发明例如可应用于体外血液处理的流体容纳系统。
背景技术
在体外血液处理中,从患者抽取血液,通过体外血流回路对血液进行处理然后将其重新导入患者。通常,使用一个或多个泵浦装置使血液通过该回路循环。该回路通常通过插入到血管通路(blood vessel access)中的一个或多个接入装置(例如,针头或导管)连接到患者的血管通路。这种体外血液处理包括血液透析、血液透析滤过、血液滤过、血浆去除等。
US2005/0010118提出了通过在体外血流回路的其他压力波中识别由患者的心脏搏动引起的压力波的频率分量,并通过对从体外血流回路的压力传感器获得的压力信号进行频率分析(例如傅里叶变换),来监控患者的脉搏率、血压以及血管通路状态的技术。如US2005/0010118所指出的,从由体外血流回路中机械装置引起的频率分量和由心脏引起的频率分量的混合中可能难以提取相关的频率分量。特别地,心脏的频率分量可能与机械装置的频率分量交叠。为了克服此限制,US2005/0010118提出了例如,在处理过程期间,在基本操作频率的一定范围内改变血泵的频率。通过快速傅里叶变换(FFT)分析来自体外血流回路中压力传感器的压力信号,而快速傅里叶变换并不适于检测频率总在变化的频率分量。FFT分析被认为降低由血泵引起的频率分量。然而,由体外血流回路中其他机械装置(例如阀)引起的周期性事件仍会干扰监控。此外,可能不期望在处理过程期间具有经常变化的泵浦频率的血泵工作。例如,如果体外血流回路是透析机的一部分,则甚至在通过体外血流回路的平均流量未改变时,透析剂量将随着泵浦频率的改变而下降。
因此,需要一种作为替代的技术,用于在流体中的其他压力波中识别患者的心跳,并且尤其需要这样一种技术,即,对于处理患者的心跳频率相对弱和/或与这些其他的压力波的频率分量至少部分一致并且/或随时间变化的情形具有改进的能力。
在其他技术领域可能出现相应的需求。因此,通常上讲,需要这样一种改进的技术,即,处理从与第一脉冲发生器和第二脉冲发生器相关联的流体容纳系统中的压力传感器获得的时间相关测量信号,以通过在源自第一脉冲发生器和第二脉冲发生器的信号分量中隔离出源自第二脉冲发生器的信号分量,来监控流体容纳系统的功能参数。
发明内容
本发明的一个目的是至少部分地实现以上鉴于现有技术而提出的一个或更多个需求。
根据独立权利要求的方法、控制装置以及计算机程序产品以及由从属权利要求限定的实施方式,至少部分实现这个目的以及从下面描述将出现的其他目的。
本发明的第一个方面是一种用于处理从流体容纳系统中的压力传感器获得的时间相关的测量信号的方法,其中,所述流体容纳系统与第一脉冲发生器和第二脉冲发生器相关联,所述压力传感器设置在所述流体容纳系统中以检测源自所述第一脉冲发生器的第一脉冲和源自所述第二脉冲发生器的第二脉冲,所述方法包括以下步骤:接收步骤,接收所述测量信号;获得步骤,获得第一脉冲轮廓,该第一脉冲轮廓是所述第一脉冲的预测的时间信号轮廓;以及滤波步骤,使用所述第一脉冲轮廓在时域中对所述测量信号进行滤波,以基本上消除所述第一脉冲同时保留所述第二脉冲。
在一个实施方式中,所述滤波步骤包括:减去步骤,从所述测量信号中减去所述第一脉冲轮廓,其中所述减去步骤可以包括调节所述第一脉冲轮廓相对于所述测量信号的相位,其中,所述相位可以由从耦接至所述第一脉冲发生器的相位传感器获得的、或者从所述第一脉冲发生器的控制单元获得的相位信息来表示。
在一个实施方式中,所述第一脉冲轮廓是在所述流体容纳系统中的基准测量中获得的,其中,所述基准测量包括以下步骤:操作所述第一脉冲发生器,以生成至少一个第一脉冲,以及从由所述流体容纳系统中的基准压力传感器生成的基准信号,获得所述第一脉冲轮廓。在所述基准测量期间,可以操作所述第一脉冲发生器,以生成第一脉冲的序列,并且可以通过识别并平均所述基准信号中的一组第一脉冲片段,来获得所述第一脉冲轮廓。
另选地或者附加地,在所述流体容纳系统操作期间,所述基准测量可以间歇性地进行,以提供更新后的第一脉冲轮廓。另选地或者附加地,所述压力传感器可以用作所述基准压力传感器。另选地或者附加地,在所述基准测量期间,可以操作所述流体容纳系统,使得所述基准信号含有第一脉冲而不含有第二脉冲。另选地,所述基准测量包括:基于含有第一脉冲和第二脉冲的第一基准信号获得组合脉冲轮廓;基于含有第二脉冲但不含有第一脉冲的第二基准信号获得第二脉冲轮廓;以及通过从所述组合脉冲轮廓减去所述第二脉冲轮廓来获得所述预测的信号轮廓。
在一个实施方式中,所述获得步骤包括获得预定的信号轮廓,其中所述获得步骤可以进一步包括根据数学模型基于所述流体容纳系统的一个或更多个系统参数的当前值修改所述预定的信号轮廓。
在一个实施方式中,该方法进一步包括步骤:获得所述流体容纳系统的一个或更多个系统参数的当前值,其中,获得作为所述当前值的函数的所述第一脉冲轮廓。
在一个实施方式中,获得所述第一脉冲轮廓的所述步骤包括:基于所述当前值在基准数据库中识别一个或更多个基准轮廓;以及基于所述一个或更多个基准轮廓获得所述第一脉冲轮廓。所述系统参数可以表示在所述流体容纳系统中所述第一脉冲的速率。第一脉冲发生器可以包括泵浦装置,并且所述系统参数可以表示所述泵浦装置的泵频率。所述基准数据库中的每个基准轮廓可以是通过在所述流体容纳系统中针对所述一个或更多个系统参数的相应值进行的基准测量而获得的。
在一个实施方式中,获得所述第一脉冲轮廓的步骤包括:基于所述当前值在基准数据库中识别能量和相位角数据的一个或更多个组合;以及基于所述能量和相位角数据的一个或更多个组合获得所述第一脉冲轮廓。所述第一脉冲轮廓可以通过组合不同频率的一组正弦曲线而获得,其中各正弦曲线的幅度和相位角可以由所述能量和相位角数据的一个或更多个组合给出。
在一个实施方式中,获得所述第一脉冲轮廓的步骤包括:将所述当前值输入至基于所述流体容纳系统的数学模型计算所述压力传感器的响应的算法中。
在一个实施方式中,所述滤波步骤包括:减去步骤,从所述测量信号中减去所述第一脉冲轮廓,以及所述减去步骤在调节步骤之前,在所述调节步骤中参照所述测量信号调节所述第一脉冲轮廓的幅度、时标和相位中的至少一个。所述调节步骤可以包括使所述第一脉冲轮廓与所述测量信号之间的差最小。
在一个实施方式中,所述滤波步骤包括:提供所述第一脉冲轮廓作为给自适应滤波器的输入;计算所述测量信号与所述自适应滤波器的输出信号之间的误差信号;以及提供所述误差信号作为给所述自适应滤波器的输入,从而所述自适应滤波器设置为基本上消除所述误差信号中的所述第一脉冲。所述自适应滤波器可以包括有限冲激响应滤波器和自适应算法,所述有限冲激响应滤波器的滤波器系数作用于所述第一脉冲轮廓,以生成所述输出信号,所述自适应算法优化作为所述误差信号和所述第一脉冲轮廓的函数的所述滤波器系数。另选地或附加地,所述方法可以进一步包括基于所述第二脉冲的速率和/或幅度与极限值的比较,控制所述自适应滤波器,以锁定所述滤波器系数。
在一个实施方式中,所述流体容纳系统包括用于连接至人体的血液系统的体外血流回路,并且其中所述第一脉冲发生器包括在所述体外血流回路中的泵浦装置,并且其中所述第二脉冲发生器包括在所述人体中的生理脉冲发生器。所述第二脉冲发生器可以是受自主神经系统影响的心脏、呼吸系统、血管舒缩三者中的至少之一。在一个实施中,所述体外血流回路包括动脉接入装置、血液处理装置和静脉接入装置,其中人的血液系统包括血管通路,其中所述动脉接入装置构造为连接至所述人的血液系统,所述静脉接入装置构造为连接至所述血管通路以形成流体连接,并且其中所述第一脉冲发生器包括设置于所述体外血流回路中的泵浦装置以通过所述血液处理装置从所述动脉接入装置泵送血液至所述静脉接入装置,所述方法包括步骤:从位于所述泵浦装置下游的静脉压力传感器或者从位于所述泵浦装置上游的动脉压力传感器接收所述测量信号。
本发明的第二个方面是一种包括用于使计算机执行根据第一方面的方法的指令的计算机程序产品。
本发明的第三个方面是一种用于处理从流体容纳系统中的压力传感器获得的时间相关的测量信号的装置,其中,流体容纳系统与第一脉冲发生器和第二脉冲发生器相关联,所述压力传感器设置在所述流体容纳系统中以检测源自所述第一脉冲发生器的第一脉冲和源自所述第二脉冲发生器的第二脉冲,所述装置包括:输入部,其用于所述测量信号;信号处理器,其连接至所述输入部并包括处理模块,所述处理模块构造为获得第一脉冲轮廓,并使用所述第一脉冲轮廓在时域中对所述测量信号进行滤波以基本上消除所述第一脉冲同时保留所述第二脉冲,其中所述第一脉冲轮廓是所述第一脉冲的预测的时间信号轮廓。
本发明的第四个方面是一种用于处理从流体容纳系统中的压力传感器获得的时间相关的测量信号的装置,其中,所述流体容纳系统与第一脉冲发生器和第二脉冲发生器相关联,所述压力传感器设置在所述流体容纳系统中以检测源自所述第一脉冲发生器的第一脉冲和源自所述第二脉冲发生器的第二脉冲,所述装置包括:用于接收所述测量信号的单元;用于获得第一脉冲轮廓的单元,所述第一脉冲轮廓是所述第一脉冲的预测的时间信号轮廓;以及使用所述第一脉冲轮廓在时域中对所述测量信号滤波以基本上消除所述第一脉冲同时保留所述第二脉冲的单元。
本发明的第五个方面是一种用于处理从流体容纳系统中的压力传感器获得的时间相关的测量信号的方法,其中,所述流体容纳系统与第一脉冲发生器和第二脉冲发生器相关联,所述压力传感器设置在所述流体容纳系统中以检测源自所述第一脉冲发生器的第一脉冲和源自所述第二脉冲发生器的第二脉冲,所述方法包括以下步骤:接收所述测量信号;获得所述第一脉冲的标准信号轮廓;以及在时域中从所述测量信号中减去所述标准信号轮廓,其中,所述标准信号轮廓的幅度和相位使得所述第一脉冲基本上被消除而所述第二脉冲被保留。
本发明的第六个方面是一种用于处理从流体容纳系统中的压力传感器获得的时间相关的测量信号的装置,其中,该流体容纳系统与第一脉冲发生器和第二脉冲发生器相关联,所述压力传感器设置在所述流体容纳系统中以检测源自所述第一脉冲发生器的第一脉冲和源自所述第二脉冲发生器的第二脉冲,所述装置包括:输入部,其用于所述测量信号;信号处理器,其连接至所述输入部且包括处理模块,所述处理模块构造为获得所述第一脉冲的标准脉冲轮廓,并在时域中从所述测量信号中减去所述标准信号轮廓,其中,所述标准信号轮廓的幅度和相位使得所述第一脉冲基本上被消除而所述第二脉冲被保留。
本发明的第七方面是一种用于处理从流体容纳系统中的压力传感器(4a-4c)获得的时间相关的测量信号(d(n))的方法,所述流体容纳系统与第一脉冲发生器(3)和第二脉冲发生器(3')相关联,其中,所述压力传感器(4a-4c)设置在所述流体容纳系统中以检测源自所述第一脉冲发生器(3)的第一脉冲和源自所述第二脉冲发生器(3')的第二脉冲,其中,所述第一脉冲包括所述第一脉冲发生器(3)的至少一个基频及其谐波,所述方法包括以下步骤:接收步骤,接收所述时间相关的测量信号(d(n));获得步骤,获得单个第一脉冲轮廓(u(n)),该第一脉冲轮廓(u(n))是所述第一脉冲的预测的时间信号轮廓,并且所述单个第一脉冲轮廓(u(n))包含所述至少一个基频和一组所述谐波;调节步骤,参照所述时间相关的测量信号(d(n))调节所述单个第一脉冲轮廓(u(n))的幅度和相位二者中的至少一个;以及滤波步骤,通过从所述时间相关的测量信号(d(n))中减去经如此调节的单个第一脉冲轮廓(u(n))在时域中对所述时间相关的测量信号(d(n))进行滤波,以在所述时间相关的测量信号(d(n))中基本上消除所述第一脉冲同时保留所述第二脉冲。
本发明的第八方面是一种用于处理从流体容纳系统中的压力传感器(4a-4c)获得的时间相关的测量信号(d(n))的装置,其中,所述流体容纳系统与第一脉冲发生器(3)和第二脉冲发生器(3')相关联,所述压力传感器(4a-4c)设置在所述流体容纳系统中,以检测源自所述第一脉冲发生器(3)的第一脉冲和源自所述第二脉冲发生器(3')的第二脉冲,其中,所述第一脉冲包括所述第一脉冲发生器(3)的至少一个基频及其谐波,所述装置包括:输入部(28),其用于所述时间相关的测量信号(d(n));信号处理器(25a),其连接至所述输入部(28),并且该信号处理器(25a)包括处理模块(29),所述处理模块(29)构造为获得单个第一脉冲轮廓(u(n)),参照所述时间相关的测量信号(d(n))调节所述单个第一脉冲轮廓(u(n))的幅度和相位中的至少一个,并通过从所述时间相关的测量信号(d(n))中减去经如此调节的单个第一脉冲轮廓(u(n))而在时域中对所述时间相关的测量信号(d(n))进行滤波,以在所述时间相关的测量信号(d(n))中基本上消除所述第一脉冲同时保留所述第二脉冲,其中所述单个第一脉冲轮廓(u(n))是所述第一脉冲的预测的时间信号轮廓并且所述单个第一脉冲轮廓(u(n))包含所述至少一个基频及一组谐波。
本发明的第九方面是一种用于处理从流体容纳系统中的压力传感器(4a-4c)获得的时间相关的测量信号(d(n))的装置,其中,所述流体容纳系统与第一脉冲发生器(3)和第二脉冲发生器(3')相关联,所述压力传感器(4a-4c)设置在所述流体容纳系统中,以检测源自所述第一脉冲发生器(3)的第一脉冲和源自所述第二脉冲发生器(3')的第二脉冲,其中,所述第一脉冲包括所述第一脉冲发生器(3)的至少一个基频及其谐波,所述装置包括:用于接收所述时间相关的测量信号(d(n))的单元(28);用于获得单个第一脉冲轮廓(u(n))的单元(29),所述单个第一脉冲轮廓(u(n))是所述第一脉冲的预测的时间信号轮廓,并且所述单个第一脉冲轮廓(u(n))包含所述至少一个基频和一组所述谐波;参照所述时间相关的测量信号(d(n))调节所述单个第一脉冲轮廓(u(n))的幅度和相位二者中的至少一个的单元;以及通过从所述时间相关的测量信号(d(n))中减去经如此调节的单个第一脉冲轮廓(u(n))在时域中对所述时间相关的测量信号(d(n))进行滤波以在所述时间相关的测量信号(d(n))中基本上消除所述第一脉冲同时保留所述第二脉冲的单元(29)。
第三至九个方面的实施方式可对应于上述指出的第一个方面的实施方式。
本发明其他的目的、特征、方面和优点将从下面的详细描述、所附的权利要求书以及附图中变得清楚。
附图说明
将参照所附的示意性附图更详细地描述本发明的示例性实施方式。
图1是可以使用本发明的数据处理对压力信号进行滤波的普通流体容纳系统的示意图。
图2是根据本发明的实施方式的监控处理的流程图。
图3中(a)是作为时间函数的压力信号的图,而图3中(b)是滤波后的压力信号的图。
图4是包括体外血流回路的血液透析处理系统的示意图。
图5中(a)是含有泵频率分量和心脏信号二者的静脉压力信号在时域中的图,而图5中(b)是相应信号在频域中的图。
图6是源自图4的系统中蠕动泵的预测的信号轮廓的图。
图7是用于获取预测的信号轮廓的处理的流程图。
图8是示例说明了用于生成预测的信号轮廓的外推处理的图。
图9(a)是示例说明了用于生成预测的信号轮廓的内插处理的图,而图9(b)是图9(a)的放大图。
图10(a)表示了在一个流率下源自泵浦装置的压力脉冲的频率谱,图10(b)表示了针对三个不同流率的相应频率谱,其中每个频率谱以对数标度给出且映射至谐波数,图10(c)是图10(b)中的数据在线性标度下的图,图10(d)是与图10(a)中频率谱相对应的相位角谱。
图11是能够工作以基于预测的信号轮廓对测量信号进行滤波的自适应滤波器结构的示意图。
图12(a)示例说明了从静脉压力传感器获得的滤波后的压力信号(上部)和相应的心脏信号(下部),以及图12(b)示例说明了从动脉压力传感器获得的滤波后的压力信号(上部)和相应的心脏信号(下部)。
具体实施方式
下面,将参照通常的流体容纳系统描述本发明示例实施方式。此后,将在体外血液处理系统的上下文中进一步举例说明本发明的实施方式和实现。
在下面的通篇描述中,为相似的元件指定相同的参考标记。
概述
图1示出了流体容纳系统,其中流体连接C建立于第一流体容纳子系统S1和第二流体容纳子系统S2间。流体连接C可从一个子系统向另一个子系统转移流体,也可以不从一个子系统向另一个子系统转移流体。第一脉冲发生器3设置为在第一子系统S1内部的流体中生成压力波的序列,而第二脉冲发生器3'设置为在第二子系统S2内部的流体中生成压力波的序列。压力传感器4a设置为测量第一子系统S1中的流体压力。第二脉冲发生器3'生成的压力波将从第二子系统S2经由连接C传递到第一子系统S1,并且因此除源自第一脉冲发生器3的第一脉冲之外,压力传感器4a将检测到源自第二脉冲发生器3'的第二脉冲。要注意的是,第一脉冲发生器3和第二脉冲发生器3'中任何一个可以包括多于一个脉冲发生装置。并且,任何此类脉冲生成装置可以是或者可以不是相应子系统S1、S2的一部分。
图1的系统进一步包括监视装置25,如图1所示,监视装置25连接至压力传感器4a,并且可能连接至一个或更多个压力传感器4b、4c。因此,监视装置25获取时间相关的以提供第一子系统S1中流体压力的实时表示的一个或更多个压力信号。
通常,监视装置25构造为通过隔离并分析一个压力信号的一个或更多个脉冲,来监控流体容纳系统的功能状态或者功能参数。如下面进一步举例说明的,可以监控功能状态或参数,以识别故障状态,例如第一子系统S1或第二子系统S2、第二脉冲发生器3'或者流体连接C中的。一旦识别到故障状态,监视装置25可以发布警报或告警信号,并且/或者警告第一子系统S1或者第二子系统S2的控制系统以采取合适的行动。另选地或者附加地,监视装置25可构造为记录或输出功能状态或参数的值的时间序列。
根据实现,监视装置25可以使用数字组件或者模拟组件,或者二者的组合,以接收并处理压力信号。因此,装置25可以是具有足以根据本发明不同实施方式获取并处理压力信号的硬件的计算机或类似的数据处理装置。本发明的实施方式例如可以由计算机可读媒介上提供的软件指令实现,该软件指令由计算机中的处理器25a结合存储单元25b来执行。
通常,监视装置25构造为连续处理时间相关压力信号以隔离任何第二脉冲。图2的流程图示意性地描述了此处理。示例的处理涉及获取第一脉冲轮廓u(n)的步骤201,其中第一脉冲轮廓u(n)为预测的第一脉冲的时间信号轮廓,以及涉及步骤202,步骤202中使用第一脉冲轮廓u(n)在时域对压力信号d(n)或者经过预处理的压力信号进行滤波,从而在保留包含在d(n)中的第二脉冲的同时基本上消除或清除第一脉冲。在此公开的上下文中,n表示取样数,并因此等于时间相关信号中(有关的)时间点。然后,步骤203中,出于监视前述的功能状态或参数的目的,分析所得到的过滤后的信号e(n)。
第一脉冲轮廓是通常以数据值的时间序列表示、反映了第一脉冲在时域中的形状的形状模板或标准信号轮廓。在下面的描述中,第一脉冲轮廓也指“预测的信号轮廓”。
“基本上消除”指的是从压力信号中去除第一脉冲,以达到能够检测并分析第二脉冲用于监视前述的功能状态或参数的目的的程度。
通过使用第一脉冲轮廓在时域中对压力信号进行滤波,即使第一和第二脉冲在频域中交叠或几乎交叠时,也有可能基本上消除第一脉冲并仍保留第二脉冲。这种频率交叠不是不可能的,例如,如果第一脉冲和第二脉冲中的其中一个或两个由多个频率或频率范围的组合构成。
此外,第一脉冲或第二脉冲的频率、幅度和相位内容可随时间改变。这种变化可以是第一和/或第二脉冲发生器3、3'的主动控制的结果、或者由第一和/或第二脉冲发生器3、3'中的漂移导致的或者由子系统S1、S2或流体连接C的流体动力特性的变化导致的。例如,当第二脉冲发生器3'是人的心脏,并且第二子系统S2因此是人的血液系统时,可能发生频率变化。在平静状态下的健康者,心律的变化(心率变化,HRV(Heart Rate Variability))可以为15%那么大。非健康者可承受严重的心脏状况,例如心房纤维性颤动和室上性异位搏动,这可能导致超过20%的HRV和室性异位搏动,其中对于室性异位搏动,HRV可能超过60%。这些心脏状况在例如透析患者中并非罕见。
任何频率交叠可以使得不可能通过频域中传统的滤波来隔离压力信号中的第二脉冲,或通过频域中传统的滤波来隔离压力信号中的第二脉冲至少困难,频域中传统的滤波例如是通过梳状滤波器和/或通常级联的带阻滤波器或陷波器的组合对压力信号进行操作,以阻挡源自第一脉冲发生器3的所有频率分量。此外,因为频率交叠可以随时间变化,所以频率变化使得成功隔离出压力信号中的第二脉冲甚至更加困难。即使没有任何频率交叠,频率变化使得难以在频域中定义滤波器。
根据第一脉冲轮廓表示压力信号中的第一脉冲的程度,即使第一脉冲和第二脉冲在频率上交叠,并且即使第二脉冲的幅度远小于第一脉冲的幅度,借助于时域中本发明的滤波也可以隔离出第二脉冲。
更进一步,本发明的时域中的滤波可以允许比频域中的滤波处理更快地隔离出压力信号中的第二脉冲。前者可以具有隔离出压力信号中的单个第二脉冲的能力,然而后者可能需要对压力信号中的第一和第二脉冲的序列进行操作。因此,本发明的滤波能够更快地确定流体容纳系统的功能状态或者功能参数。
图3中举例说明了本发明的滤波的有效性,其中图3中(a)示出了包含相对幅度为10:1的第一脉冲和第二脉冲的时间相关的压力信号d(n)的示例。第一脉冲和第二脉冲的频率分别为1Hz和1.33Hz。由于幅度的不同,由第一脉冲支配压力信号。图3中(b)示出了在对压力信号d(n)应用本发明的滤波技术后所获得的滤波后的时间相关信号e(n)。滤波后的信号e(n)由第二脉冲和噪声构成。应当注意,大约4秒后第二脉冲不存在,这可由监视装置(图1中的25)观察到并识别为流体容纳系统的故障状态。
回到图2,本发明的数据处理包括两个主要步骤:确定第一脉冲轮廓u(n)(步骤201)和使用第一脉冲轮廓u(n)从测量信号d(n)中去除一个或更多个第一脉冲(步骤202)。
由多种方法实现这些主要步骤。例如,可以基于来自第一子系统S1中一个或更多个压力传感器4a-4c的测量信号,适当地通过识别并可能地平均测量信号中的一组第一脉冲片段,来在基准测量中获得第一脉冲轮廓(标准信号轮廓)。第一脉冲轮廓可以或者不可以在实际监控上述功能状态或参数期间间歇地更新。另选地,可使用预定的(即预定义的)标准信号轮廓,该预定的标准信号轮廓可选地可以根据考虑了第一脉冲发生器中的损耗、流体的流率、导管尺寸、流体中的声速等的数学模型进行修改。此外,去除可以涉及以合适的幅度和相位从测量信号中减去第一脉冲轮廓。相位可由相位信息表示,该相位信息可以从耦接至第一脉冲发生器3的相位传感器所生成的信号中或者从用于第一脉冲发生器3的控制信号中获得。
本发明的滤波也可与其他滤波技术结合,以进一步改进滤波后的信号e(n)的质量。在一个实施方式中,滤波后的信号e(n)可以通过具有在第二脉冲的相关频率范围中的通带的带通滤波器。如果第二脉冲源自人的心脏,则该通带可位于0.5-4Hz的近似范围中,对应于每分钟30-240次的心脏脉搏率。在另一个实施方式中,如果已知第二脉冲的当前频率范围(或多个当前频率范围),则带通滤波器的通带可以有效地控制为在该当前频率范围附近的窄的范围。例如,每当发现第一脉冲和第二脉冲的速率相差超过一定极限值,例如约10%时,可应用这种主动控制。通过间歇地关闭第一脉冲发生器3或者间歇地防止第一脉冲到达相关的压力传感器4a-4c,可以从压力信号中获得该当前频率范围。备选地,该当前频率范围可从第一或者第二子系统S1、S2或者基于用于第二脉冲发生器3'的控制单元(未示出)中的专用传感器获得。根据另一种备选方案,可以至少部分基于例如在同一患者的早期治疗中获得的患者专属信息(patient-specific information),即该患者的现有数据记录,来设置通带的位置和/或宽度。患者专属信息可存储在监视装置(图1中的25)的内部存储器中、监视装置可访问的外部存储器上、或者患者卡上,其中患者卡上的信息例如通过RFID(无线射频识别)无线传输至监视装置。
下面将在用于体外血液处理的系统的上下文中更详细解释这些和其他实施方式。为了便于下面的讨论,将首先描述示例的体外血流回路的细节。
体外血流回路中的监控
图4示出了用于透析的类型的体外血流回路20的示例。体外血流回路20(也称为“体外回路”)包括下面将描述的组件1-14。因此,如图4中所示,体外回路20包括动脉针头1形式的用于抽取血液的接入装置,以及将动脉针头1连接至血泵3的动脉导管部分2,血泵3可以是蠕动型的。在泵的入口处有压力传感器4b(此后称为“动脉传感器”),动脉传感器测量动脉导管部分2中泵之前的压力。血泵3促使血液经由导管部分5到透析仪6的血液侧。许多透析机附加地设置有压力传感器4c(此后称为“系统传感器”),系统传感器4c测量血泵3和透析仪6之间的压力。血液经由导管部分10从透析仪6的血液侧导入至静脉滴注器或者脱气室11,并从静脉滴注器或者脱气室11经由静脉导管部分12和静脉针头14形式的、用于重新导入血液的接入装置回到患者。提供压力传感器4a(此后称为“静脉传感器”),以测量在透析仪6的静脉侧的压力。在示例说明的示例中,压力传感器4a测量静脉滴注器中的压力。动脉针头1和静脉针头14均通过血管通路(blood vessel access)连接至患者。血管通路可以是任何合适类型,例如瘘管、斯克里布纳分流器(Scribner-shunt)、移植物等。根据血管通路的类型,可使用其他类型的接入装置代替针头,例如导管。另选地,接入装置1、14可以结合在单个单元中。
关于图1中的流体容纳系统,体外回路20对应于第一子系统S1,血泵3(以及在体外回路20内或者与体外回路20相关联的任何其他脉冲源,例如透析溶液泵、阀等)对应于第一脉冲发生器3,患者的血液系统对应于第二子系统S2,以及流体连接C对应于在患者和体外回路20之间的静脉侧和动脉侧流体连接中的至少之一。
图4中,提供控制单元23,以通过控制血泵3的转速,来控制体外回路20中的血液流动。体外回路20和控制单元23可形成用于体外血液处理的装置(例如透析机)的一部分。尽管未进一步示出或讨论,但是应当理解,这种装置执行许多其他功能,例如控制透析流体的流动、控制透析流体的温度和成分、等等。
图4中的系统还包括监视/监控装置25,连接监视/监控装置25以从压力传感器4a-4c中的至少一个接收压力信号,并且其执行本发明的数据处理。在图4的示例中,监视装置25也连接至控制单元23。另选地或者附加地,装置25可连接至泵传感器26,以表示血泵3的转速和/或相位。应当理解,监视装置25可包括进一步数据的输入,例如表示整个系统状态(参见例如下面参照图7的描述)的任何其他系统参数。装置25有线或者无线连接至用于生成声音/目视式/触觉式警报或警告信号的本地或者远程装置27。另选地或者附加地,装置25或27可包括显示器或监控器,以显示从分析步骤(图2中的203)所得到的功能状态或参数、和/或从滤波步骤(图2中的202)得到的滤波后的信号e(n),例如用于目视检查。
图4中,监视装置25包括用于预处理输入信号的数据获取部28,数据获取部28例如包括具有所需最小采样率和分辨率的A/D转换器、一个或更多个信号放大器,以及用于去除输入信号中不期望的分量(例如偏移、高频噪声和电源电压骚扰)的一个或更多个滤波器。
在数据获取部28进行预处理之后,提供预处理后的压力信号作为给执行本发明的数据处理的主数据处理部29的输入。图5中(a)示出了时域中这种预处理后的压力信号的示例,以及图5中(b)示出了相应的功率谱,即频域中的预处理后的压力信号。功率谱揭示了检测到的压力信号含有源自血泵3的多个不同频率分量。在示例说明的示例中,存在处于血泵的基频(f0)(在该示例中在1.5Hz)、以及其谐波2f0、3f0和4f0处的频率分量。基频(下面也称为泵频率)是在体外回路20中产生压力波形的泵冲程的频率。例如,在图4所示类型的蠕动泵中,针对转子3a的每个完整旋转产生两个泵冲程。图5中(b)也表示了在一半泵频率(0.5f0)和其谐波处(在此示例中,至少是f0、1.5f0、2f0和2.5f0)的频率分量的存在。图5中(b)还示出了心脏信号(在1.1Hz),在该示例中的心脏信号在基频f0处比血泵信号弱大约40倍。
主数据处理部29执行前述步骤201-203。在步骤202中,主数据处理部29工作,以在时域中对预处理后的压力信号进行滤波,并输出已经去除血泵3的信号分量的滤波后的信号或者监控信号(图2中的e(n))。监控信号仍含有源自患者的任何信号分量(参照图3中(b)),例如患者的心脏搏动所引起的压力脉冲。存在多个可以在患者的血流中产生压力脉冲的周期性生理现象的源,包括心脏、呼吸系统、或由自主神经系统控制的血管舒缩。因此,监控信号可含有患者中周期性现象的组合所导致的压力脉冲。通常上讲,监控信号中的信号分量可以源自患者中任何类型的生理现象或其组合,无论是周期性的或非周期性的、重复性的或非重复性的、自主的或非自主的。
根据实现,监视装置25可以构造为对监控信号使用进一步滤波,以隔离源自患者中单个周期性现象的信号分量。另选地,这种信号分量滤波在压力信号的预处理(由数据获取部28执行)期间进行。由于患者的不同周期性现象的信号分量在频域中通常是分开的,所以,例如通过应用截止滤波器或带通滤波器,可在频域中进行这种信号分量滤波。通常,心脏频率为约0.5-4Hz,呼吸频率为约0.15-0.4Hz,用于调节血压的自主系统的频率为约0.04-0.14Hz,用于调节体温的自主系统的频率为约0.04Hz。
监视装置25可以构造为通过识别监控信号中的呼吸脉冲,来监控患者的呼吸模式。产生的信息可用于在线监视患者的呼吸暂停、换气过度、换气不足、哮喘发作或其他不规则的呼吸行为。产生的信息也可用于识别咳嗽、打喷嚏、呕吐或癫痫。咳嗽/打喷嚏/呕吐/癫痫所导致的震动可能干扰连接至患者或体外回路20的其他测量或监视设备。监视装置25可以设置为输出关于任何咳嗽/打喷嚏/呕吐/癫痫的时序信息,使得其他测量或监视设备能够进行足够的测量,以降低咳嗽/打喷嚏/呕吐/癫痫引起错误测量或误警报的可能性。当然,识别咳嗽/打喷嚏/呕吐/癫痫的能力也可以具有其本身的医学重要性。
监视装置25可构造为通过识别监控信号中的心脏脉冲以监控患者的心率。
监视装置25可构造为收集并存储关于心率、呼吸模式等的时间演变的数据,例如用于后面的趋势或统计分析。
监视装置25可构造为监控患者和体外回路20之间流体连接的完整性,特别是静脉侧流体连接(经由接入装置14)的完整性。这可以通过监控在监控信号中是否存在源自例如患者心脏或呼吸系统的信号分量来进行。不存在这样的信号分量可作为流体连接C的完整性失败的指示,并可使装置25来激活警报和/或例如通过停止血泵3以及激活导管部分12上的夹紧装置13来停止血液流动。为了监控静脉侧流体连接的完整性,也称为VNM(静脉针头监控),监视装置25可以构造为基于来自静脉传感器4a的压力信号生成监控信号。装置25可以还连接至压力传感器4b、4c以及体外回路20中所包括的任何附加的压力传感器。
体外回路20可以具有选项,以工作在血液透析滤过模式(HDF(hemodiafiltration)模式),其中,控制单元23激活第二泵浦装置(HDF泵,未示出),以将输液提供到透析仪6的上游和/或下游的血液管路中,例如提供到导管部分2、5、10或12中的一个或更多个中。
获得第一脉冲的预测的信号轮廓
这部分描述用于预测或估计在图4所示系统中的第一脉冲的信号轮廓的不同的实施方式。预测的信号轮廓通常是在与血泵3的至少一个完整泵周期正常对应的时间段内的压力值的序列。
图6示例说明了图4中系统的预测的信号轮廓的示例。由于血泵3是蠕动泵,其中,两个辊子3b在转子3a的完整旋转期间与导管部分衔接,所以压力轮廓由两个泵冲程构成。例如由于在辊子3b和导管部分之间衔接的轻微的不同,泵冲程可引起不同的压力值(压力轮廓),并且因此可以期望预测的信号轮廓表示两个泵冲程。如果可以容许低精确度的预测的信号轮廓,即如果随后的去除处理的输出是可接受的,则预测的信号轮廓可以仅表示一个泵冲程。
通常,预测的信号轮廓可以通过流体系统的数学仿真,在基准测量中,或者其组合来获得。
基准测量
用于获取预测的信号轮廓的方法的第一主要组(first main group),基于从系统中的压力传感器(通常(但非必要)从同一压力传感器)得来的时间相关的基准压力信号(“基准信号”),该同一压力传感器提供要处理以去除第一脉冲的测量信号(压力信号)。在该基准测量期间,通过关闭第二脉冲发生器3'/使第二脉冲发生器3'无效、或通过使相关压力传感器与第二脉冲隔离,来防止第二脉冲到达相关的压力传感器。在图4的系统中,可在启动阶段执行基准测量,在启动阶段,体外回路20与患者分离,并且通过血液管路泵入启动液。另选地,基准测量可在使用血液或任何其他流体的模拟治疗中进行。可选地,基准测量可能涉及将多个压力轮廓进行平均以降低噪声。例如,可在基准信号中识别多个相关信号片段,因此这些片段对齐以实现在不同片段中压力轮廓的适当交叠,并接着将这些片段加在一起。识别相关信号片段可以至少部分地基于表示各第一脉冲在基准信号中的预期位置的时序信息。时序信息可从泵传感器26的输出信号中、控制单元23的控制信号中或者来自压力传感器4a-4c中另一个的压力信号中的触发点获得。例如,基于触发点和产生基准信号的压力传感器之间的已知的到达时间差,可计算第一脉冲在基准信号中的预测的时间点。作为变形,如果基准信号是周期性的,则可通过识别基准信号与给定的信号电平的交叉点来识别相关信号片段,其中相关信号片段被识别为在任何各交叉点对之间延伸。
在第一实施方式中,预测的信号轮廓在体外回路20连接至患者之前的基准测量中直接获得,并接着用作后续的去除处理的输入,其中后续的去除处理在当体外回路连接至患者时执行。在本实施方式中,因此假定,当系统连接至患者时,预测的信号轮廓代表第一脉冲。适当地,在基准测量期间以及在去除处理期间使用相同的泵频率/速度。也期望其他相关系统参数保持基本上恒定。
图7是第二实施方式的流程图。在第二实施方式中,首先基于基准测量建立基准库或数据库(步骤701)。得到的基准库通常存储在监视装置(参照图1中的25)的存储单元中,例如RAM、ROM、EPROM、HDD、闪存等(参照图1中的25b)。在基准测量期间,针对体外回路的多个不同的操作状态获得基准压力信号。每个操作状态由系统参数值的唯一组合表示。针对每个操作状态,生成基准轮廓以表示第一脉冲的信号轮廓。接着,基准轮廓以及相关联的系统参数值存储在基准库中,基准库由例如列表、查找表、搜索树等可搜索数据结构实现。
在实际监控处理期间,即当要从测量信号中消除第一脉冲时,表示流体容纳系统的当前操作状态的当前状态信息,可从系统例如从传感器、控制单元或其他中获得(步骤702)。当前状态信息可包括一个或更多个系统参数的当前值。接着,将当前值与基准库中的系统参数值相匹配。基于该匹配,选择一个或更多个基准轮廓(步骤703),并使用该一个或更多个基准轮廓来制作预测的信号轮廓(步骤704)。
通常,前述系统参数表示整个系统的状态,包括但不限于流体容纳系统或其组件的结构、设置、状况和变量。在图4的系统中,示例性系统参数可以包括:
与泵相关的参数:直接或间接(例如在用于透析仪的流体制备系统中)连接至体外回路的有效泵的数目、使用的泵的类型(滚子泵、薄膜泵等)、流率、泵的旋转速度、泵致动器的轴位置(例如角位置或者线性位置)等。
透析机设置:温度、超滤速率、模式变化、阀位置/变化等。
一次性透析设备/材料:关于泵室/泵部分的信息(材料、几何结构和损耗状况)、血液管路的类型(材料和几何结构)、透析仪的类型、接入装置的类型和几何结构等。
透析系统变量:系统中血泵上游和下游的实际绝对压力,例如静脉压力(来自传感器4a)、动脉压力(来自传感器4b)和系统压力(来自传感器4c)、陷在流路径中的气体体积、血液管路悬架、流体类型(例如血液或透析液)等。
患者状况:血液出入口特性、血液特性例如血细胞比容、血浆蛋白浓度等。
应当理解,任何数目的系统参数或者其组合可存储在基准库中和/或用作监控处理期间基准库中的搜索变量。
下面,将结合多个示例进一步解释第二实施方式。在所有的这些示例中,泵旋转频率(“泵频率”)或相关参数(例如,血液流率)用于指示监控处理期间流体容纳系统的当前操作状态。换言之,泵频率用作基准库中的搜索变量。例如泵频率可以由从控制单元输出的血液流率的设置值决定,或者由指示泵频率的传感器(参照图4中的泵传感器26)的输出信号决定。另选地,可以通过对流体系统操作期间来自传感器4a-4c中任意传感器的压力信号进行频率分析,来获得泵频率。这种频率分析可以通过对压力信号应用任何形式的谐波分析(例如傅里叶或小波分析)来实现。如图5中(b)中所示,可在得到的功率谱中识别泵的基频f0
在第一个示例中,搜索基准库以检索与最接近当前泵频率的泵频率相关联的基准轮廓。如果没有发现与当前泵频率的精确匹配,则执行外推处理以产生预测的信号轮廓。在外推处理中,基于当前泵频率和与检索的基准轮廓相关联的泵频率之间的已知的差(“泵频率差”),按照当前的泵周期对检索到的基准轮廓在时间上进行缩放。例如基于作为泵频率函数的已知幅度函数,也可调整幅度标度以补偿由于泵频率引入的幅度变化。图8示例了在470ml/min的流率下获得的基准轮廓r1(n),以及通过将基准轮廓缩放至480ml/min的流率而获得的预测的信号轮廓u(n)。仅仅用作比较,也示出了在480ml/min下获得的基准轮廓ractual(n),以示例外推处理确实可生成正确预测的信号轮廓。
在第二个示例中,基于当前泵频率重新搜索基准库。如果没有发现与当前泵频率的精确匹配,则执行组合处理以生成预测的信号轮廓。这里,检索与两个最接近匹配的泵频率相关联的基准轮廓,并将其组合。该组合可以通过将检索到的基准轮廓的泵周期时间重新缩放到当前的泵频率并且经由对重新缩放后的基准轮廓进行内插来计算预测的信号轮廓来进行。例如,在当前泵频率v下的预测的信号轮廓u(n)可表示为:
u(n)=g(ν-νi)·ri(n)+(1-g(ν-νi))·rj(n),
其中ri(n)和rj(n)表示在泵频率νi和νj下分别获得的并重新缩放至当前泵频率v的两个检索到的基准轮廓,g是以频率差(v-vi)的函数给出的松弛参数,其中νi≤ν≤νj以及0≤g≤1。本领域技术人员可以实现,通过组合多于两个基准轮廓来生成预测的信号轮廓u(n)。
图9(a)说明了在当前流率320ml/min下从图4的系统中静脉传感器4a获得的测量信号的预测的信号轮廓u(n)。将在300ml/min的流率下从静脉传感器获得的基准轮廓r1(n)和在340ml/min的流率下从静脉传感器获得的基准轮廓r2(n)进行平均,可计算出预测的信号轮廓u(n)。仅仅用作比较,还示出了在320ml/min下获得的基准轮廓ractual(n),以示例组合处理确实可生成正确预测的信号轮廓。实际上,差异如此小,以至于差异仅仅在放大后的视图图9(b)中勉强可见。
例如,通过如果泵频率差小于一定极限值则执行第一个示例的外推处理,否则执行第二个示例的组合处理,可以将第一个示例和第二个示例结合。
在第三实施方式中,与图7中所示的第二实施方式类似,在基准测量中获得多个基准信号,其中针对系统参数值的特定组合获得每个基准信号。接着处理基准信号以生成基准谱,基准谱表示作为频率函数的能量和相位角。例如这些基准谱可通过对基准信号进行傅里叶分析或等效分析而获得。接着,相应的能量和相位数据与相关联的系统参数值存储在基准库中(参照图7中的步骤701)。基准库的实现可与第二实施方式中相同。
在实际监控处理期间,即,当要从测量信号中消除第一脉冲时,从流体容纳系统获得一个或更多个系统参数的当前值(参照图7的步骤702)。接着,将当前值与基准库中的系统参数值进行匹配。基于该匹配,可从基准库中检索一组特定的能量和相位数据,用于生成预测的信号轮廓(参照图7的步骤703)。通常,根据检索到的能量和相位数据,通过将适当的频率、幅度和相位的正弦曲线相加,来生成预测的信号轮廓。
通常而言,而非限制本发明的公开范围,当第一脉冲(要被去除的)包含仅一个或少量基频(以及其谐波)时,根据能量和相位数据生成预测的信号轮廓可能是有利的,因为预测的信号轮廓可由小的数据集(包含针对基频和谐波的能量和相位数据)表示。另一方面,当第一脉冲的功率谱更复杂时,例如许多基频的混合,相反更好的是根据一个或更多个基准轮廓生成预测的信号轮廓。
图10(a)表示了在图4的系统中在300ml/min流率下获取的基准信号的能量谱。在此示例中,基准信号实质上由在1.2Hz的基础泵频率(f0,一次谐波)和该频率的一组谐音(二次和更高次谐波)。与图5中(b)的功率谱相比,用于生成图10(a)-10(d)中曲线图的压力信号不含有在0.5f0和其谐波处的任何重要的频率分量。图10(a)中的曲线图显示了相对能量分布,其中能量值对于0-10Hz范围内的频率按总能量进行了标准化。图10(b)表示了在图4的系统中在三个不同流率下获取的基准信号的能量谱。能量谱以相对于谐波数(一次、二次等)的对数标度的形式表示。如图所示,对于前四至五个谐波数,可以认为对数能量和谐波数之间是近似线性关系。这表示每个能量谱可由相应指数函数表示。图10(c)以线性标度示出了图10(b)的数据,其中已用相应的多项式函数对该数据进行了拟合。如图10(a)-10(c)中所示,能量谱可在基准库中以不同的形式表示,例如作为与离散频率值或谐波数相关联的一组能量值,或者作为表示能量与频率/谐波数关系的能量函数。
图10(d)示出了例如对于300ml/min的流率与图10(a)的能量谱一起获取的相位角的谱。图10(d)中的曲线图示出了作为频率的函数的相位角,并且已用线性函数对该数据进行了拟合。在另选的表示(图中未显示)中,可以作相位谱可以给出为谐波数的函数。与能量谱类似,相位谱可以在基准库中以不同的形式表示,例如作为与离散频率值或谐波数相关联的一组相位角的值,或者作为代表相位角与频率/谐波数关系的相位函数。
根据上述内容,应当理解,存储在基准库中的能量和相位数据可用于生成预测的信号轮廓。在能量数据中的每个能量值对应于具有给定频率(与该能量值相关联的频率)的正弦曲线的幅度,其中给定频率的相位值表示正弦曲线正确的相位角。通过组合(通常是相加)适当的频率、幅度和相位角的正弦曲线制作预测的信号轮廓的方法使得预测的信号轮廓在所需的频率范围内包括泵频率的所有谐波。
当要生成预测的信号轮廓时,首先,基于一个或更多个系统参数的当前值,例如当前的泵频率,来搜索基准库。如果在基准库中没有发现精确的匹配,则可执行组合处理,以生成预测的信号轮廓。例如,在基准库中可识别出两个最接近匹配的泵频率,可以检索相关联的能量和相位数据并进行组合,以形成预测的信号轮廓。可通过对能量数据和相位数据进行内插来进行组合。在图10(a)-10(d)的示例中,可以针对每个谐波数来计算内插后的能量值,以及类似地,可以针对每个谐波数计算内插后的相位值。可使用任何类型的内插函数,线性的或者非线性的。
在第一、第二和第三实施方式中,从流体容纳系统中同一压力传感器单元适当地获得基准信号和测量信号。另选地,假设不同的压力传感器单元对第一脉冲产生相同的信号响应或者可使用已知的数学关系来匹配该信号响应,则可使用不同的压力传感器单元。
为了进一步改善第一、第二和第三实施方式,生成预测的信号轮廓的处理可以还涉及对在基准测量和当前操作状态之间不同的其他潜在的相关因素进行补偿。这些所谓的混杂因素可以包括上面所列的一个或更多个系统参数,例如静脉绝对平均压和动脉绝对平均压、温度、血细胞比容/血粘度、气体体积等。可以使用预定义的补偿公式或查找表进行该补偿。
在进一步的变型中,第二和第三实施方式可以结合,例如基准库中不仅存储能量和相位数据也存储与系统参数值相关联的基准轮廓。当在库中发现精确的匹配时,可以从库中检索到基准轮廓并将该基准轮廓用作预测的信号轮廓,否则如第三实施方式中所述的,通过检索并组合(例如内插)能量和相位数据来获得预测的信号轮廓。在一个变型中,在当前泵频率v下的预测的信号轮廓u(n)通过如下获得:
u(n)=ri(n)-rf i(n)+rf(n),
其中ri(n)表示在基准库中与最接近匹配的泵频率vi相关联的基准轮廓,rf i(n)表示根据基准库中与最接近匹配的泵频率vi相关联的能量和相位数据重构的基准轮廓,以及rf(n)表示在当前泵频率v下估计的基准轮廓。可以通过应用基于与最接近匹配的泵频率vi相关联的能量和相位数据在当前泵频率v下分别估计能量和相位数据的预定函数,来获得估计的基准轮廓rf(n)。参照图10(b)-10(c),因此这种预定函数可以因此表示不同流率之间能量数据的变化。另选地,如第三实施方式所述的,可以通过针对两个最接近匹配的泵频率vi和vj检索并组合(例如内插)能量和相位数据,来获得估计的基准轮廓rf(n)。
在进一步的变型中,代替在正常工作之前(例如在启动或用血液模拟处理期间)进行的任何基准测量或者除了在正常工作之前进行的任何基准测量以外,在流体容纳系统正常工作期间进行基准测量。这种变型的前提是,可以间歇地关闭第二脉冲发生器或间歇地防止第二脉冲到达相关的压力传感器。如果从同一压力传感器获得基准信号和测量信号,则该方法在图4的体外回路20中更为困难。然而,例如,如果流体系统包括与第二脉冲大致隔离的一个压力传感器,则可以应用此方法。在这种情形中,基准轮廓(或者基准谱)可以从隔离的传感器获得,并用于生成预测的信号轮廓(可选地在针对混杂因素中的不同进行了调节/修改之后),接着该预测的信号轮廓用于从含有第一脉冲和第二脉冲的测量信号中去除第一脉冲。例如,来自图4中回路20的系统传感器4c的压力信号可与源自患者的第二脉冲大致隔离,并且该压力信号可因此用在基准测量中。
如上面所解释的,图4的体外回路20可以切换为HDF模式,在HDF模式中激活附加的HDF泵,以提供输注液(infusion liquid)至体外回路20的血液管路。操作模式的该变化可导致测量信号中第一脉冲的信号特性的变化。因此,可能需要通过确保基准库中包括与该操作状态相关联的适当的基准数据(基准轮廓和/或能量和相位角数据),来考虑该变化。
另选地,可以期望隔离源自HDF泵的压力脉冲。这可以通过根据动脉传感器4b(图4)的压力信号获得基准轮廓来实现。动脉压力信号包括源自患者和源自血泵3的压力脉冲,然而源自HDF泵的压力脉冲被患者和血泵3分别明显衰减,因此几乎不会到达动脉传感器4b。另一方面,静脉传感器4a和系统传感器4c的压力信号含有源自患者、血泵3和HDF泵的压力脉冲。因此,动脉压力信号可用于获得源自血泵3和患者的组合压力脉冲的预测的信号轮廓,因为源自血泵3和患者的组合压力脉冲应该在来自静脉传感器4a或系统传感器4c的压力信号中看到。接着,预测的信号轮廓可用于在来自静脉传感器4a或者系统传感器4c的压力信号中隔离源自HDF泵的压力脉冲。在这个示例中,患者和体外回路20可被视作第一子系统(图1中的S1),而HDF泵和相关联的输液管可被视作第二子系统(图1中的S2),两者经由流体连接进行连接。因此,在这个示例中,本发明的数据处理不应用于隔离源自患者的周期性生理现象的脉冲,而是隔离源自流体系统中另一泵的脉冲。应当注意,在其他的设置中,基准轮廓可以根据静脉传感器4a(图4)的压力信号而获得,并用于处理动脉传感器4b或系统传感器4c的压力信号。
模拟
作为使用基准测量的替代,预测的信号轮廓可通过模拟直接获得,即,基于表示系统的当前操作状态的当前状态信息,使用流体容纳系统的数学模型进行计算。这种当前状态信息可以包括一个或更多个上述系统参数的当前值。模型可以基于系统组件的已知的物理关系(或经由等效表示,例如通过将系统表示为具有分别以电流和电压表示的流体流动和压力的电子电路)。该模型可以用解析术语隐式或显式地表达。另选地,可使用数值模型。该模型可以是从系统的完整物理描述到简单函数的任何一种。在一个示例中,这种简单函数可以使用经验或理论数据,将关于泵转子3a的瞬时角速度的数据转换为预测的信号轮廓。这种关于瞬时角速度的数据可以从图4的泵传感器26获得。
在另一个实施方式中,模拟可用于生成系统不同操作状态的基准轮廓。接着,这些基准轮廓可存储在基准库中,可以以与上述第二和第三实施方式相同的方式访问和使用该基准库。也应当理解,通过模拟获得的基准轮廓(和/或相应的能量和相位角数据)可以与通过基准测量获得的基准轮廓(和/或相应的能量和相位角数据)一起存储。
第一脉冲的去除
有多种不同方式使用预测的信号轮廓从测量信号中去除一个或更多个第一脉冲。这里,将描述两种不同的去除处理:单个减法和自适应滤波。当然,本领域技术人员显而易见的是,去除处理和其实现的描述并不是全面的(不论是不同的替代还是其实现)。
依据实现,预测的信号轮廓可按原样输入至去除处理,或者可以复制预测的信号轮廓以构建长度适合去除处理的输入信号。
单个减法
在该去除处理,从测量信号中减去单个预测信号轮廓。预测的信号轮廓可以任何方式在时间上平移或缩放并缩放幅度,例如以使去除的误差最小化。针对这种自动缩放可以使用不同的最小化准则,例如使误差的平方和最小,或者使绝对误差和最小。另选地或者附加地,基于表示第一脉冲在测量信号中的预期时序的时序信息,在时间上平移预测的信号轮廓。时序信息可以通过以与以上关于在基准信号中对压力片段进行平均所描述的方式相同的方式获得。
该去除处理一个潜在的限制是预测的信号轮廓中不同频率之间的关系总是相同,因为该处理仅仅对预测的信号轮廓进行了平移和缩放。因此,不可能改变不同谐波频率之间的关系,也不可能使用预测的信号轮廓中仅一些频率内容并抑制其他频率。为克服此限制,可使用自适应滤波,因为自适应滤波在减法之前使用线性滤波器,例如下面所述的。
自适应滤波
图11是自适应滤波器30和自适应滤波器结构的示意性概览图,自适应滤波器结构设计为接收预测的信号轮廓u(n)和测量信号d(n),并输出误差信号e(n),该误差信号e(n)形成了已去除了第一脉冲的前述的监控信号。
自适应滤波器是根据优化算法自调节其传递函数的已知的电子滤波器(数字的或模拟的)。特别地,自适应滤波器30包括可变滤波器32,可变滤波器32通常是具有长度为M的滤波器系数w(n)的有限冲激响应(FIR)滤波器。
即使自适应滤波器是本领域已知的,但自适应滤波器并非能容易地应用于消除测量信号d(n)中的第一脉冲。在示例的实施方式中,这已经通过输入预测的信号轮廓u(n)至可变滤波器32和自适应更新算法34实现了,其中可变滤波器32处理预测的信号轮廓u(n)以生成估计的测量信号,自适应更新算法34基于预测的信号轮廓u(n)和误差信号e(n)计算可变滤波器32的滤波器系数。误差信号e(n)由测量信号d(n)与估计的测量信号之间的差给出。
基本上,自适应滤波器还涉及从测量信号d(n)中减去预测的信号轮廓u(n),因为每个滤波器系数工作,以平移以及可能重新缩放预测的信号轮廓u(n)的幅度。因此,作为从测量信号d(n)中减去以生成误差信号e(n)的估计的测量信号形成为M个平移后的预测的信号轮廓u(n)的线性组合,即u(n)的线性滤波。
自适应更新算法34可用多种不同的方式实现,下面将描述其中的一些。本公开绝不限制于这些示例,技术人员应该根据下面的描述毫无困难地获得其他替代方式。
有两种主要的自适应滤波的方法:随机的和确定性的。不同之处在于通过更新算法34使误差信号e(n)的最小化,其中假定e(n)为随机的还是确定性的,来获得两种不同的最小化准则。随机法通常在最小化准则中使用具有期望值的代价函数J,而确定性方法通常使用平均值。当最小化e(n)时在代价函数中通常使用平方后的误差信号e2(n),因为这样产生一个全局极小值。在一些情形中,绝对误差|e(n)|可用于最小化中以及约束最小化的不同形式中。当然,可使用任何形式的误差信号,然而,并非总能保证向全局极小值收敛,最小化并非总是可以有解的。
在信号的随机描述中,通常代价函数可以根据:
J(n)=Ε{|e(n)|2},
以及,在信号的确定性描述中,通常代价函数可以根据:
J(n)=∑e2(n)。
当使误差信号e(n)(代价函数J(n))最小化时,将从测量信号d(n)中去除第一脉冲。因此,当自适应滤波器30已经收敛并达到最小误差时,将从第一脉冲中清除误差信号e(n)同时保留第二脉冲。
为了获得可变滤波器32的最佳的滤波器系数w(n),需要根据滤波器系数w(n)使代价函数J最小化。这可以通过代价函数梯度向量来实现,梯度向量是J关于不同滤波器系数w0、w1、…、wM-1的导数。最陡下降是用于获得使代价函数J最小化的最优滤波器系数的递归方法(非自适应滤波器)。通过给出滤波器系数的初始值,通常设置为0,即w(0)=0,开始递归方法。接着根据下式更新滤波器系数:
w ( n + 1 ) = w ( n ) + 1 2 μ [ - ▿ j ( n ) ] ,
其中w由下式给出:
w=[w0w1...wM-1]TM×1
此外,梯度向量指向代价生长最快的方向。因此,滤波器系数沿与梯度相反的方向进行修正,其中通过步长参数μ影响修正长度。因为最陡下降算法含有反馈,因此该算法总存在收敛风险。为了确保收敛,设置步长参数μ的边界。可以示出,最陡下降算法的稳定性准则由下式给出:
0 < &mu; < 2 &lambda; max
其中,λmax是R的最大特征值,预测的信号轮廓u(n)的相关矩阵R由下式给出:
其中由下式给出:
u &OverBar; ( n ) = u ( n ) u ( n - 1 ) . . . u ( n - M + 1 ) T M &times; 1 .
如果使用均方误差(mean squared error,MSE)代价函数(由J=Ε{|e(n)|2}定义),则可以示出根据下式更新滤波器系数:
w ( n + 1 ) = w ( n ) + &mu;E [ u &OverBar; ( n ) e ( n ) ] ,
其中e(n)由下式给出:
e ( n ) = d ( n ) - u &OverBar; T ( n ) w ( n ) .
当信号的统计信息已知时,最陡下降算法是用于计算最优滤波器系数的递归算法。然而,该信息通常是未知的。最小均方(Least Mean Squares,LMS)算法是基于与最陡下降算法相同原理的方法,但可以连续地估计统计信息。因此,LMS算法是自适应滤波器,因为该算法可以适应信号统计信息中的变化(因为连续地估计统计信息),尽管梯度可能变成噪声。由于梯度中的噪声,LMS算法不可能达到最陡下降算法所达到的最小误差Jmin。在LMS算法中使用期望值的瞬时估计,即去除期望值。因此,对于LMS算法,滤波器系数的更新式变为:
w ( n + 1 ) = w ( n ) + &mu; u &OverBar; ( n ) e ( n ) .
LMS算法的收敛准则与最陡下降算法的相同。在LMS算法中,步长与预测的信号轮廓u(n)成比例,也就是说,当预测的信号轮廓很强时梯度噪声被放大。该问题的一个解决方法是以下式来正归化滤波器系数的更新:
| | u &OverBar; ( n ) | | 2 = u &OverBar; T ( n ) u &OverBar; ( n ) .
滤波器系数的新的更新式称为正归化LMS,并且表示为:
w ( n + 1 ) = w ( n ) + &mu; ~ a + | | u &OverBar; ( n ) | | 2 u &OverBar; ( n ) e ( n )
其中并且a是正保护常数。
对LMS算法,存在修正了步长的许多不同备选。其中一个备选是使用可变的适应步长:
w ( n + 1 ) = w ( n ) + &alpha; ( n ) u &OverBar; ( n ) e ( n ) ,
其中α(n)例如可以是:
&alpha; ( n ) = 1 n + c
其中c是正常数。也可以在LMS算法中针对每个滤波器系数选择独立的适应步长,例如根据下式:
w ( n + 1 ) = w ( n ) + A u &OverBar; ( n ) e ( n )
其中A由下式给出:
如果替代地,使用以下代价函数:
J(n)=Ε{|e(n)|}
则更新式变为:
w ( n + 1 ) = w ( n ) + &alpha;sign [ e ( n ) ] u &OverBar; ( n ) .
该自适应滤波器称为符号LMS,其可用在对低计算复杂度具有极高要求的应用中。
另一种自适应滤波器是泄漏式LMS,其使用具有以下代价函数的约束最小化:
J(n)=Ε{|e(n)|2}+α||w(n)||2.
该约束与犹如将方差为α的白噪声加入至预测的信号轮廓u(n)具有相同的效果。因此,增加了输入信号u(n)中的不确定性,而这趋向于抑制滤波器系数。当u(n)的相关矩阵R具有一个或更多个等于零的特征值时,优选地使用泄漏式LMS。然而在没有噪声的系统中,泄漏式LMS使性能更差。对于泄漏式LMS,滤波器系数的更新式由下式给出:
w ( n + 1 ) = ( 1 - &mu;&alpha; ) w ( n ) + &mu; u &OverBar; ( n ) e ( n ) .
递归最小二乘(Recursive Least Squares,RLS)自适应滤波器算法使以下代价函数最小化,而不是如上所述使MSE代价函数最小化:
J ( n ) = &Sigma; i = 1 n &lambda; n - i | e ( i ) | 2 ,
其中λ称为遗忘因子,0<λ≤1,并且该方法称为指数加权最小二乘(ExponentiallyWeighted Least Squares)。可以示出,对于RLS算法,经过以下初始化后:
w(0)=0M×1
P(0)=δ-1IM×M
其中,IMxM是单位矩阵MxM,滤波器系数的更新式根据下式给出:
k ( n ) = &lambda; - 1 P ( n - 1 ) u &OverBar; ( n ) 1 + &lambda; - 1 u &OverBar; T ( n ) P ( n - 1 ) u &OverBar; ( n )
&xi; ( n ) = d ( n ) - w T ( n - 1 ) u &OverBar; ( n )
w(n)=w(n-1)+k(n)ξ(n)
P ( n ) = &lambda; - 1 P ( n - 1 ) - &lambda; - 1 k ( n ) u &OverBar; T ( n ) P ( n - 1 ) ,
其中,对于高信噪比(Signal-to-Noise Ratio,SNR),δ是小的正常数,对于低SNR,δ是大的正常数,δ<<0.01σu 2,ξ(n)对应于前述算法中的e(n)。在初始化阶段期间因为使用初始值P(0)=δ-1I,则作为代替,使以下代价函数最下化:
J ( n ) = &Sigma; i = 1 n &lambda; n - i | e ( i ) | 2 + &delta; &lambda; n | | w ( n ) | | 2
RLS算法在大约2M次迭代时收敛,而这已远远快于LMS算法。另一个优点是RLS算法的收敛与R的特征值无关,而对于LMS算法并非如此。
并行运行的几个RLS算法可使用不同的λ和δ,不同的λ和δ可以组合以改善性能,即,λ=1也可以使用在具有多个不同的δ:s的算法(稳态解)中。
应当注意,LMS算法和RLS算法均可以用定点运算实现,使得可以在没有浮点单元的处理器(例如低成本的嵌入式微处理器或微控制器)中运行。
为了示例说明使用自适应滤波器的去除处理的有效性,图12(a)中上部的曲线图示例说明了图11中的自适应滤波器结构对流率为430ml/min下来自图4中静脉传感器4a的测量信号进行操作而输出的误差信号e(n),该自适应滤波器结构使用RLS算法作为自适应更新算法32。自适应滤波器结构被提供有在相同流率下在基准测量中获得的预测的信号轮廓。设计为M=15的RLS算法在大约2M次后收敛,在10Hz的当前采样频率下等于3秒。因此,从上部的曲线图示出了消除第一脉冲后的测量信号。图12(a)中下部的曲线图被包括进来用作参照,其示出了当血泵3停止时来自静脉传感器4a的测量信号。显然,自适应滤波能够操作以在收敛期后提供正确地表示第二脉冲的监控信号。
图12(b)与图12(a)相对应,但是图12(b)是针对来自图4中的动脉传感器4b的测量信号而获得的。
与实现无关,可通过将自适应滤波器30转换为静态模式,进一步改善自适应滤波器30(图11)的性能,在静态模式中更新算法34被禁用,因此滤波器32(图11)的滤波器系数被锁定在当前一组值。自适应滤波器30的转换可由外部处理来控制,该外部处理分析误差信号e(n)中的第二脉冲,而该误差信号e(n)通常与第一脉冲数据相关。第一脉冲数据可以根据测量信号、基准信号(参见上述)、专用脉冲传感器、第一脉冲发生器的控制单元等获得。如果外部处理表明第二脉冲的速率开始接近第一脉冲的速率和/或第二脉冲的幅度非常弱(与绝对极限值相关、或者与由第一脉冲幅度给出的极限值有关),则自适应滤波器30可转换至静态模式。自适应滤波器30可以在静态模式保持预定时间段,或直到被该处理所释放。
上面,已经参照一些实施方式主要描述了本发明。然而,如本领域技术人员容易理解的,除上面公开的实施方式之外的其他实施方式与由所附的权利要求书定义和限制的本发明的范围和精神具有同等的可能。
例如,测量信号和基准信号可源自任何可想到类型的压力传感器,例如通过电阻性感测、电容性感测、电感性感测、磁性感测或光学感测,并且使用一个或更多个隔膜、波纹管、布尔东管(bourdon tube)、压电元件、半导体元件、应变仪、谐振引线、加速计等操作。
尽管图1表示了压力传感器4a-4c连接至第一子系统S1,然而,作为代替,压力传感器4a-4c可以连接,以测量第二子系统S2中的流体压力。此外,流体容纳系统无需分隔成经由流体连接C连接的第一和第二子系统S1、S2,而作为代替,可以是与第一脉冲发生器和第二脉冲发生器相关联的单一流体容纳系统,其中每个压力传感器设置在流体容纳系统中,以检测源自第一脉冲发生器的第一脉冲和源自第二脉冲发生器的第二脉冲。
此外,本发明的技术可用于所有类型的体外血流回路中的监控,在体外血流回路中血液从患者的全身血液回路中取出,在血液返回患者之前对血液进行处理。这种血流回路包括用于血液透析、血液滤过、血液透析滤过、血浆除去、血液成分部分清除、体外膜肺氧和、辅助血液循环、体外肝支持/透析的回路。本发明的技术可同样地应用于监控其他类型的体外血流回路,例如用于输血、输液、以及心肺机的回路。
本发明的技术也可应用于包含不是血液而是其他液体的流体系统。
此外,本发明的技术可应用于去除源自任何类型的泵浦装置的压力脉冲,不仅仅是如上公开的旋转的蠕动泵,还可以是其他类型的容积泵,例如线性蠕动泵、隔膜泵、以及离心泵。实际上,本发明的技术可用于去除源自可以是机器的或人的任何类型的脉冲发生器的压力脉冲。
同样地,本发明的技术可应用于隔离源自可以是机器的或人的任何类型的脉冲发生器的压力脉冲。
本发明的技术不是必需对实时数据进行操作,而是可用于处理离线数据,例如之前记录的测量信号。

Claims (36)

1.一种用于处理从流体容纳系统中的压力传感器(4a-4c)获得的时间相关的测量信号(d(n))的方法,所述流体容纳系统与第一脉冲发生器(3)和第二脉冲发生器(3')相关联,其中,所述压力传感器(4a-4c)设置在所述流体容纳系统中以检测源自所述第一脉冲发生器(3)的第一脉冲和源自所述第二脉冲发生器(3')的第二脉冲,其中,所述第一脉冲包括所述第一脉冲发生器(3)的至少一个基频及其谐波,所述方法包括以下步骤:
接收步骤,接收所述时间相关的测量信号(d(n));
获得步骤,获得单个第一脉冲轮廓(u(n)),该单个第一脉冲轮廓(u(n))是所述第一脉冲的预测的时间信号轮廓,并且所述单个第一脉冲轮廓(u(n))包含所述至少一个基频和一组所述谐波;
调节步骤,参照所述时间相关的测量信号(d(n))调节所述单个第一脉冲轮廓(u(n))的幅度和相位二者中的至少一个;以及
滤波步骤,通过从所述时间相关的测量信号(d(n))中减去经如此调节的单个第一脉冲轮廓(u(n))在时域中对所述时间相关的测量信号(d(n))进行滤波,以在所述时间相关的测量信号(d(n))中基本上消除所述第一脉冲同时保留所述第二脉冲。
2.根据权利要求1所述的方法,其中,所述调节步骤包括以下步骤:使所述单个第一脉冲轮廓(u(n))和所述测量信号(d(n))之间的差异最小化。
3.根据权利要求1所述的方法,其中,所述相位由从耦接至所述第一脉冲发生器(3)的相位传感器(26)获得的、或者从所述第一脉冲发生器(3)的控制单元(23)获得的相位信息来表示。
4.根据前述权利要求中任一项所述的方法,其中,所述单个第一脉冲轮廓(u(n))是在所述流体容纳系统中的基准测量中获得的,其中所述基准测量包括以下步骤:操作所述第一脉冲发生器(3)以生成至少一个第一脉冲,以及根据由所述流体容纳系统中的基准压力传感器(4a-4c)生成的基准信号中获得所述单个第一脉冲轮廓(u(n))。
5.根据权利要求4所述的方法,其中,在所述基准测量期间,操作所述第一脉冲发生器(3)以生成第一脉冲的序列,并且其中,通过识别并平均所述基准信号中的一组第一脉冲片段来获得所述第一脉冲轮廓(u(n))。
6.根据权利要求4所述的方法,其中,在所述流体容纳系统操作期间,所述基准测量间歇性地进行,以提供更新后的单个第一脉冲轮廓(u(n))。
7.根据权利要求4所述的方法,其中,所述压力传感器(4a-4c)用作所述基准压力传感器。
8.根据权利要求1至3中任一项所述的方法,其中,所述获得步骤包括以下步骤:获得预定义的标准信号轮廓。
9.根据权利要求8所述的方法,其中,所述获得步骤进一步包括以下步骤:根据所述流体容纳系统的数学模型基于所述流体容纳系统的一个或更多个系统参数的当前值修改所述预定义的标准信号轮廓。
10.根据权利要求4所述的方法,其中,在所述基准测量期间,操作所述流体容纳系统,使得所述基准信号含有第一脉冲但不含有第二脉冲。
11.根据权利要求10所述的方法,其中,所述流体容纳系统包括用于连接至人体的血液系统的体外血流回路(20),所述第一脉冲发生器(3)包括在所述体外血流回路(20)中的泵浦装置(3),并且所述第二脉冲发生器(3')包括在所述人体中的生理脉冲发生器,并且其中,所述基准测量是在启动阶段执行的,在该启动阶段将体外血流回路(20)从血液系统分离,并通过体外血流回路(20)泵入启动液,由此所述体外血流回路(20)中的压力传感器(4a-4c)产生基准信号,以含有第一脉冲但不含有第二脉冲。
12.根据权利要求1所述的方法,所述方法进一步包括以下步骤:获得所述流体容纳系统的一个或更多个系统参数的当前值,其中,根据所述当前值获得所述单个第一脉冲轮廓(u(n));并且
其中,获得所述单个第一脉冲轮廓(u(n))的所述步骤包括以下步骤:基于所述当前值在基准数据库中识别一个或更多个基准轮廓(r1(n),r2(n));以及基于所述一个或更多个基准轮廓(r1(n),r2(n))获得所述单个第一脉冲轮廓(u(n))。
13.根据权利要求12所述的方法,其中,所述一个或更多个系统参数表示在所述流体容纳系统中的第一脉冲的速率。
14.根据权利要求13所述的方法,其中,所述第一脉冲发生器(3)包括泵浦装置(3),并且所述系统参数表示所述泵浦装置(3)的泵频率。
15.根据权利要求12至14中任一项所述的方法,其中,所述基准数据库中的每个基准轮廓(r1(n),r2(n))是通过在所述流体容纳系统中针对所述一个或更多个系统参数的相应值进行基准测量而获得的。
16.根据权利要求1所述的方法,所述方法还包括获得所述流体容纳系统的一个或更多个系统参数的当前值的步骤,其中,所述单个第一脉冲轮廓(u(n))是根据所述当前值获得的,并且,其中,获得所述单个第一脉冲轮廓(u(n))的所述步骤包括以下步骤:基于所述当前值在基准数据库中识别能量和相位角数据的一个或更多个组合;以及基于所述能量和相位角数据的一个或更多个组合获得所述单个第一脉冲轮廓(u(n))。
17.根据权利要求16所述的方法,其中,所述单个第一脉冲轮廓(u(n))是通过组合不同频率的一组正弦曲线获得的,其中各正弦曲线的幅度和相位角由所述能量和相位角数据的一个或更多个组合给出。
18.根据权利要求1所述的方法,所述方法还包括获得所述流体容纳系统的一个或更多个系统参数的当前值,其中,所述单个第一脉冲轮廓(u(n))是根据所述当前值获得的,并且,其中,获得所述单个第一脉冲轮廓(u(n))的所述步骤包括以下步骤:将所述当前值输入至基于所述流体容纳系统的数学模型计算所述压力传感器(4a-4c)的响应的算法。
19.根据权利要求1-3、12-14以及16-18中任一项所述的方法,其中,所述流体容纳系统包括用于连接至人体的血液系统的体外血流回路(20),其中所述第一脉冲发生器包括在所述体外血流回路(20)中的泵浦装置(3),并且其中所述第二脉冲发生器(3')包括在所述人体中的生理脉冲发生器。
20.根据权利要求19所述的方法,其中,所述第二脉冲发生器(3')是受自主神经系统影响的心脏、呼吸系统和血管舒缩三者中的至少之一。
21.根据权利要求19所述的方法,其中,所述体外血流回路(20)包括动脉接入装置(1)、血液处理装置(6)和静脉接入装置(14),其中,人的血液系统包括血管通路,其中所述动脉接入装置(1)构造为连接至所述人的血液系统,所述静脉接入装置(14)构造为连接至所述血管通路以形成流体连接(C),并且,其中所述第一脉冲发生器包括设置于所述体外血流回路(20)中的泵浦装置(3),该泵浦装置(3)将血液从所述动脉接入装置(1)通过所述血液处理装置(6)泵送至所述静脉接入装置(14),所述方法包括以下步骤:从位于所述泵浦装置(3)下游的静脉压力传感器(4a)或者从位于所述泵浦装置(3)上游的动脉压力传感器(4b)接收所述时间相关的测量信号(d(n))。
22.根据权利要求1-3、12-14以及16-18中任一项所述的方法,其中,所述调节步骤还包括参照所述时间相关的测量信号(d(n))调节所述单个第一脉冲轮廓(u(n))的时标。
23.一种用于处理从流体容纳系统中的压力传感器(4a-4c)获得的时间相关的测量信号(d(n))的装置,其中,所述流体容纳系统与第一脉冲发生器(3)和第二脉冲发生器(3')相关联,所述压力传感器(4a-4c)设置在所述流体容纳系统中,以检测源自所述第一脉冲发生器(3)的第一脉冲和源自所述第二脉冲发生器(3')的第二脉冲,其中,所述第一脉冲包括所述第一脉冲发生器(3)的至少一个基频及其谐波,所述装置包括:
输入部(28),其用于所述时间相关的测量信号(d(n));
信号处理器(25a),其连接至所述输入部(28),并且该信号处理器(25a)包括处理模块(29),所述处理模块(29)构造为获得单个第一脉冲轮廓(u(n)),参照所述时间相关的测量信号(d(n))调节所述单个第一脉冲轮廓(u(n))的幅度和相位中的至少一个,并通过从所述时间相关的测量信号(d(n))中减去经如此调节的单个第一脉冲轮廓(u(n))而在时域中对所述时间相关的测量信号(d(n))进行滤波,以在所述时间相关的测量信号(d(n))中基本上消除所述第一脉冲同时保留所述第二脉冲,其中所述单个第一脉冲轮廓(u(n))是所述第一脉冲的预测的时间信号轮廓并且所述单个第一脉冲轮廓(u(n))包含所述至少一个基频及一组所述谐波。
24.根据权利要求23所述的装置,其中,所述信号处理器(25)被构造为根据在基准测量期间由所述流体容纳系统的基准压力传感器(4a-4c)生成的基准信号获得所述单个第一脉冲轮廓(u(n)),其中所述第一脉冲发生器(3)被操作为生成至少一个第一脉冲。
25.根据权利要求24所述的装置,其中,所述第一脉冲发生器(3)被操作为在基准测量期间生成第一脉冲的序列,并且其中所述信号处理器(25a)被构造为通过识别并平均所述基准信号中的一组第一脉冲片段来获得所述单个第一脉冲轮廓(u(n))。
26.根据权利要求24所述的装置,其中,所述信号处理器(25a)被构造为在所述流体容纳系统操作期间间歇性地进行所述基准测量,以提供更新后的单个第一脉冲轮廓(u(n))。
27.根据权利要求24所述的装置,其中,所述流体容纳系统包括用于连接至人体的血液系统的体外血流回路(20),所述第一脉冲发生器(3)包括在所述体外血流回路(20)中的泵浦装置(3),并且所述第二脉冲发生器(3')包括在所述人体中的生理脉冲发生器,并且其中,所述信号处理器(25a)被配置为在启动阶段执行基准测量,在该启动阶段将体外血流回路(20)从血液系统分离,并通过体外血流回路(20)泵入启动液,由此所述体外血流回路(20)中的压力传感器(4a-4c)产生基准信号,以含有第一脉冲但不含有第二脉冲。
28.根据权利要求23所述的装置,其中,所述信号处理器(25a)被构造为获得预定义的标准信号轮廓,并根据所述流体容纳系统的数学模型基于所述流体容纳系统的一个或更多个系统参数的当前值修改所述预定义的标准信号轮廓,以获得所述单个第一脉冲轮廓(u(n))。
29.根据权利要求23所述的装置,其中,所述信号处理器(25a)被构造为获得所述流体容纳系统的一个或更多个系统参数的当前值;基于所述当前值在基准数据库中识别一个或更多个基准轮廓(r1(n),r2(n));以及基于所述一个或更多个基准轮廓(r1(n),r2(n))获得所述单个第一脉冲轮廓(u(n))。
30.根据权利要求29所述的装置,其中,所述信号处理器(25a)被构造为通过在所述流体容纳系统中针对所述一个或更多个系统参数的相应值进行的基准测量来获得所述基准数据库中的每个基准轮廓(r1(n),r2(n))。
31.根据权利要求23所述的装置,其中,所述信号处理器(25a)被构造为获得所述流体容纳系统的一个或更多个系统参数的当前值;基于所述当前值在基准数据库中识别能量和相位角数据的一个或更多个组合;以及基于所述能量和相位角数据的一个或更多个组合获得所述单个第一脉冲轮廓(u(n))。
32.根据权利要求23所述的装置,其中,所述信号处理器(25a)被构造为获得所述流体容纳系统的一个或更多个系统参数的当前值;以及将所述当前值输入至基于所述流体容纳系统的数学模型计算所述压力传感器(4a-4c)的响应的算法,以获得所述单个第一脉冲轮廓(u(n))。
33.根据权利要求23所述的装置,其中,所述流体容纳系统包括用于连接至人体的血液系统的体外血流回路(20),其中所述第一脉冲发生器(3)包括在所述体外血流回路(20)中的泵浦装置(3),其中所述第二脉冲发生器(3')包括在所述人体中的生理脉冲发生器,并且其中,所述第二脉冲发生器(3')是受自主神经系统影响的心脏、呼吸系统和血管舒缩三者中的至少之一。
34.根据权利要求33所述的装置,其中,所述体外血流回路(20)包括动脉接入装置(1)、血液处理装置(6)和静脉接入装置(14),其中人的血液系统包括血管通路,其中所述动脉接入装置(1)构造为连接至所述人的血液系统,其中所述静脉接入装置(14)构造为连接至所述血管通路以形成流体连接(C),并且其中所述第一脉冲发生器包括设置于所述体外血流回路(20)中的泵浦装置(3)以通过所述血液处理装置(6)从所述动脉接入装置(1)泵送血液至所述静脉接入装置(14),所述装置被构造为从位于所述泵浦装置(3)下游的静脉压力传感器(4a)或者从位于所述泵浦装置(3)上游的动脉压力传感器(4b)接收所述时间相关的测量信号。
35.根据权利要求23-34中任一项所述的装置,其中,所述信号处理器(25a)还被构造为参照所述时间相关的测量信号(d(n))调节所述单个第一脉冲轮廓(u(n))的时标。
36.一种用于处理从流体容纳系统中的压力传感器(4a-4c)获得的时间相关的测量信号(d(n))的装置,其中,所述流体容纳系统与第一脉冲发生器(3)和第二脉冲发生器(3')相关联,所述压力传感器(4a-4c)设置在所述流体容纳系统中,以检测源自所述第一脉冲发生器(3)的第一脉冲和源自所述第二脉冲发生器(3')的第二脉冲,其中,所述第一脉冲包括所述第一脉冲发生器(3)的至少一个基频及其谐波,所述装置包括:
用于接收所述时间相关的测量信号(d(n))的单元(28);
用于获得单个第一脉冲轮廓(u(n))的单元(29),所述单个第一脉冲轮廓(u(n))是所述第一脉冲的预测的时间信号轮廓,并且所述单个第一脉冲轮廓(u(n))包含所述至少一个基频和一组所述谐波;
参照所述时间相关的测量信号(d(n))调节所述单个第一脉冲轮廓(u(n))的幅度和相位二者中的至少一个的单元(29);以及
通过从所述时间相关的测量信号(d(n))中减去经如此调节的单个第一脉冲轮廓(u(n))在时域中对所述时间相关的测量信号(d(n))进行滤波以在所述时间相关的测量信号(d(n))中基本上消除所述第一脉冲同时保留所述第二脉冲的单元(29)。
CN201410459751.XA 2008-06-26 2009-06-26 用于处理时间相关的测量信号的方法及装置 Expired - Fee Related CN104189968B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US7577408P 2008-06-26 2008-06-26
SE0801517 2008-06-26
US61/075,774 2008-06-26
SE0801517-4 2008-06-26
CN200980124257.5A CN102076368B (zh) 2008-06-26 2009-06-26 用于处理时间相关的测量信号的方法及装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200980124257.5A Division CN102076368B (zh) 2008-06-26 2009-06-26 用于处理时间相关的测量信号的方法及装置

Publications (2)

Publication Number Publication Date
CN104189968A true CN104189968A (zh) 2014-12-10
CN104189968B CN104189968B (zh) 2017-04-12

Family

ID=41445010

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201410459751.XA Expired - Fee Related CN104189968B (zh) 2008-06-26 2009-06-26 用于处理时间相关的测量信号的方法及装置
CN200980124259.4A Active CN102076369B (zh) 2008-06-26 2009-06-26 用于监控流体连接的完整性的方法和装置
CN200980124257.5A Expired - Fee Related CN102076368B (zh) 2008-06-26 2009-06-26 用于处理时间相关的测量信号的方法及装置
CN201410145669.XA Active CN103948979B (zh) 2008-06-26 2009-06-26 用于监控流体连接的完整性的方法和装置

Family Applications After (3)

Application Number Title Priority Date Filing Date
CN200980124259.4A Active CN102076369B (zh) 2008-06-26 2009-06-26 用于监控流体连接的完整性的方法和装置
CN200980124257.5A Expired - Fee Related CN102076368B (zh) 2008-06-26 2009-06-26 用于处理时间相关的测量信号的方法及装置
CN201410145669.XA Active CN103948979B (zh) 2008-06-26 2009-06-26 用于监控流体连接的完整性的方法和装置

Country Status (12)

Country Link
US (4) US8715216B2 (zh)
EP (3) EP3028725B1 (zh)
JP (4) JP5529123B2 (zh)
KR (2) KR101628412B1 (zh)
CN (4) CN104189968B (zh)
AU (2) AU2009262504B2 (zh)
CA (2) CA2728875C (zh)
EA (1) EA019772B1 (zh)
ES (2) ES2558961T3 (zh)
NZ (1) NZ590699A (zh)
PL (2) PL2303356T3 (zh)
WO (2) WO2009156175A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107787231A (zh) * 2015-06-25 2018-03-09 甘布罗伦迪亚股份公司 检测两个流体容纳系统之间的流体连接的中断
CN110630256A (zh) * 2019-07-09 2019-12-31 吴晓南 一种基于深度长短时记忆网络的低产气油井井口含水率预测系统及方法

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8240636B2 (en) 2009-01-12 2012-08-14 Fresenius Medical Care Holdings, Inc. Valve system
US8114288B2 (en) 2007-11-29 2012-02-14 Fresenlus Medical Care Holdings, Inc. System and method for conducting hemodialysis and hemofiltration
US9358331B2 (en) 2007-09-13 2016-06-07 Fresenius Medical Care Holdings, Inc. Portable dialysis machine with improved reservoir heating system
US9308307B2 (en) 2007-09-13 2016-04-12 Fresenius Medical Care Holdings, Inc. Manifold diaphragms
US8105487B2 (en) 2007-09-25 2012-01-31 Fresenius Medical Care Holdings, Inc. Manifolds for use in conducting dialysis
US8535522B2 (en) 2009-02-12 2013-09-17 Fresenius Medical Care Holdings, Inc. System and method for detection of disconnection in an extracorporeal blood circuit
US8597505B2 (en) 2007-09-13 2013-12-03 Fresenius Medical Care Holdings, Inc. Portable dialysis machine
US8715216B2 (en) * 2008-06-26 2014-05-06 Gambro Lundia Ab Method and device for processing a time-dependent measurement signal
US10089443B2 (en) 2012-05-15 2018-10-02 Baxter International Inc. Home medical device systems and methods for therapy prescription and tracking, servicing and inventory
CN105148344B (zh) 2008-10-07 2019-06-11 弗雷塞尼斯医疗保健控股公司 用于透析系统的充灌系统和方法
WO2010042667A2 (en) 2008-10-07 2010-04-15 Xcorporeal, Inc. Thermal flow meter
NZ614023A (en) 2008-10-30 2014-11-28 Fresenius Med Care Hldg Inc Modular, portable dialysis system
WO2010114932A1 (en) 2009-03-31 2010-10-07 Xcorporeal, Inc. Modular reservoir assembly for a hemodialysis and hemofiltration system
US8457908B2 (en) 2009-06-11 2013-06-04 University Of Washington Sensing events affecting liquid flow in a liquid distribution system
ES2620580T3 (es) 2009-06-26 2017-06-29 Gambro Lundia Ab Dispositivo y método para la extracción de datos
DE102009054395A1 (de) * 2009-11-24 2011-06-01 Fresenius Medical Care Deutschland Gmbh Verfahren zum Anpassen von Grenzwertfenstern, Steuervorrichtung, medizinische Behandlungsvorrichtung und medizinische Überwachungsvorrichtung
US8753515B2 (en) 2009-12-05 2014-06-17 Home Dialysis Plus, Ltd. Dialysis system with ultrafiltration control
EP2519278B1 (en) 2009-12-28 2015-01-28 Gambro Lundia AB Method and device for detecting a fault condition
WO2011080191A1 (en) 2009-12-28 2011-07-07 Gambro Lundia Ab Monitoring blood pressure
KR101773217B1 (ko) 2009-12-28 2017-08-31 감브로 룬디아 아베 피험자의 심장 혈관계의 특성의 모니터링
ES2646821T3 (es) 2009-12-28 2017-12-18 Gambro Lundia Ab Aparato y método para predicción de disminución sintomática rápida de la tensión arterial
WO2011080194A1 (en) 2009-12-28 2011-07-07 Gambro Lundia Ab Device and method for monitoring a fluid flow rate in a cardiovascular system
CN102791306B (zh) 2009-12-28 2015-08-05 甘布罗伦迪亚股份公司 用于检测抽出和返回装置的构造的方法和装置
ES2539821T3 (es) 2009-12-28 2015-07-06 Gambro Lundia Ab Control de un aparato para la transferencia de fluido hasta y/o desde un sujeto
WO2011080193A1 (en) 2009-12-28 2011-07-07 Gambro Lundia Ab Method and device for monitoring the integrity of a connection system
EP2676688B1 (en) 2010-04-28 2017-03-15 Gambro Lundia AB A method and a device for monitoring a state of a blood line in a machine for extracorporeal blood treatment
US8501009B2 (en) 2010-06-07 2013-08-06 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Fluid purification system
US8353870B2 (en) * 2011-04-26 2013-01-15 Fresenius Medical Care Holdings, Inc. Medical temperature sensors and related systems and methods
US9427513B2 (en) 2011-06-23 2016-08-30 Gambro Lundia Ab Detecting blood path disruption in extracorpreal blood processing
PL2725971T3 (pl) 2011-06-30 2020-06-29 Gambro Lundia Ab Filtrowanie zależnego od czasu sygnału ciśnienia
WO2013012721A2 (en) * 2011-07-15 2013-01-24 Vanderbilt University Apparatus and methods for measuring peripheral venous pressure and applications of same
AU2012318561B2 (en) 2011-10-07 2017-04-20 Outset Medical, Inc. Heat exchange fluid purification for dialysis system
FR2984720B1 (fr) * 2011-12-22 2014-03-07 Univ Grenoble 1 Procede et dispositif de surveillance de la mesure de la pression arterielle par catheterisme arteriel d'un patient
AU2013201556B2 (en) 2012-07-13 2014-06-05 Gambro Lundia Ab Filtering of pressure signals for suppression of periodic pulses
WO2014049643A1 (ja) * 2012-09-26 2014-04-03 テルモ株式会社 生命維持装置のためのコントローラ及びその制御方法
ES2635243T3 (es) * 2012-12-18 2017-10-03 Gambro Lundia Ab Detección de pulsos de presión en un aparato de procesamiento de sangre
EP2934618B1 (en) * 2012-12-20 2020-01-15 Gambro Lundia AB Blood set component connection detection
US9201036B2 (en) 2012-12-21 2015-12-01 Fresenius Medical Care Holdings, Inc. Method and system of monitoring electrolyte levels and composition using capacitance or induction
US9157786B2 (en) 2012-12-24 2015-10-13 Fresenius Medical Care Holdings, Inc. Load suspension and weighing system for a dialysis machine reservoir
WO2014147028A1 (en) * 2013-03-20 2014-09-25 Gambro Lundia Ab Monitoring of cardiac arrest in a patient connected to an extracorporeal blood processing apparatus
TWI498099B (zh) * 2013-05-27 2015-09-01 Nat Cheng Kung University Hospital 根據血流聲音判斷疾病之裝置與評估疾病治療效果之方法與裝置
AU2014316960A1 (en) * 2013-09-09 2016-03-10 Gambro Lundia Ab Separation of interference pulses from physiological pulses in a pressure signal
US9354640B2 (en) 2013-11-11 2016-05-31 Fresenius Medical Care Holdings, Inc. Smart actuator for valve
EP2886141B1 (en) 2013-12-18 2017-08-09 Gambro Lundia An apparatus for extracorporeal blood treatment
ES2864727T3 (es) * 2014-04-29 2021-10-14 Outset Medical Inc Sistema y métodos de diálisis
TWI572327B (zh) * 2014-10-01 2017-03-01 國立成功大學醫學院附設醫院 利用音頻訊號判斷流體管路窄化的檢測裝置、電腦程式產品及電腦可讀取媒體
JP6488712B2 (ja) * 2015-01-15 2019-03-27 ニプロ株式会社 透析システム、方法、およびプログラム
US9814400B1 (en) 2015-05-26 2017-11-14 Verily Life Sciences Llc Method for improving accuracy of pulse rate estimation
US9826940B1 (en) 2015-05-26 2017-11-28 Verily Life Sciences Llc Optical tracking of heart rate using PLL optimization
US20180296745A1 (en) 2015-06-25 2018-10-18 Gambro Lundia Ab Device and method for generating a filtered pressure signal
ES2878002T3 (es) * 2015-07-17 2021-11-18 Univ Adelaide Método y sistema para el análisis del estado de tuberías
US10352814B2 (en) 2015-11-10 2019-07-16 Phyn Llc Water leak detection using pressure sensing
US10786164B2 (en) 2015-12-12 2020-09-29 Verily Life Sciences Llc Method for improving heart rate estimates by combining multiple measurement modalities
JP6611694B2 (ja) * 2015-12-15 2019-11-27 株式会社堀場製作所 排ガス計測システム
JP6111351B1 (ja) * 2016-01-25 2017-04-05 日機装株式会社 血液浄化装置
US10172993B2 (en) 2016-04-14 2019-01-08 Fresenius Medical Care Holdings, Inc. Wave-based patient line blockage detection
US10302687B2 (en) * 2016-06-14 2019-05-28 General Electric Company Filtration thresholding
US11058810B2 (en) 2016-06-30 2021-07-13 Gambro Lundia Ab Detection of a disruption of a fluid connection between two fluid containing systems
EP3478338B1 (en) 2016-06-30 2020-03-25 Gambro Lundia AB Detection of a disruption of a fluid connection between two fluid containing systems
EP3490638A4 (en) * 2016-07-29 2020-01-22 Alcyone Lifesciences, Inc. AUTOMATED DRUG DELIVERY SYSTEMS AND METHODS
WO2018035520A1 (en) 2016-08-19 2018-02-22 Outset Medical, Inc. Peritoneal dialysis system and methods
US10712321B2 (en) 2016-11-02 2020-07-14 Wyatt Technology Corporation Method to eliminate periodic noise from data collected with a chromatography system
JP6878589B2 (ja) 2016-12-15 2021-05-26 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated 感知された静脈波形から患者パラメータを監視および決定するためのシステムおよび方法
WO2019006362A1 (en) * 2017-06-30 2019-01-03 Baxter International Inc. SYSTEMS AND METHODS FOR NOISE FILTERING AND VENOUS WAVEFORM SIGNAL ANALYSIS
US11338076B2 (en) * 2017-09-07 2022-05-24 Fenwal, Inc. System and method of using frequency analysis to monitor flow rates
CN107966161B (zh) * 2017-11-09 2020-04-28 内蒙古大学 基于fft的步行检测方法
CN111727065B (zh) * 2018-02-16 2023-06-20 甘布罗伦迪亚股份公司 过滤来自医疗设备的压力信号
CN110319978A (zh) * 2018-03-29 2019-10-11 深圳市水务(集团)有限公司 阀门密闭性检测方法、装置、终端设备及存储介质
US11529449B2 (en) 2019-04-15 2022-12-20 Medtronic, Inc. Medical device dislodgment detection
JP2023538525A (ja) * 2020-08-05 2023-09-08 アウトセット・メディカル・インコーポレイテッド 透析システムおよび方法
CN113970409B (zh) * 2021-10-22 2024-04-12 徐州才聚智能科技有限公司 一种基于时频域分析的液化气泄漏监测方法和装置
CN115068807A (zh) * 2022-05-31 2022-09-20 绍兴梅奥心磁医疗科技有限公司 脉冲式体外肺膜动力泵及体外膜肺氧合装置

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US623443A (en) * 1899-04-18 Cecil throckmorton
US3946731A (en) 1971-01-20 1976-03-30 Lichtenstein Eric Stefan Apparatus for extracorporeal treatment of blood
US3882861A (en) 1973-09-24 1975-05-13 Vital Assists Auxiliary control for a blood pump
US4273122A (en) 1976-11-12 1981-06-16 Whitney Douglass G Self contained powered injection system
CS200909B1 (en) 1977-12-23 1980-10-31 Petr Slovak Haemodlialysation device
US4239047A (en) 1978-05-22 1980-12-16 William L. Griggs, III Method and apparatus for aurally determining presence or absence of pathological stenosis
US4185641A (en) 1978-08-23 1980-01-29 Hewlett-Packard Company Pressure dome
US4277227A (en) 1979-07-02 1981-07-07 Imed Corporation Apparatus for converting a pump to a controller
US4450527A (en) 1982-06-29 1984-05-22 Bomed Medical Mfg. Ltd. Noninvasive continuous cardiac output monitor
EP0328163B1 (en) 1983-04-11 1991-12-18 Ivac Corporation Fault detection apparatus for parenteral infusion system and method of detecting faults in such a system
US4534756A (en) 1983-04-11 1985-08-13 Ivac Corporation Fault detection apparatus and method for parenteral infusion system
US4501483A (en) 1983-09-02 1985-02-26 Eastman Kodak Company Fuser apparatus
US4541282A (en) 1984-03-06 1985-09-17 Honeywell Inc. Method of producing a uniform fluid-tight seal between a thin, flexible member and a support and an apparatus utilizing the same
US4564208A (en) 1984-03-19 1986-01-14 Majestic Rides Mfg. Co., Inc. Trailer stabilizer
US4648869A (en) 1985-12-04 1987-03-10 American Hospital Supply Corporation Automatic infiltration detection system and method
US4828543A (en) 1986-04-03 1989-05-09 Weiss Paul I Extracorporeal circulation apparatus
US4710163A (en) * 1986-06-06 1987-12-01 Ivac Corporation Detection of fluid flow faults in the parenteral administration of fluids
JPH0244069Y2 (zh) 1986-10-20 1990-11-22
DE3720665A1 (de) 1987-06-23 1989-01-05 Schael Wilfried Vorrichtung zur haemodialyse und haemofiltration
DE8710118U1 (zh) 1987-07-23 1988-11-17 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US4979940A (en) 1988-03-08 1990-12-25 Baxter International Inc. Infusion system, methodology, and algorithm for identifying patient-induced pressure artifacts
US4846792A (en) 1988-03-08 1989-07-11 Baxter International Inc. Automatic infiltration detection system and method
US5026348A (en) 1988-06-06 1991-06-25 The General Hospital Corporation Apparatus and method for the detection of IV catheter obstruction and extravasation
US4959050A (en) 1988-09-26 1990-09-25 Baxter International Inc. In-line infiltration detection apparatus and method
JPH0321257A (ja) 1989-01-31 1991-01-30 Aisin Seiki Co Ltd 血液ポンプの駆動装置
US4981467A (en) 1990-02-27 1991-01-01 Baxter International Inc. Apparatus and method for the detection of air in fluid delivery systems
US5146414A (en) 1990-04-18 1992-09-08 Interflo Medical, Inc. Method and apparatus for continuously measuring volumetric flow
US6471872B2 (en) 1991-10-11 2002-10-29 Children's Hospital Medical Center Hemofiltration system and method based on monitored patient parameters
US5690835A (en) 1991-12-23 1997-11-25 Baxter International Inc. Systems and methods for on line collection of cellular blood components that assure donor comfort
US5790036A (en) 1992-07-22 1998-08-04 Health Sense International, Inc. Sensor material for use in detection of electrically conductive fluids
WO1994002918A1 (en) 1992-07-22 1994-02-03 Health Sense International, Inc. System for detection of electrically conductive fluids
US5311871A (en) 1993-01-12 1994-05-17 Yock Paul G Syringe with ultrasound emitting transducer for flow-directed cannulation of arteries and veins
US5910252A (en) 1993-02-12 1999-06-08 Cobe Laboratories, Inc. Technique for extracorporeal treatment of blood
US5427695A (en) 1993-07-26 1995-06-27 Baxter International Inc. Systems and methods for on line collecting and resuspending cellular-rich blood products like platelet concentrate
US5591344A (en) 1995-02-13 1997-01-07 Aksys, Ltd. Hot water disinfection of dialysis machines, including the extracorporeal circuit thereof
US5693008A (en) 1995-06-07 1997-12-02 Cobe Laboratories, Inc. Dialysis blood tubing set
DE19528907C1 (de) 1995-08-05 1996-11-07 Fresenius Ag Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung
SE508374C2 (sv) * 1995-09-12 1998-09-28 Gambro Med Tech Ab Förfarande och anordning för detektering av tillståndet hos en blodkärlsaccess
DE19609698A1 (de) 1996-03-13 1997-09-18 Metrax Gmbh Blutdruckmeßgerät
US5906589A (en) * 1996-11-13 1999-05-25 Cobe Laboratories, Inc. Method and apparatus for occlusion monitoring using pressure waveform analysis
EP0850816A3 (en) * 1996-12-25 1999-04-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Diagnostic apparatus for a dynamic system, braking pressure estimation device, anti-lock brake controller, and braking pressure controller
ES2217539T3 (es) 1997-01-24 2004-11-01 Fresenius Medical Care Deutschland Gmbh Procedimiento y dispositivo para determinar los parametros de hemodialisis.
SE9702074D0 (sv) * 1997-06-02 1997-06-02 Gambro Ab Method and device for calculating dialysis efficiency
DE19734002C1 (de) 1997-08-06 1998-09-17 Fresenius Medical Care De Gmbh Verfahren zur Überwachung eines Gefäßzuganges während einer Dialysebehandlung und Vorrichtung zur Dialysebehandlung mit einer Einrichtung zur Überwachung eines Gefäßzuganges
DE19739099C1 (de) 1997-09-06 1999-01-28 Fresenius Medical Care De Gmbh Verfahren zur Überwachung eines Gefäßzuganges während einer extrakorporalen Blutbehandlung und Vorrichtung zur extrakorporalen Blutbehandlung mit einer Einrichtung zur Überwachung eines Gefäßzuganges
DE19746377C1 (de) 1997-10-21 1999-07-01 Fresenius Medical Care De Gmbh Blutbehandlungsvorrichtung mit einer Einrichtung zur kontinuierlichen Überwachung des Blutdrucks des Patienten
CH692570A5 (de) 1997-12-05 2002-08-15 Peter F Meier Vorrichtung zur Überwachung einer Kathetereinrichtung.
DE19757523C1 (de) 1997-12-23 1999-04-22 Fresenius Medical Care De Gmbh Verfahren zur Überwachung der Funktionsfähigkeit einer Teileinrichtung einer Blutbehandlungsvorrichtung und Blutbehandlungsvorrichtung mit einer Einrichtung zu einer solchen Überwachung
US6337049B1 (en) 1998-08-28 2002-01-08 Yehuda Tamari Soft shell venous reservoir
US6167765B1 (en) 1998-09-25 2001-01-02 The Regents Of The University Of Michigan System and method for determining the flow rate of blood in a vessel using doppler frequency signals
US6575927B1 (en) 1998-09-25 2003-06-10 The Regents Of The University Of Michigan System and method for determining blood flow rate in a vessel
DE19848235C1 (de) 1998-10-20 2000-03-16 Fresenius Medical Care De Gmbh Verfahren zur Überwachung eines Gefäßzuganges und Vorrichtung zur extrakorporalen Blutbehandlung mit einer Einrichtung zur Überwachung des Gefäßzuganges
DE19901078C1 (de) * 1999-01-14 2000-02-17 Polaschegg Hans Dietrich Verfahren und Vorrichtung zur Erkennung von Stenosen bei der extrakorporalen Blutbehandlung
DE19917197C1 (de) * 1999-04-16 2000-07-27 Fresenius Medical Care De Gmbh Verfahren und Vorrichtung zur Ermittlung des Blutflusses in einem Gefäßzugang
DE19940624C5 (de) 1999-08-27 2006-11-16 Fresenius Medical Care Deutschland Gmbh Sicherheitsvorrichtung für eine Blutbehandlungsvorrichtung und Verfahren zur Erhöhung der Sicherheit einer Blutbehandlungsvorrichtung
US7169352B1 (en) 1999-12-22 2007-01-30 Gambro, Inc. Extracorporeal blood processing methods and apparatus
ATE366591T1 (de) 1999-12-22 2007-08-15 Gambro Inc Vorrichtung zur extrakorporalen blutbehandlung
US7608053B2 (en) 2000-01-10 2009-10-27 Caridianbct, Inc. Extracorporeal blood processing methods with return-flow alarm
JP4382322B2 (ja) 2000-03-09 2009-12-09 カリディアンビーシーティ、インコーポレイテッド 体外血液処理装置
JP3375936B2 (ja) 2000-05-10 2003-02-10 富士通株式会社 分波器デバイス
US6887214B1 (en) 2000-09-12 2005-05-03 Chf Solutions, Inc. Blood pump having a disposable blood passage cartridge with integrated pressure sensors
US6623435B2 (en) 2000-07-03 2003-09-23 Seiko Instruments Inc. Pulse wave detecting apparatus
DE10032616A1 (de) 2000-07-08 2002-01-24 Mhm Harzbecher Medizintechnik Systemelemente zur Druckmessung in extrakorporalen Kreisläufen
US6468241B1 (en) * 2000-10-26 2002-10-22 Chf Solutions, Inc. Artificial kidney set with electronic key
US6585675B1 (en) 2000-11-02 2003-07-01 Chf Solutions, Inc. Method and apparatus for blood withdrawal and infusion using a pressure controller
US6780159B2 (en) 2001-01-16 2004-08-24 Biomedical Acoustic Research Corporation Acoustic detection of vascular conditions
US6773670B2 (en) 2001-02-09 2004-08-10 Cardiovention, Inc. C/O The Brenner Group, Inc. Blood filter having a sensor for active gas removal and methods of use
US6470258B1 (en) * 2001-05-18 2002-10-22 General Electric Company System and method for monitoring engine starting systems
ITTO20010582A1 (it) 2001-06-15 2002-12-15 Gambro Dasco Spa Metodo e dispositivo di rilevamento del distacco dell'ago venoso da un paziente durante un trattamento extracorporeo del sangue in una macch
ITTO20010583A1 (it) 2001-06-15 2002-12-15 Gambro Dasco Spa Circuito di circolazione del sangue per una macchina di dialisi e relativa macchina di dialisi.
US7147615B2 (en) 2001-06-22 2006-12-12 Baxter International Inc. Needle dislodgement detection
ITMI20011395A1 (it) 2001-06-29 2002-12-29 Gambro Dasco Spa Metodo e dispositivo di rilevamento del distacco dell'ago venoso da un paziente durante un trattamento extracorporeo del sangue in una macch
US6572576B2 (en) 2001-07-07 2003-06-03 Nxstage Medical, Inc. Method and apparatus for leak detection in a fluid line
US6649063B2 (en) 2001-07-12 2003-11-18 Nxstage Medical, Inc. Method for performing renal replacement therapy including producing sterile replacement fluid in a renal replacement therapy unit
US8348850B2 (en) 2001-07-30 2013-01-08 Henry Ford Health System Method of monitoring dislodgement of venous needles in dialysis patients
EP1419369B1 (en) * 2001-07-30 2014-08-20 Henry Ford Health System Detection of stenosis in the blood circuit for extracorporeal blood treatment
US8974394B2 (en) 2001-07-30 2015-03-10 Henry Ford Health System Device and method for detecting irregular placement of an extracorporeal vascular access needle
US20030128126A1 (en) 2002-01-04 2003-07-10 Burbank Jeffrey H. Method and apparatus for error warning with multiple alarm levels and types
US20030128125A1 (en) 2002-01-04 2003-07-10 Burbank Jeffrey H. Method and apparatus for machine error detection by combining multiple sensor inputs
US7040142B2 (en) 2002-01-04 2006-05-09 Nxstage Medical, Inc. Method and apparatus for leak detection in blood circuits combining external fluid detection and air infiltration detection
DE10201109C1 (de) 2002-01-15 2003-01-23 Fresenius Medical Care De Gmbh Verfahren und Vorrichtung zur Detektion einer Leckage in einem Flüssigkeitssystem einer Blutbehandlungsvorrichtung
US6796955B2 (en) 2002-02-14 2004-09-28 Chf Solutions, Inc. Method to control blood and filtrate flowing through an extracorporeal device
US20040254513A1 (en) * 2002-04-10 2004-12-16 Sherwin Shang Conductive polymer materials and applications thereof including monitoring and providing effective therapy
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
DE10230413B4 (de) * 2002-07-06 2004-07-22 Fresenius Medical Care Deutschland Gmbh Vorrichtung zur Bestimmung des Blutvolumens während einer extrakorporalen Blutbehandlung
US20040041792A1 (en) 2002-09-03 2004-03-04 Criscione John C. Keypad input device
US6976963B2 (en) * 2002-09-30 2005-12-20 Clift Vaughan L Apparatus and method for precision vital signs determination
EP1590018B1 (en) 2003-01-28 2012-09-26 Gambro Lundia AB An apparatus for monitoring a vascular access of a patient
JP4443957B2 (ja) 2003-04-28 2010-03-31 株式会社根本杏林堂 漏出検出装置および方法
WO2005004950A1 (ja) 2003-07-10 2005-01-20 Nikkiso Co., Ltd. 脈拍数測定方法、血圧測定方法、及び血管アクセス監視方法、並びにそれらを用いた医療装置
JP4344793B2 (ja) 2003-07-25 2009-10-14 学校法人桐蔭学園 透析時のアクセストラブル検知システム
US6979306B2 (en) 2003-08-13 2005-12-27 Moll Family Trust Method and device for monitoring loss of body fluid and dislodgment of medical instrument from body
US20050051472A1 (en) 2003-09-10 2005-03-10 Willie Chionh Dialyzer reprocessing system
US7364563B2 (en) 2003-10-02 2008-04-29 Minnetronix, Inc. Continuous volume detection for a flexible venous reservoir in a cardiopulmonary bypass circuit
US8029454B2 (en) 2003-11-05 2011-10-04 Baxter International Inc. High convection home hemodialysis/hemofiltration and sorbent system
US8002727B2 (en) 2003-11-07 2011-08-23 Nxstage Medical, Inc. Methods and apparatus for leak detection in blood processing systems
DE10355042B3 (de) 2003-11-25 2005-06-23 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zum Erkennen von Störungen des Blutflusses in einem extrakorporalen Blutkreislauf
CN1897993B (zh) 2003-12-24 2012-02-08 凯米卡技术有限公司 用于便携式人类透析的透析液再生系统
SE0400330D0 (sv) 2004-02-12 2004-02-12 Gambro Lundia Ab Pressure sensing
JP2005233681A (ja) * 2004-02-17 2005-09-02 Jms Co Ltd 圧力測定装置及び圧力測定方法
US9820658B2 (en) * 2006-06-30 2017-11-21 Bao Q. Tran Systems and methods for providing interoperability among healthcare devices
JP4094600B2 (ja) 2004-10-06 2008-06-04 日機装株式会社 血液浄化装置
JP4290106B2 (ja) 2004-10-15 2009-07-01 日機装株式会社 血液浄化装置
JP4260092B2 (ja) 2004-10-15 2009-04-30 日機装株式会社 血液透析装置
US7615028B2 (en) 2004-12-03 2009-11-10 Chf Solutions Inc. Extracorporeal blood treatment and system having reversible blood pumps
US7693643B2 (en) * 2005-02-14 2010-04-06 Honeywell International Inc. Fault detection system and method for turbine engine fuel systems
CN101208045B (zh) 2005-05-06 2012-06-20 威索诺瓦公司 用于血管内装置导向和定位的设备
JP2006346093A (ja) * 2005-06-15 2006-12-28 Denso Corp 車内生体情報検出装置
US20070004996A1 (en) 2005-06-20 2007-01-04 Lovejoy David A Needle disengagement sensing mechanism
US20070010779A1 (en) 2005-07-07 2007-01-11 Utterberg David S Blood leak monitoring method and apparatus
US20080074307A1 (en) * 2006-05-17 2008-03-27 Olga Boric-Lubecke Determining presence and/or physiological motion of one or more subjects within a doppler radar system
CA2657407A1 (en) * 2006-07-06 2008-01-10 Regents Of The University Of Minnesota Analysis of brain patterns using temporal measures
DE102006032815A1 (de) 2006-07-14 2008-01-17 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zur Überwachung eines extrakorporalen Blutkreislaufs
US8187214B2 (en) 2006-10-30 2012-05-29 Lifebridge Medizintechnik Ag Apparatus for making extracorporeal blood circulation available
US20080108930A1 (en) 2006-11-03 2008-05-08 The Regents Of The University Of Michigan Methods and Systems for Determining Volume Flow in a Blood or Fluid Conduit, Motion, and Mechanical Properties of Structures Within the Body
US8152751B2 (en) 2007-02-09 2012-04-10 Baxter International Inc. Acoustic access disconnection systems and methods
US8409441B2 (en) * 2007-02-27 2013-04-02 Deka Products Limited Partnership Blood treatment systems and methods
CN103845768B (zh) * 2007-02-27 2016-09-28 德卡产品有限公司 血液透析系统及方法
US8357298B2 (en) * 2007-02-27 2013-01-22 Deka Products Limited Partnership Hemodialysis systems and methods
US20080312542A1 (en) * 2007-06-13 2008-12-18 Triage Wireless, Inc. Multi-sensor array for measuring blood pressure
US8535522B2 (en) 2009-02-12 2013-09-17 Fresenius Medical Care Holdings, Inc. System and method for detection of disconnection in an extracorporeal blood circuit
US8597505B2 (en) 2007-09-13 2013-12-03 Fresenius Medical Care Holdings, Inc. Portable dialysis machine
US8197431B2 (en) * 2007-09-21 2012-06-12 Baxter International Inc. Acoustic access disconnect detection system
JP4281835B2 (ja) 2007-11-06 2009-06-17 株式会社ジェイ・エム・エス 血液透析装置
DE102008015832B4 (de) 2008-03-27 2013-08-22 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zur Überwachung eines Gefäßzugangs sowie extrakorporale Blutbehandlungsvorrichtung mit einer Vorrichtung zur Überwachung eines Gefäßzugangs
US8862214B2 (en) * 2008-04-04 2014-10-14 Draeger Medical Systems, Inc. Cardiac condition detection system
US8715216B2 (en) * 2008-06-26 2014-05-06 Gambro Lundia Ab Method and device for processing a time-dependent measurement signal
DE102008061122A1 (de) 2008-12-09 2010-06-17 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zum Ermitteln und/oder Überwachen eines körperlichen Zustandes, insbesondere einer kardiovaskulären Größe, eines Patienten basierend auf einer Amplitude eines Drucksignals
US9053468B2 (en) * 2011-04-07 2015-06-09 General Electric Company Methods and systems for monitoring operation of equipment
US9339348B2 (en) * 2011-08-20 2016-05-17 Imperial Colege of Science, Technology and Medicine Devices, systems, and methods for assessing a vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107787231A (zh) * 2015-06-25 2018-03-09 甘布罗伦迪亚股份公司 检测两个流体容纳系统之间的流体连接的中断
CN110630256A (zh) * 2019-07-09 2019-12-31 吴晓南 一种基于深度长短时记忆网络的低产气油井井口含水率预测系统及方法
CN110630256B (zh) * 2019-07-09 2022-12-02 吴晓南 一种基于深度长短时记忆网络的低产气油井井口含水率预测系统及方法

Also Published As

Publication number Publication date
EA201170089A1 (ru) 2011-08-30
CN102076369A (zh) 2011-05-25
US9442036B2 (en) 2016-09-13
WO2009156175A2 (en) 2009-12-30
JP5611942B2 (ja) 2014-10-22
EP3028725A1 (en) 2016-06-08
CA2728875C (en) 2017-03-28
ES2558961T3 (es) 2016-02-09
CN104189968B (zh) 2017-04-12
US11300474B2 (en) 2022-04-12
AU2009262504A1 (en) 2009-12-30
EP3028725B1 (en) 2018-11-21
KR101630887B1 (ko) 2016-06-15
WO2009156174A2 (en) 2009-12-30
US8715216B2 (en) 2014-05-06
EP2303356A2 (en) 2011-04-06
JP5980836B2 (ja) 2016-08-31
EP2303357B1 (en) 2015-10-28
JP2011525397A (ja) 2011-09-22
EP2303357A2 (en) 2011-04-06
JP2014061429A (ja) 2014-04-10
PL2303356T3 (pl) 2016-07-29
AU2009262505B2 (en) 2014-08-07
JP5805735B2 (ja) 2015-11-04
US20110112595A1 (en) 2011-05-12
AU2009262505A1 (en) 2009-12-30
PL2303357T3 (pl) 2016-04-29
US20160356667A1 (en) 2016-12-08
CN103948979B (zh) 2017-06-16
KR20110025986A (ko) 2011-03-14
ES2574636T3 (es) 2016-06-21
EA019772B1 (ru) 2014-06-30
CA2728871C (en) 2017-01-17
JP5529123B2 (ja) 2014-06-25
WO2009156174A3 (en) 2010-05-20
KR101628412B1 (ko) 2016-06-08
CA2728875A1 (en) 2009-12-30
US20110106466A1 (en) 2011-05-05
CN103948979A (zh) 2014-07-30
US20150019170A1 (en) 2015-01-15
US9383288B2 (en) 2016-07-05
NZ590699A (en) 2012-12-21
KR20110028517A (ko) 2011-03-18
AU2009262504B2 (en) 2014-09-11
CN102076368B (zh) 2014-09-03
CN102076369B (zh) 2014-04-23
CA2728871A1 (en) 2009-12-30
CN102076368A (zh) 2011-05-25
EP2303356B1 (en) 2016-03-23
JP2011525398A (ja) 2011-09-22
JP2014176735A (ja) 2014-09-25
WO2009156175A3 (en) 2010-04-01

Similar Documents

Publication Publication Date Title
CN102076368B (zh) 用于处理时间相关的测量信号的方法及装置
CN102791306B (zh) 用于检测抽出和返回装置的构造的方法和装置
CN102740902B (zh) 用于监测心血管系统中的流体流速的装置和方法
CN102686251B (zh) 对用于向被检体输送流体和/或从被检体输送流体的设备的控制
CN102573618B (zh) 用于数据提取的装置及方法
CN102686150B (zh) 监测受检者的心血管系统的特性
CN102686252B (zh) 用于预测快速症状性血压降低的装置和方法
AU2014233568B2 (en) Method and device for processing a time-dependent measurement signal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170412

Termination date: 20180626

CF01 Termination of patent right due to non-payment of annual fee