CN104157874B - 纳米正极材料LiFePO4的制备方法 - Google Patents

纳米正极材料LiFePO4的制备方法 Download PDF

Info

Publication number
CN104157874B
CN104157874B CN201410419358.8A CN201410419358A CN104157874B CN 104157874 B CN104157874 B CN 104157874B CN 201410419358 A CN201410419358 A CN 201410419358A CN 104157874 B CN104157874 B CN 104157874B
Authority
CN
China
Prior art keywords
preparation
anode material
ball
pressure
pressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410419358.8A
Other languages
English (en)
Other versions
CN104157874A (zh
Inventor
陈秀娟
孙冰雪
马晓杰
夏天东
赵文军
张鹏林
张全文
余淑荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University of Technology
Original Assignee
Lanzhou University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University of Technology filed Critical Lanzhou University of Technology
Priority to CN201410419358.8A priority Critical patent/CN104157874B/zh
Publication of CN104157874A publication Critical patent/CN104157874A/zh
Application granted granted Critical
Publication of CN104157874B publication Critical patent/CN104157874B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

纳米正极材料LiFePO4的制备方法,其步骤为:(1)计算反应物原料的摩尔比为Fe∶C=4∶1,取FePO4·2H2O、Li2CO3、C作为原料,其中Li与助燃剂的摩尔比为(k+1)∶2k,0.5≤k≤9;(2)将称量好的反应物料装入球磨罐中,加入分散剂,然后将球磨罐置于球磨机中进行球磨;(3)将混合均匀的物料放置于模具中,在120MPa的压力下压制成压坯,将压坯放入反应炉中,用钨丝引燃;反应结束后充入氩气至压力为0.5MPa,冷却至室温。

Description

纳米正极材料LiFePO4的制备方法
技术领域
本发明涉及合成纳米正极材料LiFePO4的方法,适用于正极材料LiFePO4工业化生产。
背景技术
LiFePO4是一种锂离子电池用的正极材料。作为正极材料,LiFePO4工作电压适中(3.2V)、比容量高(170nA·h/g)、放电功率大、可快速充电且循环寿命长,在高温与高热环境下稳定性好。从资源上看,由于铁在地壳中含量高、资源丰富,制成的LiFePO4材料也具有资源丰富、安全性能好、无毒无害、对环境友好等优点,成为现今动力电池、储能锂离子电池领域研究和产业开发的重点之一。
目前,正极材料LiFePO4广泛应用的制备方法主要有传统的固相烧结法、溶胶凝胶法、化学共沉淀法等,但这些方法普遍存在合成时间长、工艺繁琐、过程不易控制、设备精度要求高等问题,不能满足社会经济发展的需求。以自蔓延合成法制备LiFePO4与传统工艺相比较,具有能耗低、合成时间短、产品纯度高、粉末粒径分布均匀、生产效率高,同时合成产物易获得亚稳相,具有较好的烧结活性,并且自蔓延合成最大的特点是利用反应物内部的化学能来合成材料,一经点燃,反应即刻自我维持,一般不再补充能量。
发明内容
本发明的目的是提供一种直接经高温自蔓延合成技术制备出纳米正极材料LiFePO4的方法。
本发明是纳米正极材料LiFePO4的制备方法,其步骤为:
(1)计算反应物原料的摩尔比为Fe∶C = 4∶1,取FePO4·2H2O、Li2CO3、C作为原料,其中Li与助燃剂的摩尔比为(k+1)∶2k,0.5≤k≤9;
(2)将称量好的反应物料装入球磨罐中,加入分散剂,然后将球磨罐置于球磨机中进行球磨;
(3)将混合均匀的物料放置于模具中,在120MPa的压力下压制成压坯,将压坯放入反应炉中,用钨丝引燃;反应结束后充入氩气至压力为0.5MPa,冷却至室温。
本发明首次采用自蔓延高温技术制备LiFePO4,其有益之处是:1.由于自蔓延合成时间短,工艺简单,合成过程中可控性强,可以很大程度的提高LiFePO4纯度及产量,且产物活性较高;2.合成过程能耗低,最大限度的节约能源;3.本发明直接合成出纳米级类球形LiFePO4,可有效的增大正极材料的比表面积,对LiFePO4的电化学性能产生积极影响。
附图说明
图1是纳米正极材料LiFePO4的XRD图谱,图2不同k值下纳米正极材料LiFePO4的XRD图谱,图3是实施例1的纳米正极材料LiFePO4的扫描电子显微镜图片,图4是实施例2的纳米正极材料LiFePO4的扫描电子显微镜图片。
具体实施方式
本发明是纳米正极材料LiFePO4的制备方法,其步骤为:
(1)计算反应物原料的摩尔比为Fe∶C = 4∶1,取FePO4·2H2O、Li2CO3、C作为原料,其中Li与助燃剂的摩尔比为(k+1)∶2k,0.5≤k≤9;
(2)将称量好的反应物料装入球磨罐中,加入分散剂,然后将球磨罐置于球磨机中进行球磨;
(3)将混合均匀的物料放置于模具中,在120MPa的压力下压制成压坯,将压坯放入反应炉中,用钨丝引燃;反应结束后充入氩气至压力为0.5MPa,冷却至室温。
以上方法中的反应炉为自蔓延反应炉。
以上方法使用的助燃剂为乌洛托品。
以上方法使用的分散剂为酒精。
以上方法中设置的球磨参数为:球料比0.5∶1,球磨机转速120r/min,球磨时间为3h。
以上方法在120MPa的压力下压制成直径为19mm,厚度为10mm的圆柱形压坯。
实施例1
将质量为5.13g(k=0.5)的反应物混合料中添加酒精分散剂混合后放入行星式球磨机中球磨,设置球磨参数为:球料比0.5:1,球磨机转速120r/min,球磨时间为3h,球磨方式为单向运转。将球磨后的样品粉末在120MPa的压力下压制成Φ19×10mm圆柱形压坏,将压坯放入自蔓延炉中以钨丝引燃,使其完成自蔓延反应,合成反应结束后,向炉中充入氩气至压力为0.5MPa,直至炉膛内温度冷却至室温;如图3所示,测得制备的正极LiFePO4材料与LiFePO4标准谱图(PDF No.40-1499)对照,表征物相的衍射峰基本与LiFePO4标准谱图的衍射峰吻合,具有单一的橄榄石结构,计算得其晶格参数为a=0.60140,b=1.03561,c=0.47041纳米类球形,颗粒大小为20~100nm之间。
实施例2
将质量为5.87g(k=1)的反应物混合料中添加酒精分散剂混合后放入行星式球磨机中球磨,设置球磨参数为:球料比0.5:1,球磨机转速120r/min,球磨时间为3h,球磨方式为单向运转。将球磨后的样品粉末在120MPa的压力下压制成Φ19×10mm圆柱形压坏,将压坯放入自蔓延炉中以钨丝引燃,使其完成自蔓延反应,合成反应结束后,向炉中充入氩气至压力为0.5MPa,直至炉膛内温度冷却至室温;如图4所示,测得制备的正极LiFePO4材料与LiFePO4标准谱图(PDF No.40-1499)对照,表征物相的衍射峰基本与LiFePO4标准谱图的衍射峰吻合,具有单一的橄榄石结构,计算得其晶格参数为a=0.59903,b=1.0404,c=0.47215,其形貌为纳米类球形,颗粒大小为50~100nm左右。
实施例3:
将质量为6.99g(k=9)的反应混合物料中加入酒精分散剂放入行星式球磨机中球磨,设置球磨参数为:球料比0.5:1,球磨机转速120r/min,球磨时间为3h,球磨方式为单向运转。将球磨后的样品粉末在120MPa的压力下压制成Φ19×10mm圆柱形压坯,将压坯放入自蔓延炉中以钨丝引燃,使其完成自蔓延反应,合成 反应结束后,向炉中充入氩气至压力为0.5MPa,直至炉膛内温度冷却至室温;测得制备的正极LiFePO4材料与LiFePO4标准谱图(PDF No.40-1499)对照,表征物相的衍射峰基本与LiFePO4标准谱图的衍射峰吻合,具有单一的橄榄石结构,计算得其晶格参数为a=0.60289,b=1.03626,c=0.47183,其形貌为纳米类球形,颗粒大小为20~150nm左右。

Claims (5)

1.纳米正极材料LiFePO4的制备方法,其步骤为:
(1)计算反应物原料的摩尔比为Fe∶C=4∶1,取FePO4·2H2O、Li2CO3、C作为原料,其中Li与助燃剂的摩尔比为(k+1)∶2k,0.5≤k≤9;所述助燃剂为乌洛托品;
(2)将称量好的反应物料装入球磨罐中,加入分散剂,然后将球磨罐置于球磨机中进行球磨;
(3)将混合均匀的物料放置于模具中,在120MPa的压力下压制成压坯,将压坯放入反应炉中,用钨丝引燃;反应结束后充入氩气至压力为0.5MPa,冷却至室温。
2.根据权利要求1所述的纳米正极材料LiFePO4的制备方法,其特征在于反应炉为自蔓延反应炉。
3.根据权利要求1所述的纳米正极材料LiFePO4的制备方法,其特征在于使用的分散剂为酒精。
4.根据权利要求1所述的纳米正极材料LiFePO4的制备方法,其特征在于设置的球磨参数为:球料比0.5∶1,球磨机转速120r/min,球磨时间为3h。
5.根据权利要求1所述的纳米正极材料LiFePO4的制备方法,其特征在于在120MPa的压力下压制成直径为19mm,厚度为10mm的圆柱形压坯。
CN201410419358.8A 2014-08-25 2014-08-25 纳米正极材料LiFePO4的制备方法 Expired - Fee Related CN104157874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410419358.8A CN104157874B (zh) 2014-08-25 2014-08-25 纳米正极材料LiFePO4的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410419358.8A CN104157874B (zh) 2014-08-25 2014-08-25 纳米正极材料LiFePO4的制备方法

Publications (2)

Publication Number Publication Date
CN104157874A CN104157874A (zh) 2014-11-19
CN104157874B true CN104157874B (zh) 2016-08-24

Family

ID=51883326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410419358.8A Expired - Fee Related CN104157874B (zh) 2014-08-25 2014-08-25 纳米正极材料LiFePO4的制备方法

Country Status (1)

Country Link
CN (1) CN104157874B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934604B (zh) * 2015-06-30 2017-12-29 兰州理工大学 纳米正极材料LiFePO4的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201029918A (en) * 2009-02-12 2010-08-16 Enerage Inc Method for synthesizing lithium phosphate compound having olivine crystal structure
CN101567439B (zh) * 2009-06-01 2011-01-12 南京工业大学 三价铁源合成纳米级LiFePO4锂离子动力电池正极材料的方法
CN103682342B (zh) * 2013-12-26 2016-02-24 山东精工电子科技有限公司 一种提高振实密度和比容量的磷酸铁锂制备方法

Also Published As

Publication number Publication date
CN104157874A (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5347031B2 (ja) リチウム電池用ナノ正極材料及びその製造方法
CN101475157A (zh) 一种磷酸铁锂纳米复合微球的制备方法
CN106602060A (zh) 一种低成本磷酸铁锂材料、其制备方法及用途
CN102569792A (zh) 原位水热碳化一步合成高倍率性能碳包覆磷酸铁锂正极材料的制备方法
Wang et al. Influence of carbon sources on LiFePO4/C composites synthesized by the high-temperature high-energy ball milling method
CN102745663B (zh) 制备磷酸铁锂材料的方法
CN111370697B (zh) 磷酸锰铁锂/碳包覆三元材料及其制备方法、锂离子电池正极和锂离子电池
CN102074681A (zh) 一种掺杂碳纳米管钛酸锂复合电极材料的制备方法
TW201221469A (en) Manufacturing method for lithium iron phosphate material and lithium iron phosphate powder produced thereby
CN103915627B (zh) 采用热等静压方法制备硅酸亚铁锂正极材料的方法
CN103159264A (zh) 一种纯固相法制备锂离子电池正极材料nca的方法
CN113659133A (zh) 一种高压实磷酸铁锰锂正极材料的制备方法
CN103219514A (zh) 一种工业变性淀粉辅助制备碳复合磷酸亚铁锂微纳粉体的方法
Xing et al. Controllable synthesis Co3O4 nanorods and nanobelts and their excellent lithium storage performance
CN106602059A (zh) 一种水系锂离子电池材料的制备方法
CN105753072B (zh) 一种镍锰酸锂、其制备方法及用途
CN108305991A (zh) 磷酸铁锂/碳复合材料及其制备方法
CN104183827B (zh) 一种磷酸铁锂纳米棒及其制备方法
CN101944615B (zh) 一种锂离子电池用磷酸锰锂正极材料及其制备方法
CN110023245A (zh) 一种生产用于锂离子电池应用的高性能钛酸锂阳极材料的方法
CN103326008A (zh) 一种压块烧结合成钛酸锂负极材料的方法
CN104300147A (zh) 一种磷酸铁锂正极材料的制备方法
CN101850957A (zh) 一种制备锂离子电池正极材料纳米级磷酸亚铁锂的方法
CN103413945A (zh) 一种锂离子电池正极材料的制造方法
CN104157874B (zh) 纳米正极材料LiFePO4的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160824

Termination date: 20180825

CF01 Termination of patent right due to non-payment of annual fee