CN104025303A - 使用硅纳米颗粒制造太阳能电池的激光接触工艺、激光系统和太阳能电池结构 - Google Patents

使用硅纳米颗粒制造太阳能电池的激光接触工艺、激光系统和太阳能电池结构 Download PDF

Info

Publication number
CN104025303A
CN104025303A CN201280063535.2A CN201280063535A CN104025303A CN 104025303 A CN104025303 A CN 104025303A CN 201280063535 A CN201280063535 A CN 201280063535A CN 104025303 A CN104025303 A CN 104025303A
Authority
CN
China
Prior art keywords
nano particle
doped silicon
solar cell
particle
silicon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280063535.2A
Other languages
English (en)
Other versions
CN104025303B (zh
Inventor
保罗·卢斯科托福
斯蒂夫·莫里萨
金泰锡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maikesheng Solar Energy Co ltd
Original Assignee
SunPower Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SunPower Corp filed Critical SunPower Corp
Publication of CN104025303A publication Critical patent/CN104025303A/zh
Application granted granted Critical
Publication of CN104025303B publication Critical patent/CN104025303B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种激光接触工艺,采用所述激光接触工艺以形成到达太阳能电池发射极的接触孔(402)。在所述太阳能电池的基板上形成掺杂硅纳米颗粒。用纳米颗粒钝化膜涂覆硅纳米颗粒的单个颗粒或颗粒簇的所述表面(403)。通过将激光束照射到所述已钝化的硅纳米颗粒上而形成到达所述太阳能电池的所述发射极的接触孔(404)。例如,所述激光接触工艺可以是激光烧蚀工艺。在该情况下,可通过使来自所述硅纳米颗粒的掺杂物扩散来形成所述发射极,随后形成到达所述发射极的所述接触孔。作为另一个例子,所述激光接触工艺可以是激光熔融工艺,借此将所述硅纳米颗粒的一部分熔融以形成所述发射极和到达所述发射极的接触孔。

Description

使用硅纳米颗粒制造太阳能电池的激光接触工艺、激光系统和太阳能电池结构
技术领域
本文所述主题的实施例整体涉及太阳能电池。更具体地讲,所述主题的实施例涉及用于制造太阳能电池的设备、工艺和结构。
背景技术
太阳能电池是熟知的用于将太阳辐射转换成电能的装置。太阳能电池包括P型扩散区和N型扩散区,所述扩散区也称为“发射极”。在制造过程中,执行接触工艺以形成到达发射极的接触孔。在接触孔中形成金属触点以电连接于相应的发射极。金属触点允许将外部电路联接到太阳能电池并由太阳能电池提供电力。
接触工艺形成穿过材料层的接触孔,以将发射极暴露出来。接触工艺不得干涉已在位的特定材料结构或材料层,并且不得以降低电性能的方式损害发射极。由于接触工艺涉及渗透穿过发射极之上的多个材料层,因此,这是本身就存在损害太阳能电池的高风险的工艺。
发明内容
在一个实施例中,来形成太阳能电池接触孔的方法包括在太阳能电池基板上形成掺杂硅纳米颗粒。掺杂纳米颗粒被涂覆上纳米颗粒钝化膜。在激光接触工艺中将激光束照射到掺杂硅纳米颗粒上,以形成穿过掺杂硅纳米颗粒到达太阳能电池发射极的接触孔。
在另一个实施例中,太阳能电池包括太阳能电池基板、位于太阳能电池基板上的多个掺杂硅纳米颗粒、具有纳米颗粒钝化膜的多个掺杂硅纳米颗粒的单个颗粒或颗粒簇的表面、穿过所述多个掺杂硅纳米颗粒的接触孔、发射极,以及通过接触孔电连接于发射极的金属触点。
在另一个实施例中,来形成太阳能电池接触孔的方法涉及在太阳能电池基板上形成掺杂硅纳米颗粒。使来自掺杂硅纳米颗粒的掺杂物扩散以形成发射极。掺杂纳米颗粒被涂覆上纳米颗粒钝化膜。在激光接触工艺中将激光束照射到掺杂硅纳米颗粒上,以形成穿过掺杂硅纳米颗粒到达发射极的接触孔。
在另一个实施例中,来形成太阳能电池接触孔的方法包括在太阳能电池的基板上形成掺杂硅纳米颗粒。掺杂纳米颗粒被涂覆上纳米颗粒钝化膜。使用激光束将掺杂硅纳米颗粒的一部分熔融,以形成具有掺杂硅纳米颗粒的熔融部分的太阳能电池发射极,并形成到达太阳能电池发射极的接触孔。
本领域的普通技术人员在阅读包括附图和权利要求书的本公开全文之后,本发明的这些和其他特征对于他们而言将是显而易见的。
附图说明
当结合以下附图考虑时,通过参见具体实施方式和权利要求书可以更完全地理解所述主题,其中在所有附图中,类似的附图标记是指类似的元件。附图未按比例绘制。
图1示意说明根据本发明实施例的太阳能电池激光系统。
图2-7示出了剖视图,其示意说明根据本发明实施例通过激光烧蚀硅纳米颗粒来形成太阳能电池接触孔的方法。
图8-12示出了剖视图,其示意说明根据本发明实施例通过激光熔融硅纳米颗粒来形成太阳能电池接触孔的方法。
图13示出了根据本发明实施例使用激光接触工艺来形成太阳能电池接触孔的方法的流程图。
具体实施方式
在本发明中,提供了许多具体的详细情况,例如设备、组件和方法的例子,从而获得对本发明实施例的全面理解。然而,本领域的普通技术人员将会认识到,本发明可以在没有所述具体细节中的一者或多者的情况下实施。在其他情况下,未示出或描述熟知的详细情况,以避免混淆本发明的方面。
图1示意说明根据本发明实施例的太阳能电池激光系统100。在图1的例子中,激光系统100包括激光源102和激光扫描器104。激光源102可以是市售的激光源。激光扫描器104可以包括检流计激光扫描器。操作中,激光源102根据配置101产生预定波长的激光束103。配置101可以包括开关/旋钮布置、计算机可读的程序代码、软件界面设置和/或设置激光源102的可配置参数的其他方式。配置101可以设置脉冲重复率、每次重复发射的脉冲数、脉冲形状、脉冲振幅、脉冲强度或能量,以及激光源102的其他参数。激光扫描器104在整个被制造的太阳能电池上扫描激光脉冲103,以在其中形成接触孔。例如,图1的太阳能电池可以是图2-7的太阳能电池200或图8-12的太阳能电池300。
图2-7示出了剖视图,其示意说明根据本发明实施例通过激光烧蚀硅纳米颗粒形成太阳能电池200的接触孔的方法。
在图2中,太阳能电池基板包括晶体硅基板203。硅基板203的表面可在硅基板203上形成纳米颗粒201之前被钝化。可通过以下方式将硅基板203的表面钝化:形成到纳米颗粒201的连续界面,或对基板界面进行掺杂以排斥少数载流子。纳米颗粒201也可充当钝化层。在图2的例子中,通过钝化膜202将硅基板203的表面钝化。钝化膜202可包含二氧化硅。作为具体的例子,钝化膜202可包含热生长或沉积在硅基板203的表面上的二氧化硅。一般来讲,钝化膜202可包含任何合适的钝化材料,例如氧化物。钝化膜202也可以根据太阳能电池的特性来选择。
在一个实施例中,纳米颗粒201包括粒度小于500nm的掺杂硅纳米颗粒。可使用N型掺杂物(如,磷)来掺杂硅纳米颗粒201以形成N型发射极,或可使用P型掺杂物(如,硼)来掺杂硅纳米颗粒201以形成P型发射极。下文更显而易见的是,硅纳米颗粒201可充当用于形成发射极的掺杂物源(参见图3)。
使用硅纳米颗粒形成的发射极允许相对长的少数载流子寿命(>1ms),从而提高了太阳能电池的效率。然而,使用硅纳米颗粒作为掺杂物源或作为太阳能电池中多晶硅发射极的替代物并不是成熟的技术,并且迄今为止形成穿过硅纳米颗粒的接触孔并不是熟知的工艺。
在图2的例子中,硅纳米颗粒201在钝化膜202上形成。可通过印刷工艺(例如通过丝网印刷或喷墨打印)形成硅纳米颗粒201。钝化膜202是可选的结构,其可能适用可能不适用,具体取决于太阳能电池的特性。例如,硅纳米颗粒201可以直接形成在基板203的表面上。
在图3中,来自硅纳米颗粒201的掺杂物扩散穿过钝化膜202并进入硅基板203,从而在硅基板203中形成发射极204。用于形成发射极204的扩散过程可包括(例如)在炉中进行的加热步骤。太阳能电池200包括具有不同导电类型的多个发射极,但为了图示清晰起见,图3和后续的图中仅示出了一个发射极。发射极204可具有P型导电性,在这种情况下,硅纳米颗粒201包含P型掺杂物。作为另外一种选择,发射极204可具有N型导电性,在这种情况下,硅纳米颗粒201包含N型掺杂物。一般来讲,具有P型掺杂物的硅纳米颗粒201在基板203的形成P型发射极的区域上方形成,并且具有N型掺杂物的硅纳米颗粒201在基板203的形成N型发射极的区域上方形成。扩散过程将来自硅纳米颗粒201的掺杂物扩散进硅基板203中,从而形成具有相应导电类型的发射极204。
在图4中,硅纳米颗粒201被钝化以使电子-空穴对的复合减到最少并使激光烧蚀工艺得到优化。硅纳米颗粒201被重新标记为已钝化的硅纳米颗粒205,以表明钝化工艺使用纳米颗粒钝化膜206对熔融或聚结的硅纳米颗粒201的单个颗粒或颗粒簇进行涂覆。纳米颗粒钝化膜206可包含在硅纳米颗粒201的单个颗粒或颗粒簇的表面上形成的二氧化硅、氮化硅或其他合适的钝化材料。例如,纳米颗粒钝化膜206可包含氧化物,该氧化物通过在氧化环境中加热硅纳米颗粒201而热生长在硅纳米颗粒201的表面上。取决于硅纳米颗粒201的多孔性,纳米颗粒钝化膜206也可通过化学气相沉积(CVD)(包括通过原子层沉积(ALD))沉积在硅纳米颗粒201的表面上。例如,纳米颗粒钝化膜206可包含氮化硅,该氮化硅通过ALD沉积在硅纳米颗粒201的表面上。
在图4的例子中,硅纳米颗粒201在形成发射极204的扩散过程之后被钝化。由于来自硅纳米颗粒201的掺杂物可以扩散穿过纳米颗粒钝化膜206,因此,硅纳米颗粒201也可在形成发射极204的扩散过程之前被钝化。在扩散过程之前将硅纳米颗粒201钝化可防止硅纳米颗粒201在扩散过程期间会聚结的情况。另一方面,在扩散过程之前将硅纳米颗粒201钝化对于一些应用可以抑制扩散过程。扩散过程和硅纳米颗粒钝化过程的进行顺序将取决于整个制造工艺的详细情况。一般来讲,纳米颗粒钝化膜206可在合成(即,形成硅纳米颗粒201)期间、合成之后但在基板203上形成硅纳米颗粒201之前、或在基板203上形成硅纳米颗粒201之后(如图4中那样)生长或沉积在硅纳米颗粒201的单个颗粒或颗粒簇的表面上。
在图5中,在已钝化的硅纳米颗粒205上形成覆盖层207。覆盖层207可包含沉积的氮化硅或其他覆盖材料。覆盖层207防止水分渗入下面的材料,所述渗入可能使已钝化硅纳米颗粒205和钝化膜202的界面退化。覆盖层207还有利地防止掺杂物在发射极204于覆盖层207形成之后形成的工艺中逃逸到处理室内。具体地讲,用于将来自硅纳米颗粒201的掺杂物驱动到基板203的扩散步骤可在覆盖层207已形成之后执行。在这种情况下,覆盖层207防止掺杂物逃逸到处理室内以及扩散到太阳能电池200的其他结构内。在一些工艺中,覆盖层207是任选的并且可省略。
在图6中,激光接触工艺将激光束103照射到形成于发射极204上的材料上,以形成接触孔208并暴露发射极204。为了图示清晰起见,仅示出了一个接触孔208。太阳能电池200包括多个发射极204,并且可以对每个发射极204形成接触孔208。
在图6的例子中,激光接触工艺包括用于形成穿过硅纳米颗粒的接触孔的激光烧蚀工艺。一般来讲,激光接触工艺可涉及一个或多个激光源、一个或多个激光脉冲、一个或多个激光步骤,并且可包括除烧蚀以外的激光工艺。激光接触工艺可涉及使激光束103移除覆盖层207、已钝化的硅纳米颗粒205和钝化膜202的一部分,以形成接触孔208并暴露发射极204。在一个实施例中,通过激光烧蚀移除已钝化的硅纳米颗粒205的一部分而形成从其中通过的接触孔208。移除覆盖层207和钝化膜202的一部分可以通过激光烧蚀进行,但也可以通过单独的激光步骤中的其他激光工艺进行。
就激光烧蚀而言,纳米颗粒钝化膜206的厚度可相对于硅纳米颗粒201的粒度在较宽范围内,但较之(例如)激光熔融工艺通常要厚一些。激光源102被选择为具有最佳的功率、波长和脉冲时间,以实现对纳米颗粒的烧蚀。由于纳米颗粒的物理性质(包括光学和热学行为)具有尺寸依赖性,所以这些激光特性可能不同于就块状硅而言的那些。可将激光源102的激光束103导向到要形成接触孔208的区域上。该区域可具有小于或等于被已钝化的硅纳米颗粒205覆盖的区域的任何尺寸。
对于具体的激光源102,可定制纳米颗粒钝化膜206相对于硅纳米颗粒201的粒度的厚度。例如,由于硅吸收绿激光而氧化物对于绿激光来说是透明的,因此可调整氧化物(如,二氧化硅、氧化钛、氧化铝、氧化铪)纳米颗粒钝化膜206的厚度以主要透射或吸收绿色波长的激光束103。即,可调整纳米颗粒钝化膜206的厚度以使烧蚀达到最佳效果。纳米颗粒钝化膜206的厚度、硅纳米颗粒201的粒度以及激光源102的特性将取决于太阳能电池的详细情况。
各个纳米颗粒钝化膜206起到隔热体作用,从而对硅纳米颗粒201引起离散的烧蚀事件。这导致能够直接烧蚀硅纳米颗粒201并将对发射极204和基板203的损害降至最低,从而开出到达发射极204表面的接触孔208。接触孔208仅在暴露于激光束103的那些硅纳米颗粒201处开出,而其余的硅纳米颗粒201保持原样。这些剩余的硅纳米颗粒201具有较高的电阻率,并且不能传导载流子也就是不能显著地有助于载流子复合。
在图7中,金属触点209在每个接触孔208内形成,以电连接于相应发射极204的表面。
图8-12示出了剖视图,其示意说明根据本发明实施例通过激光熔融硅纳米颗粒来形成太阳能电池300的接触孔的方法。激光熔融包括涉及退火、烧结、聚结,或提高颗粒温度以引起颗粒凝聚成团的激光工艺。一般来讲,激光熔融涉及具有相对长的脉冲宽度(如,一纳秒以及更长)的激光脉冲。与此形成鲜明对比的是,激光烧蚀涉及具有相对短的脉冲宽度(其可为一皮秒以及更短)的激光脉冲。
在图8中,太阳能电池基板包括晶体硅基板303。可在硅基板303上形成纳米颗粒301之前将硅基板303的表面钝化。可通过以下方式将硅基板303的表面钝化:形成到纳米颗粒301的连续界面,或对基板界面进行掺杂以排斥少数载流子。纳米颗粒301也可充当钝化层。在图8的例子中,通过钝化膜302将硅基板303的表面钝化。钝化膜302可包含二氧化硅。作为具体的例子,钝化膜302可包含热生长或沉积在硅基板303的表面上的二氧化硅。一般来讲,钝化膜302可包含任何合适的钝化材料,例如氧化物。取决于太阳能电池的特性,钝化膜302也可以是任选的。例如,硅纳米颗粒301可以直接形成在基板303的表面上。
在一个实施例中,纳米颗粒301包括粒度小于500nm的掺杂硅纳米颗粒。可使用N型掺杂物(如,磷)掺杂硅纳米颗粒301以形成N型发射极,或可使用P型掺杂物(如,硼)掺杂硅纳米颗粒301以形成P型发射极。硅纳米颗粒301在钝化膜302上形成。可通过印刷工艺(例如通过丝网印刷或喷墨打印)形成硅纳米颗粒301。
在图9中,硅纳米颗粒301被钝化以使电子-空穴对的复合减到最少并使激光熔融工艺得到优化。硅纳米颗粒301被重新标记为已钝化的硅纳米颗粒305,以表明钝化过程给熔融或聚结的硅纳米颗粒301的单个颗粒或颗粒簇涂覆上纳米颗粒钝化膜306。纳米颗粒钝化膜306可包含在硅纳米颗粒301的单个颗粒或颗粒簇的表面上形成的二氧化硅、氮化硅或其他合适的钝化材料。例如,纳米颗粒钝化膜306可包含通过在氧化环境中加热硅纳米颗粒301而热生长在硅纳米颗粒301的表面上的氧化物。取决于硅纳米颗粒301的多孔性,纳米颗粒钝化膜306也可通过CVD(包括通过ALD)沉积在硅纳米颗粒301的表面上。例如,纳米颗粒钝化膜306可包含通过ALD沉积在硅纳米颗粒301的表面上的氮化硅。
在图10中,覆盖层307在已钝化的硅纳米颗粒305上形成。覆盖层307可包含沉积的氮化硅或其他覆盖材料。覆盖层307防止水分渗入下面的材料,所述渗入可能使已钝化硅纳米颗粒305和钝化膜302的界面退化。在一些工艺中,覆盖层307是任选的并且可省略。
在图11中,激光接触工艺将激光束103照射到基板303的形成发射极304的区域上。激光接触工艺将覆盖层307的一部分移除、使已钝化的硅纳米颗粒305熔融,并将钝化膜302的一部分移除,从而形成接触孔308和发射极304。一般来讲,激光接触工艺可涉及一个或多个激光源、一个或多个激光脉冲、一个或多个激光步骤,并且可包括除熔融以外的激光工艺。在一个实施例中,已钝化硅纳米颗粒305的熔融通过激光熔融进行,而覆盖层307的一部分的移除以及钝化膜302的一部分的移除通过激光烧蚀进行。发射极304的大部分包含已熔融的硅纳米颗粒301,该已熔融的硅纳米颗粒301被掺杂,因而具有导电性。
太阳能电池300包括具有不同导电类型的多个发射极304,但为了图示清晰起见,图11和后续的图中仅示出了一个发射极。发射极304可具有P型导电性,在这种情况下,硅纳米颗粒301包含P型掺杂物。作为另外一种选择,发射极304可具有N型导电性,在这种情况下,硅纳米颗粒301包含N型掺杂物。一般来讲,具有P型掺杂物的硅纳米颗粒301在基板303的形成P型发射极的区域上方形成,并且具有N型掺杂物的硅纳米颗粒301在基板303的形成N型发射极的区域上方形成。激光熔融工艺将硅纳米颗粒301熔融,以形成具有相应导电类型的发射极304。
就激光熔融而言,纳米颗粒钝化膜306的厚度可相对于硅纳米颗粒301的粒度在较宽范围内,但较之(例如)激光烧蚀工艺通常要薄一些。激光源102被选择为具有最佳的功率、波长和脉冲时间,以实现对纳米颗粒的熔融。由于纳米颗粒的物理性质(包括光学和热学行为)具有尺寸依赖性,所以这些激光特性可能不同于就块状硅而言的那些。可将激光源102的激光束103导向到要形成接触孔308和发射极304的区域上。该区域可具有小于或等于为已钝化硅纳米颗粒305所覆盖的区域的任何尺寸。各个纳米颗粒钝化膜306均较薄,以便于纳米颗粒钝化膜306在激光熔融过程中破裂,使得那些已熔融的硅纳米颗粒301不被限制在纳米颗粒钝化膜306形成的各个壳体内。可通过纳米颗粒钝化膜、纳米颗粒和激光工艺(例如间接烧蚀或熔融纳米颗粒钝化膜)的各种相互作用导致纳米颗粒钝化膜的破裂。
在进行激光熔融时,硅纳米颗粒301将熔融并重结晶,从而要么形成多晶硅层,要么形成外延硅层。再生长层(其为高度掺杂的多晶硅或单晶硅)充当发射极304。由于将来自硅纳米颗粒301的掺杂物驱出以形成发射极304,所以发射极304的该再生长区域可存在于具有大块基板掺杂的结晶硅区域内,或存在于掺杂率高于基板的区域内。取决于用于激光熔融的位于适当位置的特定薄膜叠堆,该叠堆可在激光熔融硅纳米颗粒301过程中烧蚀,或可能需要第二激光条件以在激光熔融硅纳米颗粒301之前或之后将薄膜叠堆烧蚀。这导致在退火区域的表面上形成接触孔308,该接触孔308具有导电性并且仅在硅纳米颗粒301的暴露于激光束103的区域内形成。硅纳米颗粒301的剩余部分(即,未暴露于激光束103的那些部分)具有较高的电阻率,并且将不会传导载流子或显著地有助于载流子复合。
如之前那样,对于具体的激光源102,可定制纳米颗粒钝化膜306相对于硅纳米颗粒301的粒度的厚度。即,可调整纳米颗粒钝化膜306的厚度以获得最佳的熔融。纳米颗粒钝化膜306的厚度、硅纳米颗粒301的粒度以及激光源102的特性取决于太阳能电池的详细情况。
在图12中,金属触点309在每个接触孔308内形成,以电连接于相应发射极304的表面。
图13示出了根据本发明实施例使用激光接触工艺来形成太阳能电池接触孔的方法的流程图。在图13的例子中,硅纳米颗粒被掺杂以合适的掺杂物,例如掺杂N型掺杂物以形成到达N型发射极的接触孔,或掺杂P型掺杂物以形成到达P型发射极的接触孔(步骤401)。在太阳能电池基板上形成硅纳米颗粒(步骤402)。例如,硅纳米颗粒可以直接沉积在太阳能电池基板上或沉积在位于基板上的另一个层(如,钝化膜)上。
将硅纳米颗粒钝化(步骤403)。硅纳米颗粒可在合成过程中、合成之后但在太阳能电池基板上形成之前,或在太阳能电池基板上形成之后进行钝化。硅纳米颗粒可在形成太阳能电池的发射极之前或之后在太阳能电池基板上进行钝化。可通过用纳米颗粒钝化膜涂覆硅纳米颗粒的单个颗粒或颗粒簇的表面来将硅纳米颗粒钝化。作为具体的例子,氧化物可以热生长在硅纳米颗粒的单个颗粒或颗粒簇的表面上。作为另一个例子,氮化硅可以沉积在硅纳米颗粒的单个颗粒或颗粒簇的表面上。有利地,可针对具体激光源定制纳米颗粒钝化膜的厚度,以满足具体激光接触工艺的需求。
在激光接触工艺中通过将激光束照射到硅纳米颗粒上而形成到达太阳能电池发射极的接触孔(步骤404)。例如,激光接触工艺可包括用于形成穿过硅纳米颗粒的接触孔的激光烧蚀工艺,以及用于形成穿过其他材料的接触孔的其他或相同的烧蚀工艺。在该情况下,可通过使来自硅纳米颗粒的掺杂物扩散到太阳能电池基板内来形成发射极,随后形成将发射极暴露出来的接触孔。作为另一个例子,激光接触工艺可包括激光熔融工艺,借此将硅纳米颗粒熔融以形成到达包含已熔融的硅纳米颗粒的发射极的接触孔。接触孔可穿过覆盖层、硅纳米颗粒和钝化膜形成。穿过除硅纳米颗粒之外的材料的接触孔可通过激光烧蚀或其他激光工艺形成;穿过硅纳米颗粒的接触孔可通过激光熔融形成。使用激光便于形成穿过硅纳米颗粒的相对小的点接触孔,用于提高太阳能电池效率。
如可从上述内容理解的那样,可使用多种激光、硅纳米颗粒尺寸和纳米颗粒钝化膜厚度来执行本发明的实施例,从而满足具体的工艺要求。例如,对于激光烧蚀和激光熔融两者,可以采用具有1fs至10ns脉冲宽度的绿激光或红外(或其他波长)激光。纳米颗粒钝化膜的厚度将取决于硅纳米颗粒的尺寸和激光工艺的类型(即,是烧蚀、还是熔融)。一般来讲,厚度大于硅纳米颗粒直径的25%的纳米颗粒钝化膜往往采用激光烧蚀,且厚度等于或小于硅纳米颗粒直径的25%的纳米颗粒钝化膜往往采用激光熔融。例如,涂覆有10nm厚纳米颗粒钝化膜的200nm直径的硅纳米颗粒更适合于激光熔融。作为另一个例子,具有10nm厚纳米颗粒钝化膜的15nm直径的硅纳米颗粒更适合于激光烧蚀。
已公开了使用硅纳米颗粒制造太阳能电池的激光接触工艺、激光系统和太阳能电池结构。虽然已提供了本发明的具体实施例,但是应当理解,这些实施例是用于举例说明的目的,而不用于限制。通过阅读本发明,许多另外的实施例对于本领域的普通技术人员而言将是显而易见的。

Claims (25)

1.一种形成太阳能电池的接触孔的方法,所述方法包括:
在太阳能电池基板上形成掺杂硅纳米颗粒;
用纳米颗粒钝化膜涂覆所述掺杂硅纳米颗粒;以及
在激光接触工艺中将激光束照射到所述掺杂硅纳米颗粒上,以形成穿过所述掺杂硅纳米颗粒到达所述太阳能电池的发射极的接触孔。
2.根据权利要求1所述的方法,其中所述基板包括硅基板。
3.根据权利要求1所述的方法,还包括:
在所述太阳能电池基板上形成所述掺杂硅纳米颗粒之前,在所述太阳能电池基板上形成钝化膜。
4.根据权利要求3所述的方法,其中所述掺杂硅纳米颗粒在所述钝化膜上形成。
5.根据权利要求4所述的方法,其中所述钝化膜包含二氧化硅。
6.根据权利要求1所述的方法,其中用所述纳米颗粒钝化膜涂覆所述掺杂硅纳米颗粒包括:
在所述掺杂硅纳米颗粒的单个颗粒或颗粒簇的表面上形成二氧化硅。
7.根据权利要求1所述的方法,其中用所述纳米颗粒钝化膜涂覆所述掺杂硅纳米颗粒包括:
在所述掺杂硅纳米颗粒的单个颗粒或颗粒簇的表面上沉积氮化硅。
8.根据权利要求1所述的方法,还包括:
将来自所述掺杂硅纳米颗粒的掺杂物扩散到所述太阳能电池基板内以形成所述发射极,之后在所述激光接触工艺中将所述激光束照射到所述掺杂硅纳米颗粒上以形成到达所述太阳能电池的所述发射极的所述接触孔。
9.根据权利要求1所述的方法,其中当在所述激光接触工艺中将所述激光束照射到所述掺杂硅纳米颗粒上以形成到达所述发射极的所述接触孔时,所述发射极由熔融的掺杂硅纳米颗粒形成。
10.根据权利要求1所述的方法,还包括:
在所述掺杂硅纳米颗粒上形成覆盖层,并且其中所述接触孔穿过所述覆盖层。
11.根据权利要求1所述的方法,还包括使金属触点形成在所述接触孔内,以电连接于所述发射极。
12.一种太阳能电池,所述太阳能电池包括:
太阳能电池基板;
位于所述太阳能电池基板上的多个掺杂硅纳米颗粒,所述多个掺杂硅纳米颗粒的单个颗粒或颗粒簇的表面上具有纳米颗粒钝化膜;
穿过所述多个掺杂硅纳米颗粒的接触孔;
发射极;以及
通过所述接触孔电连接于所述发射极的金属触点。
13.根据权利要求12所述的太阳能电池,其中所述发射极位于所述太阳能电池基板内。
14.根据权利要求12所述的太阳能电池,其中所述太阳能电池基板包括硅基板。
15.根据权利要求12所述的太阳能电池,还包括介于所述太阳能电池基板和所述多个掺杂硅纳米颗粒之间的钝化膜。
16.根据权利要求12所述的太阳能电池,还包括位于所述掺杂硅纳米颗粒之上的覆盖层。
17.一种形成太阳能电池的接触孔的方法,所述方法包括:
在太阳能电池基板上形成掺杂硅纳米颗粒;
使来自所述掺杂硅纳米颗粒的掺杂物扩散以形成发射极;
用纳米颗粒钝化膜涂覆所述掺杂硅纳米颗粒;以及
在激光接触工艺中将激光束照射到所述掺杂硅纳米颗粒上,以形成穿过所述掺杂硅纳米颗粒到达所述发射极的接触孔。
18.根据权利要求17所述的方法,其中在将来自所述掺杂硅纳米颗粒的所述掺杂物扩散以形成所述发射极之前,用所述纳米颗粒钝化膜涂覆所述掺杂硅纳米颗粒。
19.根据权利要求17所述的方法,其中用所述纳米颗粒钝化膜涂覆所述掺杂硅纳米颗粒包括:
在所述掺杂硅纳米颗粒的单个颗粒或颗粒簇的表面上形成二氧化硅。
20.根据权利要求17所述的方法,其中用所述纳米颗粒钝化膜涂覆所述掺杂硅纳米颗粒包括:
在所述掺杂硅纳米颗粒的单个颗粒或颗粒簇的表面上沉积氮化硅。
21.根据权利要求17所述的方法,还包括在所述掺杂硅纳米颗粒上形成覆盖层,并且其中所述接触孔穿过所述覆盖层。
22.一种形成太阳能电池的接触孔的方法,所述方法包括:
在太阳能电池的基板上形成掺杂硅纳米颗粒;
用纳米颗粒钝化膜涂覆所述掺杂硅纳米颗粒;以及
用激光束将所述掺杂硅纳米颗粒的一些部分熔融,以形成具有所述掺杂硅纳米颗粒的所述熔融部分的所述太阳能电池的发射极,并形成到达所述太阳能电池的所述发射极的接触孔。
23.根据权利要求22所述的方法,其中用所述纳米颗粒钝化膜涂覆所述掺杂硅纳米颗粒包括:
在所述掺杂硅纳米颗粒的单个颗粒或颗粒簇的表面上形成二氧化硅。
24.根据权利要求22所述的方法,其中用所述纳米颗粒钝化膜涂覆所述掺杂硅纳米颗粒包括:
在所述掺杂硅纳米颗粒的单个颗粒或颗粒簇的表面上沉积氮化硅。
25.根据权利要求22所述的方法,还包括在所述掺杂硅纳米颗粒上形成覆盖层,并且其中所述接触孔穿过所述覆盖层。
CN201280063535.2A 2011-12-22 2012-12-05 使用硅纳米颗粒制造太阳能电池的激光接触工艺、激光系统和太阳能电池结构 Active CN104025303B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/335,550 US8822262B2 (en) 2011-12-22 2011-12-22 Fabricating solar cells with silicon nanoparticles
US13/335,550 2011-12-22
PCT/US2012/067890 WO2013095924A1 (en) 2011-12-22 2012-12-05 Laser contact processes, laser system, and solar cell structures for fabricating solar cells with silicon nanoparticles

Publications (2)

Publication Number Publication Date
CN104025303A true CN104025303A (zh) 2014-09-03
CN104025303B CN104025303B (zh) 2016-09-21

Family

ID=48653367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280063535.2A Active CN104025303B (zh) 2011-12-22 2012-12-05 使用硅纳米颗粒制造太阳能电池的激光接触工艺、激光系统和太阳能电池结构

Country Status (7)

Country Link
US (2) US8822262B2 (zh)
JP (2) JP6144277B2 (zh)
KR (1) KR102058083B1 (zh)
CN (1) CN104025303B (zh)
AU (1) AU2012355764B2 (zh)
DE (1) DE112012005388T5 (zh)
WO (1) WO2013095924A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643761A (zh) * 2016-09-23 2019-04-16 株式会社Lg化学 有机-无机杂化太阳能电池和用于制造有机-无机杂化太阳能电池的方法
CN112117334A (zh) * 2020-09-11 2020-12-22 青海黄河上游水电开发有限责任公司光伏产业技术分公司 选择性发射极的制备方法及太阳能电池的制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081341A1 (en) * 2013-11-29 2015-06-04 Solexel, Inc. Aluminum oxide passivation for solar cells
US9960287B2 (en) 2014-02-11 2018-05-01 Picasolar, Inc. Solar cells and methods of fabrication thereof
US9837576B2 (en) 2014-09-19 2017-12-05 Sunpower Corporation Solar cell emitter region fabrication with differentiated P-type and N-type architectures and incorporating dotted diffusion
USD822890S1 (en) 2016-09-07 2018-07-10 Felxtronics Ap, Llc Lighting apparatus
US10775030B2 (en) 2017-05-05 2020-09-15 Flex Ltd. Light fixture device including rotatable light modules
USD832494S1 (en) 2017-08-09 2018-10-30 Flex Ltd. Lighting module heatsink
USD846793S1 (en) 2017-08-09 2019-04-23 Flex Ltd. Lighting module locking mechanism
USD877964S1 (en) 2017-08-09 2020-03-10 Flex Ltd. Lighting module
USD833061S1 (en) 2017-08-09 2018-11-06 Flex Ltd. Lighting module locking endcap
USD862777S1 (en) 2017-08-09 2019-10-08 Flex Ltd. Lighting module wide distribution lens
USD872319S1 (en) 2017-08-09 2020-01-07 Flex Ltd. Lighting module LED light board
USD832495S1 (en) 2017-08-18 2018-10-30 Flex Ltd. Lighting module locking mechanism
USD862778S1 (en) 2017-08-22 2019-10-08 Flex Ltd Lighting module lens
USD888323S1 (en) 2017-09-07 2020-06-23 Flex Ltd Lighting module wire guard
US11404270B2 (en) 2018-11-30 2022-08-02 Texas Instruments Incorporated Microelectronic device substrate formed by additive process
US10910465B2 (en) 2018-12-28 2021-02-02 Texas Instruments Incorporated 3D printed semiconductor package
US10861715B2 (en) 2018-12-28 2020-12-08 Texas Instruments Incorporated 3D printed semiconductor package

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080202576A1 (en) * 2007-02-16 2008-08-28 Henry Hieslmair Solar cell structures, photovoltaic panels and corresponding processes
US20090205712A1 (en) * 2008-02-20 2009-08-20 Peter John Cousins Front contact solar cell with formed emitter
CN101707217A (zh) * 2009-11-05 2010-05-12 复旦大学 一种太阳能电池及其制备方法
CN102047389A (zh) * 2008-04-25 2011-05-04 英诺瓦莱特公司 使用ⅳ族纳米颗粒在晶片基底上形成结区

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961425A (en) 1975-06-18 1976-06-08 Measurex Corporation Temperature control system for textile tenter frame apparatus
GB1553356A (en) 1976-12-27 1979-09-26 Hamasawa Kogyo Kk Solar battery
US4322571A (en) 1980-07-17 1982-03-30 The Boeing Company Solar cells and methods for manufacture thereof
US4989059A (en) 1988-05-13 1991-01-29 Mobil Solar Energy Corporation Solar cell with trench through pn junction
US4927770A (en) 1988-11-14 1990-05-22 Electric Power Research Inst. Corp. Of District Of Columbia Method of fabricating back surface point contact solar cells
US5053083A (en) 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US5030295A (en) 1990-02-12 1991-07-09 Electric Power Research Institut Radiation resistant passivation of silicon solar cells
US5057439A (en) 1990-02-12 1991-10-15 Electric Power Research Institute Method of fabricating polysilicon emitters for solar cells
DK170189B1 (da) 1990-05-30 1995-06-06 Yakov Safir Fremgangsmåde til fremstilling af halvlederkomponenter, samt solcelle fremstillet deraf
US5164019A (en) 1991-07-31 1992-11-17 Sunpower Corporation Monolithic series-connected solar cells having improved cell isolation and method of making same
US5432015A (en) 1992-05-08 1995-07-11 Westaim Technologies, Inc. Electroluminescent laminate with thick film dielectric
US5369291A (en) 1993-03-29 1994-11-29 Sunpower Corporation Voltage controlled thyristor
US5360990A (en) 1993-03-29 1994-11-01 Sunpower Corporation P/N junction device having porous emitter
US6084175A (en) 1993-05-20 2000-07-04 Amoco/Enron Solar Front contact trenches for polycrystalline photovoltaic devices and semi-conductor devices with buried contacts
US5738731A (en) 1993-11-19 1998-04-14 Mega Chips Corporation Photovoltaic device
US5549762A (en) 1995-01-13 1996-08-27 International Rectifier Corporation Photovoltaic generator with dielectric isolation and bonded, insulated wafer layers
KR0165423B1 (ko) 1995-07-24 1998-12-15 김광호 반도체 장치의 접속구조 및 그 제조방법
US5641362A (en) 1995-11-22 1997-06-24 Ebara Solar, Inc. Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell
US5777346A (en) 1996-01-16 1998-07-07 Harris Corporation Metal oxide semiconductor controlled thyristor with an on-field effect transistor in a trench
US6211455B1 (en) 1998-07-02 2001-04-03 Astropower Silicon thin-film, integrated solar cell, module, and methods of manufacturing the same
US6423568B1 (en) 1999-12-30 2002-07-23 Sunpower Corporation Method of fabricating a silicon solar cell
US6387726B1 (en) 1999-12-30 2002-05-14 Sunpower Corporation Method of fabricating a silicon solar cell
US6337283B1 (en) 1999-12-30 2002-01-08 Sunpower Corporation Method of fabricating a silicon solar cell
US6274402B1 (en) 1999-12-30 2001-08-14 Sunpower Corporation Method of fabricating a silicon solar cell
US6313395B1 (en) 2000-04-24 2001-11-06 Sunpower Corporation Interconnect structure for solar cells and method of making same
US6333457B1 (en) 2000-08-29 2001-12-25 Sunpower Corporation Edge passivated silicon solar/photo cell and method of manufacture
US6787693B2 (en) 2001-12-06 2004-09-07 International Rectifier Corporation Fast turn on/off photovoltaic generator for photovoltaic relay
US6707046B2 (en) 2002-01-03 2004-03-16 General Electric Company Optimized scintillator and pixilated photodiode detector array for multi-slice CT x-ray detector using backside illumination
JP2003303985A (ja) * 2002-04-12 2003-10-24 Sharp Corp 太陽電池の製造方法およびその方法により製造される太陽電池
US6872321B2 (en) 2002-09-25 2005-03-29 Lsi Logic Corporation Direct positive image photo-resist transfer of substrate design
JP4363029B2 (ja) 2002-11-06 2009-11-11 ソニー株式会社 分割波長板フィルターの製造方法
US6933504B2 (en) 2003-03-12 2005-08-23 General Electric Company CT detector having a segmented optical coupler and method of manufacturing same
US7279832B2 (en) 2003-04-01 2007-10-09 Innovalight, Inc. Phosphor materials and illumination devices made therefrom
US7054408B2 (en) 2003-04-30 2006-05-30 General Electric Company CT detector array having non pixelated scintillator array
US7655999B2 (en) 2006-09-15 2010-02-02 Udt Sensors, Inc. High density photodiodes
US7880258B2 (en) 2003-05-05 2011-02-01 Udt Sensors, Inc. Thin wafer detectors with improved radiation damage and crosstalk characteristics
US6762473B1 (en) 2003-06-25 2004-07-13 Semicoa Semiconductors Ultra thin back-illuminated photodiode array structures and fabrication methods
US8334451B2 (en) 2003-10-03 2012-12-18 Ixys Corporation Discrete and integrated photo voltaic solar cells
US6998288B1 (en) 2003-10-03 2006-02-14 Sunpower Corporation Use of doped silicon dioxide in the fabrication of solar cells
US7075091B2 (en) 2004-01-29 2006-07-11 Ge Medical Systems Global Technology Company, Llc Apparatus for detecting ionizing radiation
US20060060238A1 (en) 2004-02-05 2006-03-23 Advent Solar, Inc. Process and fabrication methods for emitter wrap through back contact solar cells
JP4393938B2 (ja) 2004-07-16 2010-01-06 信越化学工業株式会社 電極材料及び太陽電池、並びに太陽電池の製造方法
DE102004050269A1 (de) 2004-10-14 2006-04-20 Institut Für Solarenergieforschung Gmbh Verfahren zur Kontakttrennung elektrisch leitfähiger Schichten auf rückkontaktierten Solarzellen und Solarzelle
US8399331B2 (en) 2007-10-06 2013-03-19 Solexel Laser processing for high-efficiency thin crystalline silicon solar cell fabrication
US8420435B2 (en) 2009-05-05 2013-04-16 Solexel, Inc. Ion implantation fabrication process for thin-film crystalline silicon solar cells
US8129822B2 (en) 2006-10-09 2012-03-06 Solexel, Inc. Template for three-dimensional thin-film solar cell manufacturing and methods of use
US7554031B2 (en) 2005-03-03 2009-06-30 Sunpower Corporation Preventing harmful polarization of solar cells
US7468485B1 (en) 2005-08-11 2008-12-23 Sunpower Corporation Back side contact solar cell with doped polysilicon regions
JP4462249B2 (ja) * 2005-09-22 2010-05-12 ソニー株式会社 発光ダイオードの製造方法、集積型発光ダイオードの製造方法および窒化物系iii−v族化合物半導体の成長方法
US20070169806A1 (en) * 2006-01-20 2007-07-26 Palo Alto Research Center Incorporated Solar cell production using non-contact patterning and direct-write metallization
AU2006335142B2 (en) 2005-12-21 2011-09-22 Sunpower Corporation Back side contact solar cell structures and fabrication processes
US7718888B2 (en) 2005-12-30 2010-05-18 Sunpower Corporation Solar cell having polymer heterojunction contacts
DE102006028718B4 (de) 2006-06-20 2008-11-13 Infineon Technologies Ag Verfahren zur Vereinzelung von Halbleiterwafern zu Halbleiterchips
EP2035180A2 (en) 2006-06-20 2009-03-18 CHISM, William, W., II Method of direct coulomb explosion in laser ablation of semiconductor structures
TWI328877B (en) 2006-07-20 2010-08-11 Au Optronics Corp Array substrate
US8008575B2 (en) 2006-07-24 2011-08-30 Sunpower Corporation Solar cell with reduced base diffusion area
US8084684B2 (en) 2006-10-09 2011-12-27 Solexel, Inc. Three-dimensional thin-film solar cells
US7705237B2 (en) 2006-11-27 2010-04-27 Sunpower Corporation Solar cell having silicon nano-particle emitter
WO2008073763A2 (en) 2006-12-07 2008-06-19 Innovalight, Inc. Methods for creating a densified group iv semiconductor nanoparticle thin film
US7718707B2 (en) 2006-12-21 2010-05-18 Innovalight, Inc. Method for preparing nanoparticle thin films
WO2008085806A1 (en) * 2007-01-03 2008-07-17 Nanogram Corporation Nanoparticle inks based on silicon/germanium, doped particles, printing and processes for semiconductor applications
US7732104B2 (en) 2007-01-18 2010-06-08 International Business Machines Corporation System and method for eliminating the structure and edge roughness produced during laser ablation of a material
TWI328861B (en) 2007-03-13 2010-08-11 Au Optronics Corp Fabrication methods of thin film transistor substrate
EP2140483A1 (en) 2007-04-04 2010-01-06 Innovalight, Inc. Methods for optimizing thin film formation with reactive gases
US20080251121A1 (en) 2007-04-12 2008-10-16 Charles Stone Oxynitride passivation of solar cell
US7727901B2 (en) 2007-05-03 2010-06-01 Innovalight, Inc. Preparation of group IV semiconductor nanoparticle materials and dispersions thereof
US7838062B2 (en) 2007-05-29 2010-11-23 Sunpower Corporation Array of small contacts for solar cell fabrication
US20100275982A1 (en) * 2007-09-04 2010-11-04 Malcolm Abbott Group iv nanoparticle junctions and devices therefrom
US8198528B2 (en) 2007-12-14 2012-06-12 Sunpower Corporation Anti-reflective coating with high optical absorption layer for backside contact solar cells
US20090188553A1 (en) 2008-01-25 2009-07-30 Emat Technology, Llc Methods of fabricating solar-cell structures and resulting solar-cell structures
US8361834B2 (en) * 2008-03-18 2013-01-29 Innovalight, Inc. Methods of forming a low resistance silicon-metal contact
US7704866B2 (en) 2008-03-18 2010-04-27 Innovalight, Inc. Methods for forming composite nanoparticle-metal metallization contacts on a substrate
US7833808B2 (en) 2008-03-24 2010-11-16 Palo Alto Research Center Incorporated Methods for forming multiple-layer electrode structures for silicon photovoltaic cells
KR20100131524A (ko) * 2008-04-09 2010-12-15 어플라이드 머티어리얼스, 인코포레이티드 태양전지용의 니트라이드화된 배리어 층
US7851698B2 (en) 2008-06-12 2010-12-14 Sunpower Corporation Trench process and structure for backside contact solar cells with polysilicon doped regions
US8383432B2 (en) * 2008-08-07 2013-02-26 Sharp Laboratories Of America, Inc. Colloidal-processed silicon particle device
US8062693B2 (en) 2008-09-22 2011-11-22 Sunpower Corporation Generation of contact masks for inkjet printing on solar cell substrates
US7615393B1 (en) 2008-10-29 2009-11-10 Innovalight, Inc. Methods of forming multi-doped junctions on a substrate
US9070804B2 (en) 2009-02-24 2015-06-30 Sunpower Corporation Back contact sliver cells
US8409911B2 (en) 2009-02-24 2013-04-02 Sunpower Corporation Methods for metallization of solar cells
CN105023973A (zh) 2009-04-21 2015-11-04 泰特拉桑有限公司 形成太阳能电池中的结构的方法
WO2010123980A1 (en) 2009-04-22 2010-10-28 Tetrasun, Inc. Localized metal contacts by localized laser assisted conversion of functional films in solar cells
US8163587B2 (en) * 2009-07-02 2012-04-24 Innovalight, Inc. Methods of using a silicon nanoparticle fluid to control in situ a set of dopant diffusion profiles
JP2011100779A (ja) * 2009-11-04 2011-05-19 V Technology Co Ltd 半導体装置及びその製造方法
US20130233378A1 (en) * 2009-12-09 2013-09-12 Solexel, Inc. High-efficiency photovoltaic back-contact solar cell structures and manufacturing methods using semiconductor wafers
JP2014116327A (ja) * 2011-03-31 2014-06-26 Sanyo Electric Co Ltd 光電変換装置
US8759139B2 (en) * 2011-08-18 2014-06-24 International Business Machines Corporation Buried selective emitter formation for photovoltaic devices utilizing metal nanoparticle catalyzed etching
US20130105806A1 (en) * 2011-11-01 2013-05-02 Guojun Liu Structures incorporating silicon nanoparticle inks, densified silicon materials from nanoparticle silicon deposits and corresponding methods
US8679889B2 (en) * 2011-12-21 2014-03-25 Sunpower Corporation Hybrid polysilicon heterojunction back contact cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080202576A1 (en) * 2007-02-16 2008-08-28 Henry Hieslmair Solar cell structures, photovoltaic panels and corresponding processes
US20090205712A1 (en) * 2008-02-20 2009-08-20 Peter John Cousins Front contact solar cell with formed emitter
CN102047389A (zh) * 2008-04-25 2011-05-04 英诺瓦莱特公司 使用ⅳ族纳米颗粒在晶片基底上形成结区
CN101707217A (zh) * 2009-11-05 2010-05-12 复旦大学 一种太阳能电池及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643761A (zh) * 2016-09-23 2019-04-16 株式会社Lg化学 有机-无机杂化太阳能电池和用于制造有机-无机杂化太阳能电池的方法
CN109643761B (zh) * 2016-09-23 2022-12-16 株式会社Lg化学 有机-无机杂化太阳能电池和用于制造有机-无机杂化太阳能电池的方法
CN109643761B9 (zh) * 2016-09-23 2023-01-20 株式会社Lg化学 有机-无机杂化太阳能电池和用于制造有机-无机杂化太阳能电池的方法
CN112117334A (zh) * 2020-09-11 2020-12-22 青海黄河上游水电开发有限责任公司光伏产业技术分公司 选择性发射极的制备方法及太阳能电池的制备方法

Also Published As

Publication number Publication date
CN104025303B (zh) 2016-09-21
KR20140109440A (ko) 2014-09-15
AU2012355764B2 (en) 2015-04-09
US8822262B2 (en) 2014-09-02
JP2015506577A (ja) 2015-03-02
DE112012005388T5 (de) 2014-08-28
KR102058083B1 (ko) 2020-01-22
AU2012355764A1 (en) 2014-07-17
US20130160833A1 (en) 2013-06-27
US20140352781A1 (en) 2014-12-04
JP2017168859A (ja) 2017-09-21
US9142696B2 (en) 2015-09-22
WO2013095924A1 (en) 2013-06-27
JP6144277B2 (ja) 2017-06-07

Similar Documents

Publication Publication Date Title
CN104025303A (zh) 使用硅纳米颗粒制造太阳能电池的激光接触工艺、激光系统和太阳能电池结构
JP6411604B2 (ja) 太陽電池
JP6831964B2 (ja) 太陽電池
CN101681936B (zh) 清洗由太阳能蚀刻浆料制造的太阳能电池表面开口的方法
TWI523251B (zh) 具有原位表面鈍化之離子植入選擇性射極太陽能電池
KR101457427B1 (ko) 태양전지 및 그 제조방법
WO2011152986A2 (en) Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
WO2010050936A1 (en) Methods of forming multi-doped junctions on a substrate
JP6362545B2 (ja) パワー半導体装置を製造するための方法
US20130247981A1 (en) Solar cell fabrication using a pre-doping dielectric layer
WO2015130334A1 (en) Silicon solar cells with epitaxial emitters
TW201440235A (zh) 具有加強射極層之背接面太陽能電池
WO2015130672A1 (en) Silicon solar cells with epitaxial emitters
JP5253561B2 (ja) 半導体デバイスの製造方法、半導体デバイス、並びに分散体
JP2006332095A (ja) 光電変換装置およびそれを用いた光発電装置
JP5762575B2 (ja) 光電変換素子の製造方法および光電変換素子
TW201626585A (zh) 太陽能電池及其製造方法
JP5780934B2 (ja) 光電変換素子の製造方法および光電変換素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220830

Address after: Singapore, Singapore City

Patentee after: Maikesheng solar energy Co.,Ltd.

Address before: California, USA

Patentee before: SUNPOWER Corp.