CN101681936B - 清洗由太阳能蚀刻浆料制造的太阳能电池表面开口的方法 - Google Patents

清洗由太阳能蚀刻浆料制造的太阳能电池表面开口的方法 Download PDF

Info

Publication number
CN101681936B
CN101681936B CN2008800151339A CN200880015133A CN101681936B CN 101681936 B CN101681936 B CN 101681936B CN 2008800151339 A CN2008800151339 A CN 2008800151339A CN 200880015133 A CN200880015133 A CN 200880015133A CN 101681936 B CN101681936 B CN 101681936B
Authority
CN
China
Prior art keywords
dielectric layer
silicon
contact
heat treatment
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008800151339A
Other languages
English (en)
Other versions
CN101681936A (zh
Inventor
阿吉特·罗哈吉
威猜·米蒙空革
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georgia Tech Research Corp
Original Assignee
Georgia Tech Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39672716&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101681936(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Georgia Tech Research Corp filed Critical Georgia Tech Research Corp
Publication of CN101681936A publication Critical patent/CN101681936A/zh
Application granted granted Critical
Publication of CN101681936B publication Critical patent/CN101681936B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Cleaning In General (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明描述了一种薄硅太阳能电池,其具有背表面介电钝化层以及具有局部背面场的后接触。特别地,该太阳能电池可由厚度为50至500微米的晶体硅制成。阻挡层和介电层至少施加到硅晶片的背表面,以避免硅晶片在形成后接触时变形。对介电层形成至少一个开口。提供背面场的铝接触形成在开口中和介电层上。铝接触可通过丝网印刷含1~12原子%的硅的铝浆料,并接着在750摄氏度的温度下对其进行热处理来施加。

Description

清洗由太阳能蚀刻浆料制造的太阳能电池表面开口的方法
政府利益
本发明由美国能源部的合同号为DE-FC36-07GO17023的项目资助,美国政府享有本发明的已付费的非独占的、世界范围内的许可,且在特定的情况下有权基于合理的理由要求专利权人许可给他人。
技术领域
本发明一般性地涉及硅太阳能电池。更具体地,本发明涉及背接触或后接触的形成,其提供背表面钝化和光学限制性能。
背景技术
太阳能电池是将光能转化为电能的装置。这些装置也常常称为光伏(PV)电池。太阳能电池可由各种半导体制造。一种常用的半导体材料是晶体硅。
太阳能电池具有三个主要元件:(1)半导体;(2)半导体结;以及(3)导电接触。诸如硅的半导体可掺杂为n-型或p-型。如果n-型硅和p-型硅形成为彼此接触,则它们在太阳能电池中接触的区域就是半导体结。半导体吸收光。来源于光的能量传输到硅层中的原子的价电子,使得价电子逃逸其束缚态,从而留下空穴。与p-n结有关的电场将这些光生电子和空穴分离。导电接触使得电流从太阳能电池流到外电路。
图1示出了现有技术中太阳能电池的基本元件。太阳能电池可以在硅晶片上制造。太阳能电池5包括p-型硅基板10、n-型硅发射体20、底部导电接触40以及顶部导电接触50。p-型硅基板10和n-型硅发射体20彼此接触形成结。n-型硅20接合至顶部导电接触50。p-型硅10接合到底部导电接触40。顶部导电接触50和底部导电接触40接合到负载75,为其供电。
由银构成的顶部导电接触50(“前接触”)使电流流入太阳能电池5。但是,因为银不完全透光,所以顶部导电接触50没有覆盖电池5的整个表面。因此,顶部导电接触50具有栅格图案,使得光进入太阳能电池5。电子从顶部导电接触50流出,并穿过负载75,然后经由底部导电接触40与空穴结合。
底部导电接触40(“后接触”或“背接触”)通常由铝-硅共晶体构成。这种导电接触40通常覆盖p型硅10的整个底部,以使导电最大化。铝和硅在约750摄氏度的高温下形成合金,这大大高于铝-硅共晶温度577摄氏度。这种合金化反应在基板底部产生重掺杂p-型区域,并在该处产生强电场。该电场有助于防止光生电子与空穴在背接触处复合,使得它们可在p-n结处被更有效地收集。
硅和导电接触之间的界面典型地是具有高复合的区域。例如,在整个背表面的铝背面场的背表面复合速率是500厘米每秒或更快。高的背表面复合速率会降低电池效率。
发明内容
已经使用的一种降低背接触处的复合的方法是在硅晶片的后表面上形成二氧化硅的介电层。这种介电层改善钝化,但会引发其他问题,例如如何形成从介电层到硅的开口以及如何优化各个窗口的尺寸和间距。而且,介电层无法在接触形成期间保护硅晶片免受可使硅晶片变形的铝-硅合金化。薄膜硅晶片特别容易变形。现有技术中用于减少背表面处的复合的方案未充分解决其他问题,例如防止薄膜硅的变形、确定介电开口的尺寸和间距、清洁介电开口以及在介电开口处形成高质量的背面场。
本文提出的方案包括一种太阳能电池结构,其具有介电钝化层以及具有局部铝背面场的后接触。提供一种形成后接触的方法。在一个实施方案中,介电层在具有n区域和p区域的薄的结晶晶片的后面上形成。通过丝网印刷蚀刻浆料在介电层中形成开口,接着进行第一热处理。氢氟酸溶液可用于移除由蚀刻浆料留下的任何残留物。通过在整个背表面上丝网印刷接触浆料接着进行第二热处理形成后接触。接触浆料由铝和1~12原子%的硅构成。接触浆料中硅的存在使得第二热处理期间铝对硅的需要得到满足,并在局部开口处提供高质量的背面场接触。在铝中使用少量或不使用玻璃粉有助于避免使装置性能降低的明显的铝穿透介电层。
以上内容为发明概要,因此根据需要包含简述、概括和细节的省略;因此,本领域技术人员应理解上述发明内容仅仅是说明性的,且不旨在以任何方式对本发明进行限制。仅仅由权利要求限定的本发明的其他方面、创造性特征和优点将通过下文的非限制性的详述变得显而易见。
附图说明
图1是现有技术的太阳能电池的截面图。
图2是形成具有局部背面场的背接触的工艺的一个实施方案的流程图。
图3A是线状背接触的DESSIS模拟区域。
图3B是点状背接触的DESSIS模拟区域。
图4A是DESSIS输出图,其示出了宽度为75微米的接触的间距与效率的关系。
图4B是DESSIS输出图,其示出了宽度为150微米的接触的间距与效率的关系。
图5A至5D是不同的铝接触浆料的局部背面场在电子显微镜下的截面图。
图6A至6E是在背接触制造工艺的各个阶段的硅晶片的一个实施方案的截面图。
图7A是对具有点状图案的硅的窗开口的一个实施方案的底视图。
图7B是对具有线状图案的硅的窗开口的一个实施方案的底视图。
图8是用丝网印刷蚀刻浆料处理的介电层的开口在电子显微镜下的顶视图。
发明详述
在以下详述中,阐述了许多具体细节以便全面理解本发明。但是,本领域技术人员应理解,本发明可以在没有这些具体细节的情况下实施。在其他情况下,公知的方法、程序、组件和电路并未详细说明,以免混淆本发明的主旨。
图2描述的是形成高质量后接触的流程图,该后接触保护硅晶片在合金化过程中免受损伤并提供局部背面场。希望产生局部背面场(BSF),因为其有助于减少在太阳能电池背表面处的电子复合。如果太阳能电池具有高质量的局部BSF,则由此可提高太阳能电池的效率。
在操作200中,p-型或n-型层在硅晶片上形成。该硅晶片可以是结晶的。该硅晶片可具有200至250微米的厚度。对于另一实施方案,硅晶片可具有50至500微米的厚度。在硅晶片整个背表面的铝-硅合金化会使薄硅晶片变形。因此,在操作210中,在硅晶片的前表面和背表面上生长阻挡层和介电层,而不是在硅晶片上直接形成全部区域的接触。介电层可同步或同时地生长。对于本发明的一个实施方案,介电层是二氧化硅。对于本发明的另一实施方案,介电层可以是氧化铝。
通过旋涂工艺可形成二氧化硅以在各个面上达到1000至5000埃的厚度。在旋涂工艺期间,液态电介质沉积在旋转的晶片上。旋涂前体可以是二氧化硅溶胶凝胶。二氧化硅溶胶凝胶可从Filmtronics Inc.购买,商品名为“20B”。旋涂工艺之后,晶片在150至250摄氏度的温度下干燥10至20分钟。二氧化硅可在常规管式炉中、在875至925摄氏度的温度下、在氧气气氛中进行固化。旋涂工艺可形成较厚的、更均匀的二氧化硅层,这使得电介质成为用于单侧扩散的扩散掩模。
可替代地,二氧化硅可通过化学气相沉积或等离子体增强化学气相沉积(PECVD)工艺形成。这些工艺可利用硅烷和氧气作为前体,并在300至500摄氏度的温度下进行10至20分钟。可使用反应室来控制用于该工艺的反应物。
在操作215中,在晶片的前表面和背表面上形成阻挡层。该阻挡层可由厚度为100至700埃的氮化硅构成。氮化硅层可利用PECVD来形成。硅烷和氨可分别作为硅和氮的PECVD前体。可替代地,氮化硅层可利用低压化学气相沉积工艺在合适的反应室中形成。前表面上的阻挡层提供了抗反射涂层以有助于吸收光。阻挡层还保护介电层。若背表面没有阻挡层,则背表面介电层可能会受到铝的穿透和由空气引入杂质的影响。而且,在没有阻挡层的情况下,在丝网印刷接触的焙烧期间,介电层更容易为高温所损伤。
在操作220中,在硅晶片的背表面上的介电和阻挡层中形成至少一个开口。如果形成多个开口,则开口可在硅晶片的整个表面上均匀分布。对于本发明的一个实施方案,通过将太阳能蚀刻浆料施加到阻挡层而制造开口。示例性的太阳能蚀刻浆料由Merck&Co.,Inc.制造,其商品名为“SolarEtch AX M1”。太阳能蚀刻浆料还可用于在前表面介电层中制造开口。该蚀刻浆料可包括磷酸、氢氟酸、氟化铵或氟化氢铵。操作220中形成的开口可为点状或线状。
该浆料应当仅施加到介电层中需要形成开口的区域。可利用丝网印刷机来施加该浆料。基板的开口的最佳尺寸和间距是晶片电阻率的函数。诸如Device Simulations for Smart Integrated System(DESSIS)的计算机程序可用于确定开口的最佳尺寸和间距。DESSIS基于如下参数来计算最佳间距,这些参数包括接触类型(点或线)、接触尺寸(75微米或150微米)以及横向BSF(存在或不存在)。模拟区域源于最小单位电池,其可周期性延伸而表示整个结构。为了简化模拟问题,可限定前接触参数使得前接触均匀分布。在这种情况下,在DESSIS模拟中,单位电池的尺寸由背接触的几何结构来控制。
图3A示出线接触的模拟区域。图3A的模拟区域包括p型硅300、n型硅310、介电层320、第一导电接触330、第二导电接触360和局部BSF370。p型硅300接合至n型硅310、介电层320和局部BSF370。局部BSF370接合至第二导电接触360。n型硅310接合至第一导电接触330。
类似地,图3B中示出点接触的模拟区域。图3B的模拟区域包括p型硅300、n型硅310、介电层320、第一导电接触330、第二导电接触360和局部BSF370。p型硅300接合至n型硅310、介电层320和局部BSF370。局部BSF370接合至第二导电接触360。n型硅310接合至第一导电接触330。
光产生参数可设定为假设均匀光入射到具有54.7度晶面角、2.0的抗反射指数层以及75纳米厚的织构硅表面上。入射光还可减少约8.5%,以说明实际器件中被前接触所遮蔽的情况。内部前表面反射可设定为92%。背表面反射可设定为85%。
发射体的分布可以是高斯分布,其在表面具有1.14×1020每立方厘米的n型掺杂浓度峰值,且具有0.3微米的结深,其对应于具有约80欧姆每平方的片电阻的发射体。可替代地,发射体的片电阻可在70至90欧姆每平方的范围内变化。
背接触处的局部BSF可限定为具有1×1019每立方厘米的恒定的p型掺杂浓度,厚度为1.47微米。这导致在2.0欧姆-厘米的基板上的接触处的有效表面复合速率为约300厘米每秒。为模拟横向BSF,BSF层可横向延伸至接触边缘外至少1.3微米。为模拟无横向BSF,BSF层可限定为仅覆盖接触区域。
其他的参数设定可包括50至200微米的电池厚度、1.5至2.5欧姆-厘米的电阻率、50000至70000厘米每秒的前表面复合速率、40至60厘米每秒的介电层处的背表面复合速率以及零欧姆-平方厘米的接触电阻。利用这些参数,图4A示出了说明宽度为75微米的接触的接触间距与太阳能电池效率的关系的DESSIS输出图,图4B示出了说明宽度为150微米的接触的接触间距与太阳能电池效率的关系的图。
在施加蚀刻浆料之后,蚀刻浆料暴露于温度为300至380摄氏度的热源30至45秒。该热源与太阳蚀刻浆料一起使浆料下的阻挡层和介电层溶解,从而为基板留下开口。可利用氢氟酸溶液来移除开口中或开口周围的任何所得残留物。
对于本发明的另一实施方案,可利用激光或机械划线来形成介电层中的开口。开口可覆盖后表面区域的1%~10%。在操作220之后,介电层仍然保留在后表面的剩余部分上。
在操作230中,将包含了1~12原子%的硅的铝浆料施加至后接触层。对于本发明的一个实施方案,铝浆料的商品号可为:AL 53-090、AL 53-110、AL 53-120、AL 53-130、AL 53-131或AL 5540,均可由Ferro公司购买。对于本发明的另一实施方案,铝浆料可以是购自由DuPont Corporation、Cermet Materials,Inc.、Chimet Chemicals、Cixi Lvhuan HealthyProducts、Daejoo Electronic Materials、Exojet Electronic、HamiltonPrecision Metals,Inc.、Metalor Technologies、PEMCO Corporation、Shanghai Daejoo、Young Solar或Zhonglian Solar Technology生产的市售铝浆料。铝浆料可包括分散于有机介质中的微细铝颗粒。有机介质可还包括诸如乙基纤维素或甲基纤维素的粘合剂以及诸如松油醇或卡必醇的溶剂。将硅组分添加到铝浆料中使所得“接触浆料”包含1~12原子%的硅。
图5A至5D示出铝浆料中的硅组分改善了局部BSF的形成。BSF的质量由BSF区域的均匀性和厚度所限定。图5A至5D是扫描电子显微镜的截面视图。图5A是由烧结的铝浆料形成的局部BSF。图5B是由无烧结的铝浆料形成的局部BSF。图5C是由具有7原子%的硅的无烧结的铝浆料形成的局部BSF。图5D是由具有12原子%的硅的无烧结的铝浆料形成的局部BSF。从图5A至5D中可见,与不含硅的铝浆料相比,具有1~12原子%的硅的铝浆料产生较高质量的BSF。局部BSF可有助于特别是在具有高电阻率的基板上实现良好的欧姆接触。
而且,局部BSF有助于使金属界面处的高复合的影响最小化。在整个背表面的铝BSF的背表面复合速率为约500厘米每秒。与之相比,具有由含12%的硅的铝浆料形成的局部铝BSF的介电层背表面钝化,使得背表面复合速率降至125厘米每秒或更小。
具有铝和硅的接触浆料可利用丝网印刷机施加。对于本发明的一个实施方案,接触浆料是未烧结的。对于本发明的另一实施方案,接触浆料是低烧结的。未烧结或低烧结的铝不会蚀刻或干扰介电层。
接着,对接触浆料进行热处理。在操作240中,“升温”至700至900摄氏度的温度。升温至峰值温度的时间是1~5秒。硅在高于共晶温度的温度下溶解于铝中,这形成了熔融的铝和硅合金。快速升温时间有助于形成更均匀的BSF。一旦达到峰值温度,在操作250中,保持该温度3秒或更短。例如,峰值温度可保持1~3秒。峰值温度保持这么短的时间段有助于避免结泄漏电流,这是因为杂质扩散至结的几率更小。
最后,在操作260中,温度“降温”至400摄氏度或更低。降温时间为3~6秒。该快速降温时间可通过强制冷却来实现。例如,风扇或将晶片从热源快速移出的传送带可用于使温度快速降温至400摄氏度或更低。
快速降温为主体区提供了钝化。在本发明的一个实施方案中,阻挡层可包含4×1021~7×1022原子每立方厘米的氢浓度。可通过PECVD前体将氢引入氮化硅层。因此,在热处理期间,氢可从阻挡层中解离。接着,氢原子可通过附着于硅中的缺陷而有助于硅晶片主体区中的钝化。
硅在铝中的溶解度与合金的温度成正比。因此,在冷却期间,合金中硅的百分比下降。过量的硅从熔体中析出并在液体硅界面处外延再生长。根据固化温度下铝在硅中的有限固溶度,该再生长层被铝掺杂。因此该再生长层变为p+BSF层。
如果使用纯铝而不是铝和硅的组合的话,那么在高温下,铝嗜硅。因此,减少了开口中硅析出到硅表面上。这使得后表面钝化的质量降低和使得电池性能降低。
与含硅的铝后接触接合的介电层还用于改善绝对电池效率。绝对电池效率用于衡量太阳能电池将输入的光转化成能量的能力。全区域铝共晶背接触具有约60%的背表面反射率。背表面反射率定义为由背表面反射回进入硅的入射光的百分比。本发明公开的背接触产生大于85%的背表面反射率。接合至铝和硅后接触的介电层将电池效率提升1~2%。
接触浆料中1~12原子%的硅添加剂用于使铝为硅所饱和。因为铝具有硅富集,所以在冷却期间更多的硅从熔体中析出到开口。析出的硅具有铝富集,并在液体硅界面处外延再生长,从而形成p+BSF层。图5A至5D示出实验室测试的结果,表明借助于硅添加剂,可以实现6~15微米深度的局部BSF。
后接触通常直接施加到硅晶片的整个背表面上。如果硅添加到铝浆料并施加到基板的整个背表面,则因为会从硅基板中溶解更少的硅,所以可观察到BSF层厚度的减小。因此,这与将硅添加到铝浆料的常识相反。但是发明者披露,将硅添加到铝浆料会增加局部开口几何结构的BSF的深度。在铝浆料中没有硅的情况下,远离开口的铝层在冷却期间需要大于12原子%的硅来保持平衡状态。这使得开口中用于再生长的硅的量减少,从而产生较薄的局部BSF。在铝浆料中添加硅满足铝中对硅的需求。因此,开口中的熔融铝-硅合金中的大部分硅可用于再生长,从而产生较厚的局部BSF。
除了改善BSF之外,具有硅的接触浆料有助于避免铝穿透。硅在铝中的溶解度随着温度升高而增加。随着硅扩散入铝中,铝进而会填充由离去的硅所产生的空隙。如果铝穿透硅晶片的p-n或p+-p结,则会使性能降低。
如上所述,因为接触浆料具有1~12原子%的硅,所以铝已经被硅原子饱和。因此,在热处理期间,可以避免来自于基板的硅原子扩散入铝层中。因此,由于在基板中不存在由离去的硅产生的空隙,所以避免铝穿透。
图6A至6D示出了处于制造工艺中不同阶段的硅晶片的一个实施方案的截面图。图6A示出了硅晶片,其具有接合至扩散层610的掺杂基板600。
图6B中,介电层620接合至掺杂基板600。而且,介电层630接合至扩散层610。该介电层620可以是二氧化硅。介电层620可由上述旋涂工艺制成。
图6C示出了接合至介电层620的阻挡层640和接合至介电层630的阻挡层650。阻挡层640和650可由通过PECVD形成的氮化硅构成。阻挡层640和650为介电层提供保护。而且,阻挡层650可为太阳能电池的前表面提供抗反射涂层。
图6D示出了介电层620和阻挡层640中的开口625。在介电层630和阻挡层650中也可形成开口635。对于本发明的一个实施方案,开口625和开口635可通过将太阳能蚀刻浆料施加到介电层并接着对介电层实施热处理而形成。热处理可包括300~380摄氏度的温度。热处理使浆料下的介电层溶解,形成至介电层805中的硅810的开口,如图8所示。图8示出了具有至硅810的开口的介电层805的底视平面图。对于本发明的另一实施方案,开口625和开口635可通过激光形成。对于本发明的又一实施方案,开口625和开口635可由机械划线形成。
开口625可为点状或线状。图7A示出阻挡层740的底视平面图,其具有至硅的点状开口725。点状开口可为矩形或圆形。图7B示出阻挡层740的底视平面图,其具有至硅的线状开口725。
图6E示出了后接触660,其接合至介电层620、阻挡层640,且通过开口625接合至掺杂的基板600。这种后接触可由具有1~12原子%的硅的铝构成。在铝中添加硅获得了具有6~15微米的深度的高质量的BSF670。
在以上说明书中,已经参照本发明的特定示例性实施方案描述了本发明。但是显而易见的是,在不脱离由所附权利要求设定的本发明的较宽的精神和范围的情况下,可对本发明进行各种改进和改变。因此,说明书和附图应视为说明性的而不是限制性的。

Claims (14)

1.一种用于形成背接触的方法,包括:
在厚度为50~200微米的薄硅晶片的掺杂基板上形成扩散层,其中所述硅晶片具有前表面和背表面;
在所述硅晶片的背表面上形成旋涂介电层;
在所述旋涂介电层上形成阻挡层;
对所述阻挡层的1~10%的表面区域施加蚀刻浆料;
在300~380摄氏度的温度下对所述蚀刻浆料进行第一热处理,其中所述第一热处理实施30~45秒,其中所述蚀刻浆料蚀刻穿透所述阻挡层和所述旋涂介电层的至少一部分;
利用含氢氟酸的溶液从开口移除残留物,以及
通过所述开口形成接触。
2.权利要求1的方法,其中通过所述开口形成接触还包括:
在所述第一热处理之后,对所述硅晶片的背表面施加接触浆料。
3.权利要求2的方法,其中所述接触浆料是含1~12原子%的硅的铝浆料。
4.权利要求2的方法,还包括:
在700~900摄氏度的峰值温度下对所述接触浆料进行第二热处理。
5.权利要求4的方法,其中所述第二热处理在所述峰值温度下实施1~3秒。
6.权利要求1的方法,还包括:
利用Device Simulation for Smart Integrated System(DESSIS)来确定对所述介电层的部分表面区域施加蚀刻浆料。
7.权利要求6的方法,还包括:
将参数输入DESSIS以确定蚀刻浆料施加,其中所述参数包括发射体片电阻、电池厚度、电阻率、前表面复合速率、介电层处的背表面复合速率以及接触电阻。
8.权利要求7的方法,其中所述发射体片电阻为70~90欧姆每平方,所述电池厚度为90~200微米,所述电阻率为1.5~2.5欧姆-厘米,所述前表面复合速率为50000~70000厘米每秒,所述介电层处的背表面复合速率为40~60厘米每秒且所述接触电阻是零欧姆-平方厘米。
9.一种用于形成后接触的方法,包括:
在厚度为50~200微米的薄硅晶片的掺杂基板上形成扩散层,其中所述硅晶片具有前表面和背表面;
在所述硅晶片的背表面上形成旋涂介电层;
在所述旋涂介电层上形成阻挡层;
对所述阻挡层的1~10%的表面区域施加蚀刻浆料;
在300~380摄氏度的温度下对所述蚀刻浆料进行第一热处理,其中所述蚀刻浆料蚀刻穿透所述阻挡层和所述旋涂介电层的至少一部分;
利用含氢氟酸的溶液从开口移除残留物;
在所述第一热处理之后,对所述硅晶片的背表面施加接触浆料;以及
在700~900摄氏度的峰值温度下对所述接触浆料进行第二热处理,其中所述第二热处理在所述峰值温度下实施1~3秒。
10.权利要求9的方法,其中所述第一热处理实施30~45秒。
11.权利要求9的方法,其中所述接触浆料是含1~12原子%的硅的铝浆料。
12.权利要求9的方法,还包括:
利用Device Simulation for Smart Integrated System(DESSIS)来确定对所述介电层的部分表面区域施加蚀刻浆料。
13.权利要求12的方法,还包括
将参数输入DESSIS以确定蚀刻浆料施加,其中所述参数包括发射体片电阻、电池厚度、电阻率、前表面复合速率、介电层处的背表面复合速率以及接触电阻。
14.权利要求13的方法,其中所述发射体片电阻为70~90欧姆每平方,所述电池厚度为90~200微米,所述电阻率为1.5~2.5欧姆-厘米,所述前表面复合速率为50000~70000厘米每秒,所述介电层处的背表面复合速率为40~60厘米每秒且所述接触电阻是零欧姆-平方厘米。
CN2008800151339A 2007-05-07 2008-05-07 清洗由太阳能蚀刻浆料制造的太阳能电池表面开口的方法 Expired - Fee Related CN101681936B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US91632707P 2007-05-07 2007-05-07
US60/916,327 2007-05-07
PCT/US2008/005869 WO2009008945A2 (en) 2007-05-07 2008-05-07 Method for cleaning a solar cell surface opening made with a solar etch paste

Publications (2)

Publication Number Publication Date
CN101681936A CN101681936A (zh) 2010-03-24
CN101681936B true CN101681936B (zh) 2012-07-04

Family

ID=39672716

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2008800153122A Expired - Fee Related CN101720512B (zh) 2007-05-07 2008-05-06 太阳能电池及其制造方法
CN2008800151339A Expired - Fee Related CN101681936B (zh) 2007-05-07 2008-05-07 清洗由太阳能蚀刻浆料制造的太阳能电池表面开口的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2008800153122A Expired - Fee Related CN101720512B (zh) 2007-05-07 2008-05-06 太阳能电池及其制造方法

Country Status (11)

Country Link
US (3) US7741225B2 (zh)
EP (2) EP2149155B9 (zh)
JP (2) JP2010527146A (zh)
CN (2) CN101720512B (zh)
AT (2) ATE486370T1 (zh)
CA (2) CA2684967C (zh)
DE (2) DE602008003218D1 (zh)
ES (2) ES2354400T3 (zh)
MX (2) MX2009011954A (zh)
TW (2) TWI398005B (zh)
WO (2) WO2008137174A1 (zh)

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2149155B9 (en) * 2007-05-07 2012-04-25 Georgia Tech Research Corporation Formation of high quality back contact with screen-printed local back surface field
US20090078316A1 (en) * 2007-09-24 2009-03-26 Qualcomm Incorporated Interferometric photovoltaic cell
US8481357B2 (en) * 2008-03-08 2013-07-09 Crystal Solar Incorporated Thin film solar cell with ceramic handling layer
US7833808B2 (en) * 2008-03-24 2010-11-16 Palo Alto Research Center Incorporated Methods for forming multiple-layer electrode structures for silicon photovoltaic cells
EP2195853B1 (en) * 2008-04-17 2015-12-16 LG Electronics Inc. Solar cell and method of manufacturing the same
US8309446B2 (en) * 2008-07-16 2012-11-13 Applied Materials, Inc. Hybrid heterojunction solar cell fabrication using a doping layer mask
US20100096011A1 (en) * 2008-10-16 2010-04-22 Qualcomm Mems Technologies, Inc. High efficiency interferometric color filters for photovoltaic modules
US20100096006A1 (en) * 2008-10-16 2010-04-22 Qualcomm Mems Technologies, Inc. Monolithic imod color enhanced photovoltaic cell
KR20110105382A (ko) 2008-12-10 2011-09-26 어플라이드 머티어리얼스, 인코포레이티드 스크린 프린팅 패턴 정렬을 위한 향상된 비젼 시스템
WO2010082952A1 (en) 2009-01-13 2010-07-22 Qualcomm Mems Technologies, Inc. Large area light panel and screen
GB2467361A (en) * 2009-01-30 2010-08-04 Renewable Energy Corp Asa Contact and interconnect for a solar cell
GB2467360A (en) * 2009-01-30 2010-08-04 Renewable Energy Corp Asa Contact for a solar cell
DE102009003467A1 (de) * 2009-02-11 2010-08-19 Q-Cells Se Rückseitenkontaktierte Solarzelle
DE102009011305A1 (de) * 2009-03-02 2010-09-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzellen mit Rückseitenkontaktierung sowie Verfahren zu deren Herstellung
TWI382558B (zh) * 2009-03-12 2013-01-11 Gintech Energy Corp 太陽能電池面板的製作方法
WO2010125728A1 (ja) * 2009-04-29 2010-11-04 三菱電機株式会社 太陽電池セルおよびその製造方法
TWI504002B (zh) * 2009-06-05 2015-10-11 Semiconductor Energy Lab 光電轉換裝置
KR101194064B1 (ko) * 2009-06-08 2012-10-24 제일모직주식회사 에칭 및 도핑 기능을 가지는 페이스트 조성물
WO2010147260A1 (en) * 2009-06-18 2010-12-23 Lg Electronics Inc. Solar cell and method of manufacturing the same
US8693367B2 (en) 2009-09-26 2014-04-08 Cisco Technology, Inc. Providing offloads in a communication network
FR2953999B1 (fr) * 2009-12-14 2012-01-20 Total Sa Cellule photovoltaique heterojonction a contact arriere
EP2339648A1 (en) * 2009-12-23 2011-06-29 Applied Materials, Inc. Enhanced passivation layer for wafer based solar cells, method and system for manufacturing thereof
US20110132444A1 (en) 2010-01-08 2011-06-09 Meier Daniel L Solar cell including sputtered reflective layer and method of manufacture thereof
US8241945B2 (en) * 2010-02-08 2012-08-14 Suniva, Inc. Solar cells and methods of fabrication thereof
CN101794833A (zh) * 2010-03-03 2010-08-04 中国科学院电工研究所 一种背表面电介质钝化的太阳电池及其制备方法
US8524524B2 (en) 2010-04-22 2013-09-03 General Electric Company Methods for forming back contact electrodes for cadmium telluride photovoltaic cells
CN102939662B (zh) * 2010-05-20 2016-03-23 京瓷株式会社 太阳能电池元件及其制造方法、以及太阳能电池模块
US8071418B2 (en) 2010-06-03 2011-12-06 Suniva, Inc. Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
US8110431B2 (en) 2010-06-03 2012-02-07 Suniva, Inc. Ion implanted selective emitter solar cells with in situ surface passivation
US8748310B2 (en) * 2010-06-18 2014-06-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a metal contact structure of a photovoltaic solar cell
US8105869B1 (en) 2010-07-28 2012-01-31 Boris Gilman Method of manufacturing a silicon-based semiconductor device by essentially electrical means
KR101110826B1 (ko) 2010-08-17 2012-02-24 엘지전자 주식회사 태양전지 패널
US20110139231A1 (en) 2010-08-25 2011-06-16 Daniel Meier Back junction solar cell with selective front surface field
US10121915B2 (en) * 2010-08-27 2018-11-06 Lg Electronics Inc. Solar cell and manufacturing method thereof
CN103180964B (zh) * 2010-10-05 2015-12-16 三菱电机株式会社 光电动势装置及其制造方法
TWI435454B (zh) 2010-10-25 2014-04-21 Au Optronics Corp 太陽能電池
KR101130196B1 (ko) * 2010-11-11 2012-03-30 엘지전자 주식회사 태양 전지
CN102097154B (zh) * 2010-11-25 2012-07-25 长沙族兴新材料股份有限公司 太阳能电池用背场铝浆
CN102610662A (zh) * 2011-01-25 2012-07-25 东方电气集团(宜兴)迈吉太阳能科技有限公司 单晶硅太阳能电池背面用叠层复合钝化膜
TWI455340B (zh) * 2011-02-25 2014-10-01 Gintech Energy Corp 太陽能電池的製造方法
TWI482294B (zh) * 2011-03-22 2015-04-21 Nat Univ Tsing Hua 製作背面具有介電質層以及分散式接觸電極之矽太陽能電池之方法及該元件
CN102832263B (zh) * 2011-06-15 2015-01-14 茂迪股份有限公司 具有背电场结构的太阳能电池及其制造方法
JP5129369B2 (ja) * 2011-06-20 2013-01-30 シャープ株式会社 結晶太陽電池セルおよび結晶太陽電池セルの製造方法
JP5275415B2 (ja) * 2011-06-20 2013-08-28 シャープ株式会社 結晶太陽電池セルおよび結晶太陽電池セルの製造方法
DE102011052256B4 (de) 2011-07-28 2015-04-16 Hanwha Q.CELLS GmbH Verfahren zur Herstellung einer Solarzelle
WO2013062727A1 (en) * 2011-10-24 2013-05-02 Applied Materials, Inc. Method and apparatus of removing a passivation film and improving contact resistance in rear point contact solar cells
KR20130050721A (ko) 2011-11-08 2013-05-16 삼성에스디아이 주식회사 태양 전지
DE102011056087B4 (de) * 2011-12-06 2018-08-30 Solarworld Industries Gmbh Solarzellen-Wafer und Verfahren zum Metallisieren einer Solarzelle
JP5924945B2 (ja) * 2012-01-11 2016-05-25 東洋アルミニウム株式会社 ペースト組成物
WO2013115076A1 (ja) * 2012-02-02 2013-08-08 東洋アルミニウム株式会社 ペースト組成物
KR101894585B1 (ko) 2012-02-13 2018-09-04 엘지전자 주식회사 태양전지
CN102569530B (zh) * 2012-02-24 2015-04-29 上饶光电高科技有限公司 一种晶体硅太阳电池背面钝化介质层局部刻蚀方法
TW201349255A (zh) * 2012-02-24 2013-12-01 Applied Nanotech Holdings Inc 用於太陽能電池之金屬化糊劑
WO2013134029A1 (en) * 2012-03-06 2013-09-12 Applied Materials, Inc. Patterned aluminum back contacts for rear passivation
EP2645427A1 (en) 2012-03-29 2013-10-02 Photovoltech N.V. Extended laser ablation in solar cell manufacture
CN103367526B (zh) * 2012-03-29 2018-01-09 无锡尚德太阳能电力有限公司 一种背面局部接触硅太阳电池的制造方法
WO2013148047A1 (en) * 2012-03-30 2013-10-03 Applied Materials, Inc. Doped ai paste for local alloyed junction formation with low contact resistance
US8486747B1 (en) 2012-04-17 2013-07-16 Boris Gilman Backside silicon photovoltaic cell and method of manufacturing thereof
CN102709335B (zh) * 2012-05-08 2014-12-10 常州天合光能有限公司 一种利用SiN薄膜针孔形成局部掺杂或金属化的方法
EP2863413A3 (en) * 2012-05-21 2015-08-19 NewSouth Innovations Pty Limited Advanced hydrogenation of silicon solar cells
CN104471716B (zh) 2012-07-19 2017-08-29 日立化成株式会社 钝化膜、涂布型材料、太阳能电池元件及带钝化膜的硅基板
KR20140022515A (ko) * 2012-08-13 2014-02-25 엘지전자 주식회사 태양 전지
US20140158192A1 (en) * 2012-12-06 2014-06-12 Michael Cudzinovic Seed layer for solar cell conductive contact
KR101925928B1 (ko) 2013-01-21 2018-12-06 엘지전자 주식회사 태양 전지 및 그의 제조 방법
US20140238478A1 (en) * 2013-02-28 2014-08-28 Suniva, Inc. Back junction solar cell with enhanced emitter layer
CN103346210A (zh) * 2013-06-26 2013-10-09 英利集团有限公司 一种太阳能电池及其制作方法
US8945978B2 (en) 2013-06-28 2015-02-03 Sunpower Corporation Formation of metal structures in solar cells
CN104464879A (zh) * 2013-09-18 2015-03-25 友晁能源材料股份有限公司 硅晶太阳能电池用的铝浆以及硅晶太阳能电池的制作方法
US9525082B2 (en) * 2013-09-27 2016-12-20 Sunpower Corporation Solar cell contact structures formed from metal paste
KR20150035189A (ko) * 2013-09-27 2015-04-06 엘지전자 주식회사 태양 전지
CN103615887A (zh) * 2013-11-19 2014-03-05 奥特斯维能源(太仓)有限公司 一种太阳能电池烧结炉履带组件
US9362427B2 (en) * 2013-12-20 2016-06-07 Sunpower Corporation Metallization of solar cells
JP6388707B2 (ja) * 2014-04-03 2018-09-12 トリナ ソーラー エナジー デベロップメント ピーティーイー リミテッド ハイブリッド全バックコンタクト太陽電池及びその製造方法
JP6502651B2 (ja) * 2014-11-13 2019-04-17 信越化学工業株式会社 太陽電池の製造方法及び太陽電池モジュールの製造方法
CN104465442B (zh) * 2014-11-28 2017-05-24 厦门讯扬电子科技有限公司 半导体制程中铝硅接面的实时监测方法
CN104882515A (zh) * 2015-05-14 2015-09-02 苏州阿特斯阳光电力科技有限公司 Perc太阳能电池的烧结方法
DE202015103518U1 (de) * 2015-07-03 2015-07-16 Solarworld Innovations Gmbh Solarzelle mit optimierten lokalen Rückkontakten
CN104966761B (zh) * 2015-07-08 2017-04-05 四川银河星源科技有限公司 一种晶体硅太阳能电池的制造方法
CN105428462A (zh) * 2015-12-24 2016-03-23 东方日升新能源股份有限公司 一种太阳能电池片的制备方法
CN105655424A (zh) * 2016-03-31 2016-06-08 江苏顺风光电科技有限公司 全背场扩散n型硅基电池及其制备方法
CN105826405A (zh) * 2016-05-17 2016-08-03 常州天合光能有限公司 一种单晶硅双面太阳电池及其制备方法
CN105845781B (zh) * 2016-05-23 2017-04-05 无锡尚德太阳能电力有限公司 一种去除钝化发射极背面接触太阳能电池皮带印的方法
NL2017290B1 (en) * 2016-08-04 2018-02-14 Stichting Energieonderzoek Centrum Nederland Passivated Emitter and Rear Contact Solar Cell
WO2018062088A1 (ja) * 2016-09-29 2018-04-05 京セラ株式会社 太陽電池素子および太陽電池素子の製造方法
CN108417474B (zh) * 2018-01-24 2021-12-21 锦州阳光能源有限公司 晶体硅热氧化工艺、系统及晶体硅太阳能电池热氧化工艺
WO2022079887A1 (ja) * 2020-10-16 2022-04-21 株式会社 東芝 多層接合型光電変換素子およびその製造方法
US11961925B2 (en) * 2020-10-30 2024-04-16 Alliance For Sustainable Energy, Llc Engineered nanostructured passivated contacts and method of making the same
CN114517094B (zh) * 2020-11-20 2023-08-22 苏州阿特斯阳光电力科技有限公司 一种丝网印刷电化学刻蚀用浆料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928438A (en) * 1995-10-05 1999-07-27 Ebara Solar, Inc. Structure and fabrication process for self-aligned locally deep-diffused emitter (SALDE) solar cell
EP0999598A1 (en) * 1998-11-04 2000-05-10 Shin-Etsu Chemical Co., Ltd. Solar cell and method for fabricating a solar cell
CN101720512A (zh) * 2007-05-07 2010-06-02 佐治亚科技研究公司 利用丝网印刷的局部背场形成高质量背接触

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105471A (en) 1977-06-08 1978-08-08 Arco Solar, Inc. Solar cell with improved printed contact and method of making the same
US4163678A (en) * 1978-06-30 1979-08-07 Nasa Solar cell with improved N-region contact and method of forming the same
US4235644A (en) 1979-08-31 1980-11-25 E. I. Du Pont De Nemours And Company Thick film silver metallizations for silicon solar cells
US4442310A (en) 1982-07-15 1984-04-10 Rca Corporation Photodetector having enhanced back reflection
US5698451A (en) * 1988-06-10 1997-12-16 Mobil Solar Energy Corporation Method of fabricating contacts for solar cells
EP0374244B1 (en) * 1988-06-10 1994-09-28 Mobil Solar Energy Corporation An improved method of fabricating contacts for solar cells
US5011782A (en) 1989-03-31 1991-04-30 Electric Power Research Institute Method of making passivated antireflective coating for photovoltaic cell
US5223453A (en) * 1991-03-19 1993-06-29 The United States Of America As Represented By The United States Department Of Energy Controlled metal-semiconductor sintering/alloying by one-directional reverse illumination
US5230746A (en) * 1992-03-03 1993-07-27 Amoco Corporation Photovoltaic device having enhanced rear reflecting contact
US5369300A (en) * 1993-06-10 1994-11-29 Delco Electronics Corporation Multilayer metallization for silicon semiconductor devices including a diffusion barrier formed of amorphous tungsten/silicon
US5468652A (en) 1993-07-14 1995-11-21 Sandia Corporation Method of making a back contacted solar cell
US5510271A (en) 1994-09-09 1996-04-23 Georgia Tech Research Corporation Processes for producing low cost, high efficiency silicon solar cells
EP0729189A1 (en) 1995-02-21 1996-08-28 Interuniversitair Micro-Elektronica Centrum Vzw Method of preparing solar cells and products obtained thereof
DE19508712C2 (de) 1995-03-10 1997-08-07 Siemens Solar Gmbh Solarzelle mit Back-Surface-Field und Verfahren zur Herstellung
US6091021A (en) * 1996-11-01 2000-07-18 Sandia Corporation Silicon cells made by self-aligned selective-emitter plasma-etchback process
US5871591A (en) * 1996-11-01 1999-02-16 Sandia Corporation Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process
JP3722326B2 (ja) 1996-12-20 2005-11-30 三菱電機株式会社 太陽電池の製造方法
DE69811511T2 (de) 1997-03-21 2004-02-19 Sanyo Electric Co., Ltd., Moriguchi Herstellungsverfahren für ein photovoltaisches bauelement
JPH10335267A (ja) * 1997-05-30 1998-12-18 Mitsubishi Electric Corp 半導体装置の製造方法
US6121133A (en) 1997-08-22 2000-09-19 Micron Technology, Inc. Isolation using an antireflective coating
US6294459B1 (en) * 1998-09-03 2001-09-25 Micron Technology, Inc. Anti-reflective coatings and methods for forming and using same
DE19910816A1 (de) * 1999-03-11 2000-10-05 Merck Patent Gmbh Dotierpasten zur Erzeugung von p,p+ und n,n+ Bereichen in Halbleitern
US6291763B1 (en) 1999-04-06 2001-09-18 Fuji Photo Film Co., Ltd. Photoelectric conversion device and photo cell
US6444588B1 (en) 1999-04-26 2002-09-03 Micron Technology, Inc. Anti-reflective coatings and methods regarding same
DE19958878B4 (de) * 1999-12-07 2012-01-19 Saint-Gobain Glass Deutschland Gmbh Dünnschicht-Solarzelle
US20050075946A1 (en) * 2000-03-16 2005-04-07 Keith Henning Data accumulation and segmentation system in electronic commerce
EP1365455A4 (en) * 2001-01-31 2006-09-20 Shinetsu Handotai Kk SOLAR CELL AND METHOD FOR MANUFACTURING SAME
US6524880B2 (en) 2001-04-23 2003-02-25 Samsung Sdi Co., Ltd. Solar cell and method for fabricating the same
EP1378947A1 (en) * 2002-07-01 2004-01-07 Interuniversitair Microelektronica Centrum Vzw Semiconductor etching paste and the use thereof for localised etching of semiconductor substrates
US7649141B2 (en) 2003-06-30 2010-01-19 Advent Solar, Inc. Emitter wrap-through back contact solar cells on thin silicon wafers
JP4232597B2 (ja) * 2003-10-10 2009-03-04 株式会社日立製作所 シリコン太陽電池セルとその製造方法
US20050189015A1 (en) 2003-10-30 2005-09-01 Ajeet Rohatgi Silicon solar cells and methods of fabrication
JP4391808B2 (ja) * 2003-12-01 2009-12-24 シャープ株式会社 太陽電池用シリコンウエハの再生方法、太陽電池セルの形成方法及び太陽電池用シリコンインゴットの作製方法
US7144751B2 (en) 2004-02-05 2006-12-05 Advent Solar, Inc. Back-contact solar cells and methods for fabrication
US20050268963A1 (en) 2004-02-24 2005-12-08 David Jordan Process for manufacturing photovoltaic cells
CN100538915C (zh) * 2004-07-01 2009-09-09 东洋铝株式会社 糊组合物及使用该糊组合物的太阳能电池元件
WO2006011595A1 (ja) 2004-07-29 2006-02-02 Kyocera Corporation 太陽電池素子とその製造方法
US20060130891A1 (en) * 2004-10-29 2006-06-22 Carlson David E Back-contact photovoltaic cells
JP2006261621A (ja) * 2005-02-21 2006-09-28 Osaka Univ 太陽電池およびその製造方法
EP1763086A1 (en) 2005-09-09 2007-03-14 Interuniversitair Micro-Elektronica Centrum Photovoltaic cell with thick silicon oxide and silicon nitride passivation and fabrication method
US20060231802A1 (en) * 2005-04-14 2006-10-19 Takuya Konno Electroconductive thick film composition, electrode, and solar cell formed therefrom
US7761457B2 (en) * 2005-06-06 2010-07-20 Adobe Systems Incorporated Creation of segmentation definitions
JP2007081059A (ja) * 2005-09-13 2007-03-29 Toyo Aluminium Kk アルミニウムペースト組成物およびそれを用いた太陽電池素子
JP4657068B2 (ja) * 2005-09-22 2011-03-23 シャープ株式会社 裏面接合型太陽電池の製造方法
WO2007055484A1 (en) 2005-11-08 2007-05-18 Lg Chem, Ltd. Solar cell of high efficiency and process for preparation of the same
WO2007059551A1 (en) 2005-11-24 2007-05-31 Newsouth Innovations Pty Limited Low area screen printed metal contact structure and method
WO2007059578A1 (en) 2005-11-24 2007-05-31 Newsouth Innovations Pty Limited High efficiency solar cell fabrication
ES2357665T3 (es) 2005-11-28 2011-04-28 Mitsubishi Electric Corporation Célula de pila solar y su procedimiento de fabricación.
JP4827550B2 (ja) 2006-02-14 2011-11-30 シャープ株式会社 太陽電池の製造方法
US8575474B2 (en) * 2006-03-20 2013-11-05 Heracus Precious Metals North America Conshohocken LLC Solar cell contacts containing aluminum and at least one of boron, titanium, nickel, tin, silver, gallium, zinc, indium and copper
NL2000248C2 (nl) 2006-09-25 2008-03-26 Ecn Energieonderzoek Ct Nederl Werkwijze voor het vervaardigen van kristallijn-silicium zonnecellen met een verbeterde oppervlaktepassivering.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928438A (en) * 1995-10-05 1999-07-27 Ebara Solar, Inc. Structure and fabrication process for self-aligned locally deep-diffused emitter (SALDE) solar cell
EP0999598A1 (en) * 1998-11-04 2000-05-10 Shin-Etsu Chemical Co., Ltd. Solar cell and method for fabricating a solar cell
CN101720512A (zh) * 2007-05-07 2010-06-02 佐治亚科技研究公司 利用丝网印刷的局部背场形成高质量背接触

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J.Rentsch,O.Schultz,A.Grohe,D.Biro,R.Preu,G.P.Willeke.Technology route towards industrial application of rear passivated silicon solar cells.《Photovoltaic energy conversion,Conference record of the 2006 IEEE 4th world conference on》.2006,1008-1011. *
Jozef Szlufcik,S.Sivoththaman et al.Low-cost industrial technologies of crystalline silicon solar cells.《Proceedings of the IEEE》.1997,第85卷(第5期),716-720. *
O.Schultz et al.Dielectric rear surface passivation for industrial multicrystalline silicon solar cells.《Photovoltaic energy conversion,conference record of the 2006 IEEE 4th world conference on》.2006,885-889. *

Also Published As

Publication number Publication date
EP2149156A2 (en) 2010-02-03
CN101720512B (zh) 2013-02-27
ES2354400T3 (es) 2011-03-14
EP2149155B9 (en) 2012-04-25
WO2008137174A9 (en) 2010-01-14
MX2009011383A (es) 2010-02-12
CN101720512A (zh) 2010-06-02
ATE486370T1 (de) 2010-11-15
TW200905900A (en) 2009-02-01
CN101681936A (zh) 2010-03-24
CA2684967A1 (en) 2008-11-13
CA2684967C (en) 2014-08-19
US7842596B2 (en) 2010-11-30
CA2682188C (en) 2013-06-25
JP2010527146A (ja) 2010-08-05
CA2682188A1 (en) 2009-01-15
TWI398005B (zh) 2013-06-01
EP2149155B1 (en) 2010-10-27
WO2009008945A3 (en) 2009-03-19
US20090325327A1 (en) 2009-12-31
JP2010527147A (ja) 2010-08-05
EP2149156B1 (en) 2010-09-22
MX2009011954A (es) 2010-01-29
DE602008002747D1 (de) 2010-11-04
EP2149155A1 (en) 2010-02-03
TW200908360A (en) 2009-02-16
US20090025786A1 (en) 2009-01-29
ES2352100T3 (es) 2011-02-15
WO2008137174A1 (en) 2008-11-13
US7741225B2 (en) 2010-06-22
DE602008003218D1 (de) 2010-12-09
WO2009008945A2 (en) 2009-01-15
ATE482471T1 (de) 2010-10-15
US20090017617A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
CN101681936B (zh) 清洗由太阳能蚀刻浆料制造的太阳能电池表面开口的方法
US9153728B2 (en) Ion implanted solar cells with in situ surface passivation
US8071418B2 (en) Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
US8822262B2 (en) Fabricating solar cells with silicon nanoparticles
US20110139231A1 (en) Back junction solar cell with selective front surface field
EP2426728A1 (en) Solar cell element, segmented solar cell element, solar cell module, and electronic appliance
TW201424029A (zh) 結晶矽太陽能電池之製造方法、太陽能電池模組之製造方法、結晶矽太陽能電池及太陽能電池模組
US20170133545A1 (en) Passivated contacts for photovoltaic cells
US20130247981A1 (en) Solar cell fabrication using a pre-doping dielectric layer
US20140238478A1 (en) Back junction solar cell with enhanced emitter layer
US10651322B2 (en) Solar cell element and solar cell module
Chen et al. Improvement of silicon nanowire solar cells made by metal catalyzed electroless etching and nano imprint lithography
US20170330990A1 (en) Method for manufacturing photovoltaic device
KR101129422B1 (ko) 태양전지 제조방법 및 그로 인해 제조된 태양전지
Shirayanagi et al. Preparation of axial-type wire-structure crystalline silicon solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20170507

CF01 Termination of patent right due to non-payment of annual fee