CN103854985B - 一种后栅工艺假栅的制造方法和后栅工艺假栅 - Google Patents

一种后栅工艺假栅的制造方法和后栅工艺假栅 Download PDF

Info

Publication number
CN103854985B
CN103854985B CN201210510130.0A CN201210510130A CN103854985B CN 103854985 B CN103854985 B CN 103854985B CN 201210510130 A CN201210510130 A CN 201210510130A CN 103854985 B CN103854985 B CN 103854985B
Authority
CN
China
Prior art keywords
hard mask
amorphous silicon
mask layer
ono structure
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210510130.0A
Other languages
English (en)
Other versions
CN103854985A (zh
Inventor
李春龙
李俊峰
闫江
赵超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201210510130.0A priority Critical patent/CN103854985B/zh
Priority to PCT/CN2012/086398 priority patent/WO2014086053A1/zh
Priority to US14/119,862 priority patent/US9202890B2/en
Publication of CN103854985A publication Critical patent/CN103854985A/zh
Application granted granted Critical
Publication of CN103854985B publication Critical patent/CN103854985B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/2807Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being Si or Ge or C and their alloys except Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28123Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Formation Of Insulating Films (AREA)
  • Drying Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供了一种后栅工艺假栅的制造方法,该方法包括:提供半导体衬底;在所述半导体衬底上生长栅极氧化层;在所述栅极氧化层上淀积底层非晶硅;在所述底层非晶硅上淀积ONO结构硬掩膜;在所述ONO结构硬掩膜上淀积顶层非晶硅;在所述顶层非晶硅上淀积硬掩膜层;在所述硬掩膜层上形成宽度为32nm~45nm的光刻胶线条;以所述光刻胶线条为标准,对所述硬掩膜层、顶层非晶硅、ONO结构硬掩膜和底层非晶硅进行刻蚀,并去除所述光刻胶线条、硬掩膜层和顶层非晶硅。本发明还提供了一种后栅工艺假栅。采用本发明提供的技术方案,能精确控制栅极的关键尺寸,栅极的剖面形貌,并能有效改善栅极线条的粗糙度,保证了器件的性能及稳定性。

Description

一种后栅工艺假栅的制造方法和后栅工艺假栅
技术领域
本发明涉及半导体技术领域,尤其涉及一种后栅工艺假栅的制造方法和后栅工艺假栅。
背景技术
随着集成电路制造技术的不断发展,MOS晶体管的特征尺寸也越来越小,为了降低MOS晶体管栅极的寄生电容,提高器件速度,高K栅介电层与金属栅极的栅极叠层结构被引入到MOS晶体管中。为了避免金属栅极的金属材料对晶体管其他结构的影响,所述金属栅极与高K栅介电层的栅极叠层结构通常采用“后栅(gate last)”工艺制作。
所谓后栅工艺是指:提供半导体衬底,所述半导体衬底上形成有假栅结构和位于所述半导体衬底上覆盖所述假栅结构的刻蚀阻挡层,在所述刻蚀阻挡层表面形成层间介质层;以所述假栅结构表面作为停止层,对所述层间介质层和刻蚀阻挡层进行化学机械研磨;除去所述假栅结构后形成沟槽;通过物理气相沉积或金属靶溅射的方法向所述沟槽内填充金属,以形成金属栅电极层;用化学机械研磨法研磨金属栅电极层直至露出层间介质层,形成金属栅。
因此,在后栅工艺中,假栅的制造至关重要。但目前,由于受到物理机制、工艺技术以及加工手段等方面的限制,45nm~32nm技术带中,假栅的关键尺寸、以及假栅的剖面形貌还无法精准控制,从而影响了栅极线条的粗糙度,无法保证器件的性能及其稳定性。
发明内容
有鉴于此,本公开实施例提供一种后栅工艺假栅的制作方法,该方法包括:
提供半导体衬底;
在所述半导体衬底上生长栅极氧化层;
在所述栅极氧化层上淀积底层非晶硅;
在所述底层非晶硅上淀积氧化膜-氮化膜-氧化膜(ONO)结构硬掩膜;
在所述ONO结构硬掩膜上淀积顶层非晶硅;
在所述顶层非晶硅上淀积硬掩膜层;
在所述硬掩膜层上形成宽度为32nm~45nm的光刻胶线条;
以所述光刻胶线条为标准,对所述硬掩膜层、顶层非晶硅、ONO结构硬掩膜和底层非晶硅进行刻蚀,并去除所述硬掩膜层和顶层非晶硅。
优选的,所述以光刻胶线条为标准,对所述硬掩膜层、顶层非晶硅、ONO结构硬掩膜和底层非晶硅进行刻蚀,并去除所述光刻胶线条、硬掩膜层和顶层非晶硅,包括:
将所述光刻胶线条作为所述硬掩膜层的掩膜,对所述硬掩膜层进行刻蚀,去除所述光刻胶线条;
将所述硬掩膜层作为所述顶层非晶硅的掩膜,对所述顶层非晶硅进行刻蚀;
将所述硬掩膜层和所述顶层非晶硅作为ONO结构硬掩膜的掩膜,对所述ONO结构硬掩膜进行刻蚀,去除所述硬掩膜层;
将所述顶层非晶硅和所述ONO结构硬掩膜作为所述底层非晶硅的掩膜,对所述底层非晶硅进行刻蚀,去除所述顶层非晶硅。
优选的,所述在所述栅极氧化层上淀积底层非晶硅,包括:
采用低压化学气相淀积工艺在所述栅极氧化层上淀积底层非晶硅。
优选的,所述底层非晶硅厚度为600A~1200A。
优选的,所述在所述底层非晶硅上淀积ONO结构硬掩膜,包括:
通过等离子体增强化学气相淀积工艺在底层非晶硅上淀积底部氧化膜;
通过低压化学气相淀积工艺在所述底部氧化膜上淀积氮化膜;
通过常压化学气相淀积工艺在所述氮化膜上淀积顶部氧化膜。
优选的,所述底部氧化膜的厚度为80A~120A,所述氮化膜的厚度为160A~240A,所述顶部氧化膜的厚度为500A~800A。
优选的,所述在所述ONO结构硬掩膜上淀积顶层非晶硅和硬掩膜层,包括:
通过低压化学气相淀积工艺在所述ONO结构硬掩膜上淀积顶层非晶硅;
通过热氧化工艺在所述顶层非晶硅上淀积硬掩膜层。
优选的,所述顶层非晶硅厚度为300A~400A,所述硬掩膜层厚度为300A~400A。
本公开实施例还提供了一种后栅工艺假栅,包括:半导体衬底,位于所述半导体衬底表面的栅极氧化层,位于所述栅极氧化层表面的非晶硅层,和位于所述非晶硅层上的ONO结构硬掩膜,所述非晶硅层和所述ONO结构硬掩膜的宽度为32nm~45nm。
优选的,所述ONO结构硬掩膜包括:底部氧化膜、氮化膜和顶部氧化膜。
本公开实施例所提供的后栅工艺假栅制造方法,通过采用在非晶硅上淀积ONO结构硬掩膜,并对ONO结构硬掩膜进行刻蚀,能精确控制栅极的关键尺寸,栅极的剖面形貌,并能有效改善栅极线条的粗糙度,保证了器件的性能及稳定性。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例所提供的一种后栅工艺假栅的制造方法的流程示意图;
图2-1至图2-9为本公开实施例采用图1所示的方法制造后栅工艺假栅的各个阶段的结构示意图。
附图标记:
20-半导体衬底,22-栅极氧化物,24-底层非晶硅,26-ONO结构硬掩膜,28-顶层非晶硅,30-硬掩膜层,32-光刻胶线条;261-底部氧化膜,262-氮化膜,263-顶部氧化膜。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
本公开实施例提供一种后栅工艺假栅的制作方法,包括:提供半导体衬底;在所述半导体衬底上生长栅极氧化层;在所述栅极氧化层上淀积底层非晶硅;在所述底层非晶硅上淀积ONO结构硬掩膜;在所述ONO结构硬掩膜上淀积顶层非晶硅;在所述顶层非晶硅上淀积硬掩膜层;在所述硬掩膜层上形成宽度为32nm~45nm的光刻胶线条;以所述光刻胶线条为标准,对所述硬掩膜层、顶层非晶硅、ONO结构硬掩膜和底层非晶硅进行刻蚀,并去除所述光刻胶线条、硬掩膜层和顶层非晶硅。
上述的后栅工艺假栅的制造方法中,通过采用在非晶硅上淀积ONO结构硬掩膜,并对ONO结构硬掩膜进行刻蚀,能精确控制栅极的关键尺寸,栅极的剖面形貌,并能有效改善栅极线条的粗糙度,保证了器件的性能及稳定性。
为使本公开的上述目的、特征和有点能够更加明显易懂,下面结合附图对本公开的具体实时方式做详细的说明。在详述本公开实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本公开的保护范围。此外,在实际制作中应包含长度、宽度以及深度的三维空间尺寸。
图1为本实施例后栅工艺假栅的制造方法流程图,图2-1至图2-9为本公开实施例采用图1所示的方法制造后栅工艺假栅的各个阶段的结构示意图。
如图1所示,所述后栅工艺中假栅的制作方法包括:
步骤S1:提供半导体衬底20;
在本步骤中,该衬底20可以采用任何的半导体材料,例如单晶硅、多晶硅、非晶硅、锗、硅锗、碳化硅、锑化铟、碲化铅、砷化铟、磷化铟、砷化镓或锑化镓、合金半导体或其他化合物半导体材料,衬底的材质还可以为叠层半导体结构,例如Si/SiGe、绝缘体上硅(SOI)或绝缘体上硅锗(SGOI)。另外,衬底还可以为鳍型器件、正常平面型CMOS器件或者纳米线沟道器件等。本公开实施例中衬底20仅以采用Si为例,此处仅为示例,本公开并不限于此。
步骤S2:在半导体衬底上生长栅极氧化层22,并在所生长的栅极氧化层上淀积底层非晶硅24;
在本步骤中,可以采用热氧化工艺在半导体衬底20上生长栅极氧化层22,其中,所述热氧化工艺可以为传统的热氧化工艺炉管(Furnace)、蒸汽原位生成(situstream-generated,ISSG)或者是快速热氧化(Rapid thermal oxidation,RTO)工艺。栅极氧化层22的材料可以为氧化硅或氮氧化硅等,除此之外,栅极氧化层22的材料也可以为本领域技术人员公知的其他材料,其厚度可以为8A~40A。
之后,在所生成的栅极氧化层22上淀积底层非晶硅24。其中,此处可采用化学气相淀积(Chemical Vapor Deposition,CVD)工艺来完成该步骤,例如可采用低压化学气相淀积(LP CVD)、常压化学气相淀积(AP CVD)、等离子体增强化学气相淀积(PE CVD)、以及高密度等离子体化学气相淀积(HDPCVD)等工艺。所淀积的底层非晶硅24厚度可以为600A~1200A。
步骤S3:在所淀积的底层非晶硅24上淀积氧化膜-氮化膜-氧化膜(ONO)结构硬掩膜26;
在本步骤中,ONO结构硬掩膜26的淀积过程可具体为:在底层非晶硅24上依次淀积底部氧化膜261、氮化膜262和顶部氧化膜263。其中,在本实施例中,底部氧化膜261可以采用等离子体增强化学气相淀积工艺进行淀积,氮化膜262可以采用低压化学气相淀积工艺或等离子体增强化学气相淀积工艺等进行淀积;顶部氧化膜263可以采用常压化学气相淀积工艺、低压化学气相淀积工艺或等离子体增强化学气相淀积工艺等进行淀积。并且,底部氧化膜261和顶部氧化膜263的材料可以为氧化硅,厚度分别为80A~120A,和500A~800A,氮化膜262的材料可以为氮化硅,厚度可以为160A~240A。
步骤S4:在ONO结构硬掩膜26上进行顶层非晶硅28和硬掩膜层30的淀积;
在本步骤中,顶层非晶硅28可以采用化学气相淀积、常压化学气相淀积、等离子体增强化学气相淀积、以及高密度等离子体化学气相淀积等工艺进行淀积。其中,该步骤中所淀积的顶层非晶硅28厚度可以为300A~400A。
之后,在顶层非晶硅28上淀积硬掩膜层30,在本实施例中,硬掩膜层30材料可以为氧化膜,并可以通过热氧化工艺或等离子体增强化学气相淀积工艺进行淀积,其厚度可以为300A~400A。
步骤S5:在硬掩膜层30上形成光刻胶线条32;
在本步骤中,光刻胶线条32可以采用浸润式光刻或者电子束直写的方式形成,本实施例不做限制;另外,为实现32nm~45nm假栅的形成,所形成的光刻胶线条32的宽度为32nm~45nm。
步骤S6:对硬掩膜层30进行刻蚀;
在本步骤中,以所形成的光刻胶线条32为掩膜,可以采用干法刻蚀工艺对硬掩膜层30进行刻蚀,例如反应离子刻蚀(Reactive Ion Etching,RIE)方式对硬掩膜层30进行刻蚀。
步骤S7:去除光刻胶线条32;
在本步骤中,可以采用干法去胶工艺,例如,使用氧气等离子体去除光刻胶线条32,具体为:通过填充在等离子刻蚀腔体内的氧气等离子体去刻蚀光刻胶线条32。
步骤S8:对顶层非晶硅28进行刻蚀;
在本步骤中,以硬掩膜层30作为顶层非晶硅28的掩膜,对顶层非晶硅28进行刻蚀,其中,本实施例中可采用反应离子刻蚀等方法对顶层非晶硅28进行刻蚀,具体方法在此不做赘述。
步骤S9:对ONO结构硬掩膜26进行刻蚀;
在本步骤中,以硬掩膜层30和顶层非晶硅28为掩膜,对ONO结构硬掩膜26进行刻蚀,在本实施例中,可以采用反应离子刻蚀方法对ONO结构硬掩膜26进行刻蚀;同时,可以在对ONO结构硬掩膜26进行刻蚀之后,去除硬掩膜层30,以简化后续流程。
步骤S10:对底层非晶硅24进行刻蚀;
在本步骤中,以顶层非晶硅28和ONO结构硬掩膜26为掩膜,对底层非晶硅24进行刻蚀,在本实施例中,可以采用反应离子刻蚀方法对底层非晶硅24进行刻蚀;同时,可以在对底层非晶硅24进行刻蚀之后,直接去除顶层非晶硅28。
至此,线宽为32nm~45nm的后栅工艺假栅制造完成。
本公开实施例所提供的后栅工艺假栅制造方法,通过采用在非晶硅上淀积ONO结构硬掩膜,并对ONO结构硬掩膜进行刻蚀,能精确控制栅极的关键尺寸,栅极的剖面形貌,并能有效改善栅极线条的粗糙度,保证了器件的性能及稳定性。
本公开实施例还提供了一种利用上述方法形成的假栅结构,请参考图2-9,为本公开实施例所提供的假栅的剖面结构示意图,具体包括:半导体衬底20,位于所述半导体衬底表面的栅极氧化层22,位于所述栅极氧化层22表面的非晶硅层24,和位于所述非晶硅层24上的ONO结构硬掩膜26。所述非晶硅层24和所述ONO结构硬掩膜26的宽度为32nm~45nm。
其中,所述ONO结构硬掩膜26包括:底部氧化膜261,氮化膜262和顶部氧化膜263;所述底部氧化膜261和顶部氧化膜263的材料可以为氧化硅,厚度可以为80A~120A,和500A~800A,氮化膜262的材料可以为氮化硅,厚度可以为160A~240A。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

1.一种后栅工艺假栅的制造方法,其特征在于,包括:
提供半导体衬底;
在所述半导体衬底上生长栅极氧化层;
在所述栅极氧化层上淀积底层非晶硅;
在所述底层非晶硅上淀积氧化膜-氮化膜-氧化膜ONO结构硬掩膜;
在所述ONO结构硬掩膜上淀积顶层非晶硅;
在所述顶层非晶硅上淀积硬掩膜层;
在所述硬掩膜层上形成宽度为32nm~45nm的光刻胶线条;
以所述光刻胶线条为标准,对所述硬掩膜层、顶层非晶硅、ONO结构硬掩膜和底层非晶硅进行刻蚀,并去除所述光刻胶线条、硬掩膜层和顶层非晶硅。
2.根据权利要求1所述的方法,其特征在于,所述以所述光刻胶线条为标准,对所述硬掩膜层、顶层非晶硅、ONO结构硬掩膜和底层非晶硅进行刻蚀,并去除所述光刻胶线条、硬掩膜层和顶层非晶硅,包括:
将所述光刻胶线条作为所述硬掩膜层的掩膜,对所述硬掩膜层进行刻蚀,去除所述光刻胶线条;
将所述硬掩膜层作为所述顶层非晶硅的掩膜,对所述顶层非晶硅进行刻蚀;
将所述硬掩膜层和所述顶层非晶硅作为ONO结构硬掩膜的掩膜,对所述ONO结构硬掩膜进行刻蚀,去除所述硬掩膜层;
将所述顶层非晶硅和所述ONO结构硬掩膜作为所述底层非晶硅的掩膜,对所述底层非晶硅进行刻蚀,去除所述顶层非晶硅。
3.根据权利要求1或2所述的方法,其特征在于,所述在所述栅极氧化层上淀积底层非晶硅,包括:
采用低压化学气相淀积工艺在所述栅极氧化层上淀积底层非晶硅。
4.根据权利要求3所述的方法,其特征在于,所述底层非晶硅厚度为600 Å ~1200 Å
5.根据权利要求4所述的方法,其特征在于,所述在所述底层非晶硅上淀积ONO结构硬掩膜,包括:
通过等离子体增强化学气相淀积工艺在底层非晶硅上淀积底部氧化膜;
通过低压化学气相淀积工艺在所述底部氧化膜上淀积氮化膜;
通过常压化学气相淀积工艺在所述氮化膜上淀积顶部氧化膜。
6.根据权利要求5所述的方法,其特征在于,所述底部氧化膜的厚度为80 Å ~120 Å ,所述氮化膜的厚度为160 Å ~240 Å ,所述顶部氧化膜的厚度为500 Å ~800 Å
7.根据权利要求1或2所述的方法,其特征在于,所述在所述ONO结构硬掩膜上淀积顶层非晶硅和硬掩膜层,包括:
通过低压化学气相淀积工艺在所述ONO结构硬掩膜上淀积顶层非晶硅;
通过热氧化工艺在所述顶层非晶硅上淀积硬掩膜层。
8.根据权利要求7所述的方法,其特征在于,所述顶层非晶硅厚度为300 Å ~400 Å ,所述硬掩膜层厚度为300 Å ~400 Å
CN201210510130.0A 2012-12-03 2012-12-03 一种后栅工艺假栅的制造方法和后栅工艺假栅 Active CN103854985B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210510130.0A CN103854985B (zh) 2012-12-03 2012-12-03 一种后栅工艺假栅的制造方法和后栅工艺假栅
PCT/CN2012/086398 WO2014086053A1 (zh) 2012-12-03 2012-12-12 一种后栅工艺假栅的制造方法和后栅工艺假栅
US14/119,862 US9202890B2 (en) 2012-12-03 2012-12-12 Method for manufacturing dummy gate in gate-last process and dummy gate in gate-last process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210510130.0A CN103854985B (zh) 2012-12-03 2012-12-03 一种后栅工艺假栅的制造方法和后栅工艺假栅

Publications (2)

Publication Number Publication Date
CN103854985A CN103854985A (zh) 2014-06-11
CN103854985B true CN103854985B (zh) 2016-06-29

Family

ID=50862494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210510130.0A Active CN103854985B (zh) 2012-12-03 2012-12-03 一种后栅工艺假栅的制造方法和后栅工艺假栅

Country Status (3)

Country Link
US (1) US9202890B2 (zh)
CN (1) CN103854985B (zh)
WO (1) WO2014086053A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681274B (zh) * 2012-09-12 2016-12-28 中国科学院微电子研究所 半导体器件制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236899A (zh) * 2007-01-30 2008-08-06 力晶半导体股份有限公司 栅极的制造方法
CN101312210A (zh) * 2007-05-24 2008-11-26 台湾积体电路制造股份有限公司 半导体装置及其制造方法
CN103681274A (zh) * 2012-09-12 2014-03-26 中国科学院微电子研究所 半导体器件制造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096507B2 (ja) * 2000-09-29 2008-06-04 富士通株式会社 半導体装置の製造方法
KR100353539B1 (ko) * 2000-11-24 2002-09-27 주식회사 하이닉스반도체 반도체 소자의 게이트 제조방법
CN1288719C (zh) 2003-03-10 2006-12-06 联华电子股份有限公司 图案光刻胶的微缩制造过程
US20050118531A1 (en) * 2003-12-02 2005-06-02 Hsiu-Chun Lee Method for controlling critical dimension by utilizing resist sidewall protection
US7576386B2 (en) 2005-08-04 2009-08-18 Macronix International Co., Ltd. Non-volatile memory semiconductor device having an oxide-nitride-oxide (ONO) top dielectric layer
WO2007025564A1 (en) * 2005-08-29 2007-03-08 Freescale Semiconductor, Inc. Improved gate electrode silicidation process
CN100452317C (zh) 2005-09-09 2009-01-14 联华电子股份有限公司 缩小特征尺寸的方法和半导体蚀刻方法
JP4764284B2 (ja) * 2006-08-11 2011-08-31 株式会社東芝 半導体装置およびその製造方法
KR100854897B1 (ko) 2006-12-28 2008-08-28 주식회사 하이닉스반도체 반도체 소자의 게이트 형성 방법
KR100831571B1 (ko) 2006-12-28 2008-05-21 동부일렉트로닉스 주식회사 플래시 소자 및 이의 제조 방법
US20090130836A1 (en) 2007-11-16 2009-05-21 Jong-Won Sun Method of fabricating flash cell
DE102009023250B4 (de) * 2009-05-29 2012-02-02 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Halbleiterbauelement-Herstellverfahren mit erhöhter Ätzstoppfähigkeit während der Strukturierung von siliziumnitridenthaltenden Schichtstapeln durch Vorsehen einer chemisch hergestellten Oxidschicht während der Halbleiterbearbeitung
US8546252B2 (en) * 2009-10-05 2013-10-01 International Business Machines Corporation Metal gate FET having reduced threshold voltage roll-off
US8372755B2 (en) * 2010-01-13 2013-02-12 Taiwan Semiconductor Manufacturing Company, Ltd. Multilayer hard mask
FR2957458B1 (fr) * 2010-03-15 2012-09-07 Commissariat Energie Atomique Procede de realisation d'une electrode conductrice
US8653602B2 (en) * 2010-09-11 2014-02-18 International Business Machines Corporation Transistor having replacement metal gate and process for fabricating the same
CN102544089B (zh) * 2010-12-08 2015-06-17 中国科学院微电子研究所 半导体器件及其制造方法
CN102543696B (zh) * 2010-12-17 2014-12-17 中国科学院微电子研究所 一种半导体器件的制造方法
US8847333B2 (en) * 2011-09-01 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Techniques providing metal gate devices with multiple barrier layers
US8860135B2 (en) * 2012-02-21 2014-10-14 United Microelectronics Corp. Semiconductor structure having aluminum layer with high reflectivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236899A (zh) * 2007-01-30 2008-08-06 力晶半导体股份有限公司 栅极的制造方法
CN101312210A (zh) * 2007-05-24 2008-11-26 台湾积体电路制造股份有限公司 半导体装置及其制造方法
CN103681274A (zh) * 2012-09-12 2014-03-26 中国科学院微电子研究所 半导体器件制造方法

Also Published As

Publication number Publication date
US9202890B2 (en) 2015-12-01
CN103854985A (zh) 2014-06-11
US20140332958A1 (en) 2014-11-13
WO2014086053A1 (zh) 2014-06-12

Similar Documents

Publication Publication Date Title
JP6951903B2 (ja) 半導体素子のための拡張領域
US9466696B2 (en) FinFETs and methods for forming the same
US8034677B2 (en) Integrated method for forming high-k metal gate FinFET devices
CN103854984B (zh) 一种后栅工艺假栅的制造方法和后栅工艺假栅
CN102810476B (zh) 鳍式场效应晶体管的制造方法
CN103794565A (zh) 逻辑晶体管和非易失性存储器的制造方法
US10483377B2 (en) Devices and methods of forming unmerged epitaxy for FinFet device
CN107689398A (zh) 半导体器件及其制造方法
CN107230727A (zh) 制作半导体元件的方法
CN107204339B (zh) 隔离结构的形成方法和半导体结构的形成方法
JP6525304B2 (ja) 不揮発性メモリセル、高電圧トランジスタ、ならびに高k金属ゲートトランジスタの一体化
US20160284596A1 (en) Partially recessed channel core transistors in replacement gate flow
CN108389831A (zh) 层间介质层的填充方法
CN107564859A (zh) 半导体装置及其制造方法
CN105633070B (zh) 一种半导体器件及其制作方法
CN103854985B (zh) 一种后栅工艺假栅的制造方法和后栅工艺假栅
CN108122779A (zh) 一种金属栅极半导体结构及其制备方法
CN105097516B (zh) 一种FinFET器件及其制造方法、电子装置
CN103854986B (zh) 一种后栅工艺假栅的制造方法和后栅工艺假栅
CN108122762B (zh) 半导体结构及其形成方法
TWI528424B (zh) 於金氧半場效電晶體形成遮蔽閘之方法
CN103811324B (zh) 鳍式场效应管的形成方法
CN106298489B (zh) 栅极的制备方法
CN109300972A (zh) Finfet器件及其形成方法
CN104979205B (zh) 晶体管的形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant