CN1038412A - 蒸汽转化催化剂 - Google Patents

蒸汽转化催化剂 Download PDF

Info

Publication number
CN1038412A
CN1038412A CN89103400A CN89103400A CN1038412A CN 1038412 A CN1038412 A CN 1038412A CN 89103400 A CN89103400 A CN 89103400A CN 89103400 A CN89103400 A CN 89103400A CN 1038412 A CN1038412 A CN 1038412A
Authority
CN
China
Prior art keywords
catalyzer
nickel
pore volume
roasting
aluminum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN89103400A
Other languages
English (en)
Other versions
CN1017029B (zh
Inventor
佐藤延弘
大崎功三
菊地克俊
広田美嗣
沼口徹
望月昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1089993A external-priority patent/JPH0616850B2/ja
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Publication of CN1038412A publication Critical patent/CN1038412A/zh
Publication of CN1017029B publication Critical patent/CN1017029B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/653500-1000 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/524Spinel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

以氧化镍计载镍量为3-20%(重量)的催化剂,用于烃或醇的蒸汽转化。此催化剂的制法是将氧化铝颗粒浸入含镍溶液中、干燥,然后焙烧,此氧化铝颗粒为α-氧化铝,纯度为98%(重量)或更高。氧化铝颗粒中,孔径0.1-0.5微米孔的孔容不低于0.2ml/g和大于0.5微米孔的孔容不低于0.05ml/g。

Description

本发明涉及用于烃类的蒸汽转化以产生含有氢气和一氧化碳的气体混合物。
早已知晓,包括一种氧化铝、氧化硅等耐热载体和具有催化活性的镍组分的催化剂,可用于烃类的蒸汽转化。然而此类催化剂仅在较低温度具有活性,而在加热时则不大稳定,这就造成一种缺欠,即当温度高于某一值时,催化剂的活性则下降。
美国专利4285837号公开一种能解决上述所出现的问题的催化剂,但它用于烃类的蒸汽转化是为了生产主要是甲烷的燃料气。在此催化剂中,氧化镍是载于活性氧化铝的多孔体之中。这种氧化铝主要是通过勃姆石凝胶的煅烧(或焙烧)所得到的γ-氧化铝。
本发明人进一步研究了这类催化剂用于烃类或低烷醇类的蒸汽转化,以生产主要是氢气和一氧化碳的气体。
在本研究中,变化活性氧化铝多孔体的特性而制备了多组催化剂,并且在一系列实验中,对它们的催化活性也进行了精确的比较。变化多孔体的特性是通过多孔氧化铝(活性氧化铝的多孔体)灼烧温度的改变来实现的。
发明者从研究结果中发现,下面将描述的催化剂为了实现本发明的目的在烃类的蒸汽转化中表现出优异的性能。
在本发明的催化剂中,镍作为活性组分(或成分)载于高纯氧化铝的多孔体中。以催化剂的总重量为基准,镍的担载量(以氧化镍计)为3-20%,较好为5-15%,最好为5-10%。所述高纯氧化铝的多多孔体是以勃姆石为原料进行热处理经由γ-氧化铝和δ-氧化铝而得到的α-氧化铝;其纯度为不低于98%(重量);其多孔体的结构为:表观孔隙率为50-80%,最好50-70%;由孔径范围0.1-0.5微米的孔给出的孔容不低于0.2ml/g和由孔径大于0.5微米的孔给出的孔容不低于0.05ml/g。
本发明还提供一种使用上述定义的催化剂使烃或烃的混合物蒸汽转化为含有氢气和一氧化碳的反应气混合物的方法。
顺便提及,虽然已声称得到α-氧化铝的转化温度约为1150-1200℃,但在下面将介绍的实例中,制造催化剂载体所采用的热处理(灼烧)温度是1300℃±40℃左右。
热处理温度最好是1200-1380℃,更好是1250-1350℃。一般说来,如果热处理温度低于此范围,则催化剂载体的较细孔的数目将增加,表面积也增加;如果热处理温度高于此范围,则催化剂载体的较细孔的数目将减少,表面积也减少。在这两种情况下都将导致难于制造适于本发明的催化剂载体的结果。
转化为α-氧化铝的热处理操作是在氧化性气氛(即空气中)下完成的。
上述处理的时间要保证转化完全,通常3-4小时,最好2-4小时,同时升温和降温时间也要适当选择。
对于孔径范围0.1-0.5微米孔给出的孔容和大于0.5微米孔给出的孔容的上限没有特别限制,但是为了使本发明的载体和最终的催化剂能具备一定的实用抗压强度,上述孔容分别不高于0.5ml/g和0.3ml/g是有利的。
灼烧氧化铝三水合物也可制备α-氧化铝。而这些三水合物,例如可由镁磷钙铝石和三水铝矿经电解熔融产生。但是这样制备的氧化铝一般来说不具有上述限定的细孔结构,因此应用这种氧化铝作载体不能满足本发明对催化活性的要求。
本发明催化剂适于低级烃(如甲烷)和低级醇(如甲醇),特别适适于低级烃的蒸汽转化。
将镍组分掺入α-氧化铝的多孔体中在操作方式上没有什么特殊的限制。但镍和镍氧化物必须均匀地分散在氧化铝的多孔体结构之中,而且分散的表面积要尽可能大。熟知的将载体浸入镍盐溶液的方法是适宜的。
将具有前面提到特性的活性氧化铝,例如浸到硝酸镍的水溶液中。待水溶液浸透至多孔体的中心,将氧化铝在室温下干燥,然后在100-130℃强化干燥。经这样处理的氧化铝,再在一定温度范围内进行热处理(煅烧),温度可在730-950℃,较好在800-920℃,最好在850-900℃,这样可制得本发明的催化剂。如果焙烧温度高于上述范围,则催化剂活性将下降;而如果焙烧温度低于上述范围,则催化剂活性一开始相当高,然后随使用时间而逐渐下降。
浸透了镍的载体的焙烧时间为1-10小时。如果载带镍的量较大或焙烧温度较低,则最好延长焙烧时间。为得到载有以镍的氧化物计大约8%(重量)镍的本发明的催化剂,在850-950℃下一般焙烧2.5-4.0小时已足够了。
浸透了镍的载体的焙烧是在氧化性气氛下进行的,这种气氛常为空气。
顺便提及,对于焙烧不充分(至少部分上)的催化剂在使用之前可以在例如使用催化剂的反应器中完成焙烧,如果情况允许的话。
使用本发明催化剂,发现既使不加入碱金属元素,其产生积碳的量也比常规催化剂少得多,这是因为镍均匀地分散在具有前面限定的多孔载体之中。这些常规催化剂在日本特许公报B57-50533和美国专利4285837中均已披露。
附图1是本发明催化剂的活性随反应温度的变化而变化的图形。
下面的实例将例示说明本发明的催化剂,但本发明不限于此。
实例1
本发明的催化剂制备如下:
α-氧化铝的多孔体颗粒浸入含1.3kg硝酸镍(Ni(NO32·6H2O)的1l水溶液中,然后在室温下干燥过夜。上述的氧化铝颗粒的平均粒径5mm;其中孔径0.1-0.5微米孔给出的孔容为0.22ml/g和直径0.5微米以上的孔给出的孔容为0.07ml/g。将上述浸透和干燥过的氧化铝颗粒在120℃加热6小时进一步干燥;然后在5-6小时内升温至850-900℃,尔后在此温度下保持3小时来焙烧颗粒。
这样得到的催化剂含有8%(重量)的镍(以氧化镍计)。此催化剂以下称之为“催化剂A”。
按制备催化剂A的相同方法得到一种镍含量相同的催化剂,制法的区别仅在于升至焙烧温度的时间、焙烧温度和焙烧时间分别为5小时、690-710℃和10小时。此催化剂以下称之为“催化剂A-1”。
按制备催化剂A的相同方法得到一种镍含量相同的催化剂,制法的区别仅在于升至焙烧温度的时间、焙烧温度和焙烧时间分别为6小时、990-1010℃和3小时。此催化剂以下称之为“催化剂A-2”。
还制备了下述的催化剂B和催化剂C。
催化剂B
催化剂B制备如下:
用制备催化剂A的相同方法使α-氧化铝的多孔体颗粒载上(或浸入)8.6%(重量)的镍(以氧化镍计)。此氧化铝颗粒的平均粒径5mm,孔径0.1-0.5微米范围的孔给出的孔容为0.05ml/g和孔径大于0.5微米的孔给出的孔容为0.2ml/g。
催化剂C
催化剂C制备如下:
用制备催化剂A的相同方法使α-氧化铝的多孔体颗粒载上8.6%(重量)的镍(以氧化镍计)。此氧化铝颗粒的平均粒径5mm,孔径0.1-0.5微米范围的孔给出的孔容为0.21ml/g和孔径大于0.5微米的孔给出的孔容为0ml/g。
上述每种催化剂均装于内径12.3mm的管式反应器中,然后将催化剂层的温度升至800℃,尔后用蒸汽和甲烷还原每种催化剂20小时,条件是:S/C比-蒸汽对碳(包含在或组成甲烷的碳)的摩尔比为7.0和空速为SV0=1000h-1
此后每一催化剂层均用于蒸汽转化实验。甲烷和蒸汽送入管式反应器中,条件是:S/C=3.0;反应压力P=0.2kg/cm2(表压)和SV0=8000h-1
经过一除水冷却器和气量计后回收每一实验的反应产物,并用气相色谱仪进行分析。反应连续进行500小时。结果示于表1。在反应时间栏的零值含意是刚刚经上述还原处理后的反应起点,“接近温度”是指从反应体系的组成计算出的平衡温度与实验中的实测温度之差。
表    1
反应    甲烷蒸汽转化    反应气体产物的组成
催化    时间    反应温度    中的接近温度    (%体积)
剂    (hr)    (℃)    (vol.%)
(℃) H2CO CO2CH4
A
0    690    14.9    75.6    13.0    9.2    2.2
500    690    14.9    75.6    13.0    9.2    2.2
A-1
0    690    12.8    75.4    12.8    12.8    2.6
500    690    137.9    62.0    7.6    7.6    20.5
A-2
0    690    50.2    73.3    11.5    11.5    5.5
B
0    690    42.1    74.0    16.5    6.1    3.4
C
0    690    16.6    75.5    13.3    8.9    2.3
500    690    124    65.7    9.2    9.5    15.6
从表1结果可以看出催化剂A的活性高,并且其活性基本上不减小。
催化剂A-1开始活性高,以后活性就大幅度下降。催化剂A-2则开始的活性就不高。
催化剂B的活性也不高,原因可能是对于孔径大于0.5微米的孔给出的孔容是高于0.05ml/g,但本发明的另一限定没有实现。
催化剂C活性的大幅度下降,其原因可能是对于孔径0.1-0.5微米的孔给出的孔容是高于0.2ml/g,但本发明另一限定没有实现。
实例2
实例1所用的催化剂A对于正己烷的蒸汽转化活性被测量了。反应条件是:S/C=3.0;反应压力P=0.2Kg/cm2(表压);SV0=12000h-1
结果列于表2。如对于甲烷的情况一样,也观测到高活性。
表    2
反应温度    气体反应产物的组成
(℃) H2CO CO2CH4
700    70.6    13.5    13.7    2.2
实例3
检测了实例1所用催化剂A的催化活性随温度变化而变化的情况。反应条件为:S/C=3.0;P=0.2Kg/cm2(表压);SV0=10000h-1
甲烷和蒸汽送入管式反应器,催化剂层出口的温度(反应温度)从650℃变化到850℃。结果列于表3和图1。
表    3
反应温度    甲烷蒸汽转化的接近温度    气体反应产物中的甲烷含量
(℃)    (℃)    (干重)    (%体积)
650    27.1    5.7
700    43.9    2.8
750    63.2    1.4
800    83.0    0.6
850    102.0    0.3

Claims (7)

1、用于蒸汽转化反应的催化剂,它包括多孔氧化铝和镍,其中由孔径为0.1-0.5微米的孔给出的孔容不低于0.2ml/g和由孔径大于0.5微米的孔给出的孔容不低于0.05ml/g,其纯度在焙烧干燥后测定不低于98%(重量);使所述的多孔氧化铝浸入含镍的溶液、干燥和然后焙烧浸渍的氧化铝,使之浸透的镍含量以催化剂总重量为基占3-20%(重量)(以氧化镍计)。
2、根据权利要求1的催化剂,其特征在于孔径0.1-0.5微米的孔给出的孔容不高于0.5ml/g和孔径大于0.5微米的孔给出的孔容不高于0.3ml/g。
3、根据权利要求1的催化剂,其特征在于所述干燥的氧化铝在730-950℃的温度下焙烧。
4、根据权利要求1的催化剂,其特征在于所述干燥的氧化铝在800-920℃的温度下焙烧。
5、根据权利要求1的催化剂,其特征在于所述干燥的氧化铝在850-900℃的温度下焙烧。
6、根据权利要求1的催化剂,其特征在于所述干燥的氧化铝在氧化性气氛下焙烧。
7、使用权利要求1所限定的催化剂使烃或烃的混合物蒸汽-转化为含有氢气和一氧化碳的反应气体混合物的方法。
CN89103400A 1988-05-20 1989-05-19 用于蒸汽转化的镍/氧化铝催化剂 Expired CN1017029B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP123221/88 1988-05-20
JP12322188 1988-05-20
JP89993/89 1989-04-10
JP1089993A JPH0616850B2 (ja) 1988-05-20 1989-04-10 水蒸気改質用の触媒

Publications (2)

Publication Number Publication Date
CN1038412A true CN1038412A (zh) 1990-01-03
CN1017029B CN1017029B (zh) 1992-06-17

Family

ID=26431379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89103400A Expired CN1017029B (zh) 1988-05-20 1989-05-19 用于蒸汽转化的镍/氧化铝催化剂

Country Status (2)

Country Link
US (2) US4990481A (zh)
CN (1) CN1017029B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046435C (zh) * 1995-06-15 1999-11-17 华南理工大学 甲烷选择性氧化制合成气的催化剂
CN1110362C (zh) * 1996-11-17 2003-06-04 中国石化齐鲁石油化工公司 节能型烃类水蒸汽转化催化剂及用途
CN102614628A (zh) * 2012-03-27 2012-08-01 沈阳工业大学 健身车架

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459052A (ja) * 1990-06-22 1992-02-25 Toyo Eng Corp 水蒸気改質用触媒
CN1039884C (zh) * 1992-08-10 1998-09-23 中国科学院化学研究所 甲醇羰基化生产乙酸的多相镍催化剂及其制法和用途
FR2722429B1 (fr) * 1994-07-13 1996-10-04 Rhone Poulenc Chimie Catalyseur a base d'alumine pour le traitement de gaz contenant des composes soufres, utilisation deces catalyseurs pour le traitement et procedes de traitement desdits gaz
CN1037585C (zh) * 1995-03-31 1998-03-04 中国科学院化学研究所 气-固相羰基化催化剂及其制法
JP3389412B2 (ja) * 1996-05-16 2003-03-24 東洋エンジニアリング株式会社 改良された低級炭化水素用水蒸気改質触媒
US6238816B1 (en) 1996-12-30 2001-05-29 Technology Management, Inc. Method for steam reforming hydrocarbons using a sulfur-tolerant catalyst
US6261991B1 (en) 1999-03-25 2001-07-17 Toyo Engineering Corporation Steam-reforming catalyst for hydrocarbons
US20020165417A1 (en) * 2001-03-14 2002-11-07 Toyo Engineering Corporation Process for producing synthesis gas
US20020197204A1 (en) * 2001-05-31 2002-12-26 Sumitomo Chemical Company, Limited Method for producing alpha-alumina formed body
US6852668B2 (en) 2001-12-03 2005-02-08 University Of Western Ont Catalyst for hydrocarbon reforming reaction
EP1403217A1 (en) 2002-09-26 2004-03-31 Haldor Topsoe A/S Process and apparatus for the preparation of synthesis gas
US7592290B2 (en) * 2004-04-08 2009-09-22 Sulzer Metco(Canada) Inc. Supported catalyst for stream methane reforming and autothermal reforming reactions
JP4477432B2 (ja) * 2004-06-29 2010-06-09 東洋エンジニアリング株式会社 改質器
US7449167B2 (en) * 2004-07-08 2008-11-11 Air Products And Chemicals, Inc. Catalyst and process for improving the adiabatic steam-reforming of natural gas
US8017545B2 (en) * 2008-12-04 2011-09-13 Uop Llc Dynamic composition for the removal of sulfur from a gaseous stream
US20120273728A1 (en) * 2009-08-21 2012-11-01 Universite De Sherbrooke Steam reforming of hydrocarbonaceous fuels over a ni-alumina spinel catalyst
WO2012167351A1 (en) * 2011-06-08 2012-12-13 University Of Regina Sulfur tolerant catalysts for hydrogen production by carbon dioxide reforming of methane-rich gas
US20130071764A1 (en) 2011-09-15 2013-03-21 John R. Budge Systems and methods for steam reforming
US9809453B2 (en) 2013-03-15 2017-11-07 Lg Fuel Cell Systems, Inc. Catalysts for hydrocarbon reforming
WO2014188278A2 (en) 2013-05-09 2014-11-27 Sabic Global Technologies B.V. Clay mineral supported catalysts
CN106608617B (zh) * 2015-10-21 2019-01-08 中国石油化工股份有限公司 一种甲烷干重整制合成气的方法
FR3050659B1 (fr) * 2016-04-29 2021-09-03 Ifp Energies Now Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose ester
FR3050660B1 (fr) * 2016-04-29 2021-09-03 Ifp Energies Now Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose comportant deux fontions acides carboxyliques et au moins trois atomes de carbone
KR102499222B1 (ko) 2018-08-03 2023-02-10 가부시키가이샤 르네상스 에너지 리서치 수증기 개질 촉매
WO2022081415A2 (en) * 2020-10-13 2022-04-21 Exxonmobil Research And Engineering Company Catalyst systems for reforming in cyclic flow reactors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3759678A (en) * 1971-04-08 1973-09-18 Du Pont Reformer catalyst
EP0010114B1 (en) * 1977-07-11 1983-11-30 British Gas Corporation Steam reforming catalysts and their preparation
JPS55139837A (en) * 1979-04-18 1980-11-01 Fujimi Kenmazai Kogyo Kk Catalyst for steam modification of hydrocarbon
US4456703A (en) * 1982-05-07 1984-06-26 Exxon Research And Engineering Co. High surface area nickel aluminate spinel catalyst for steam reforming

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046435C (zh) * 1995-06-15 1999-11-17 华南理工大学 甲烷选择性氧化制合成气的催化剂
CN1110362C (zh) * 1996-11-17 2003-06-04 中国石化齐鲁石油化工公司 节能型烃类水蒸汽转化催化剂及用途
CN102614628A (zh) * 2012-03-27 2012-08-01 沈阳工业大学 健身车架
CN102614628B (zh) * 2012-03-27 2014-06-18 沈阳工业大学 健身车架

Also Published As

Publication number Publication date
CN1017029B (zh) 1992-06-17
US5100857A (en) 1992-03-31
US4990481A (en) 1991-02-05

Similar Documents

Publication Publication Date Title
CN1038412A (zh) 蒸汽转化催化剂
US4239656A (en) Catalyst for purifying exhaust gases and carrier for the catalyst
CN1449361A (zh) 产生富含氢的气体的方法
CN1819316A (zh) 具有优异传热和传质特性的燃料重整催化剂的载体及其制备方法
US4260524A (en) Hollow catalyst carrier and hollow catalyst made of transition-alumina and process for production thereof
CN1572367A (zh) 制备双层涂敷仅含钯的三效催化剂的方法
JPH08243393A (ja) 排ガス浄化用触媒
GB2080135A (en) A method of preparing a supported catalyst
CN101602016B (zh) 水热稳定性的层状复合载体
CN1216937A (zh) 用于处理废气的三元催化剂
CN101428238A (zh) 热稳定性的层状复合载体
CN1132681C (zh) 以锰和碱土或稀土为基的、用作NOx捕集剂的组合物,及其在处理废气中的应用
EP1494804A1 (en) In situ theta alumina coated monolithic catalyst supports
CN111330570A (zh) 一种汽油车三效催化剂及其制备方法
CN1017781B (zh) 用于蒸汽转换的镍、镧和氧化铝催化剂组合物
JPH0459052A (ja) 水蒸気改質用触媒
CN1104950C (zh) 以氧化铝为载体的钌催化剂
CN112007625B (zh) 一种α-氧化铝载体及制备方法和银催化剂与应用
CN114700083A (zh) 一种用于低浓度voc的复合催化剂及其制备方法
CN111054350B (zh) 一种Cu-ZnO/凹凸棒石粘土复合催化剂及其制备方法与应用
JP2003205246A (ja) 触媒体及び触媒体用担体
CN1162416C (zh) 用于生产环氧乙烷的银催化剂、其制备方法及其应用
CN114082421A (zh) 加氢催化剂及其制备方法以及在异辛烯醛加氢中的应用
JP2616043B2 (ja) 触媒および触媒担体
RU2564672C1 (ru) Способ получения высокопористого носителя катализатора

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee