CN1449361A - 产生富含氢的气体的方法 - Google Patents

产生富含氢的气体的方法 Download PDF

Info

Publication number
CN1449361A
CN1449361A CN01814933A CN01814933A CN1449361A CN 1449361 A CN1449361 A CN 1449361A CN 01814933 A CN01814933 A CN 01814933A CN 01814933 A CN01814933 A CN 01814933A CN 1449361 A CN1449361 A CN 1449361A
Authority
CN
China
Prior art keywords
layer
steam reforming
partial oxidation
catalytic partial
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN01814933A
Other languages
English (en)
Inventor
H·S·黄
R·J·法劳托
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Catalysts LLC
Original Assignee
Engelhard Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engelhard Corp filed Critical Engelhard Corp
Publication of CN1449361A publication Critical patent/CN1449361A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • C01B2203/1017Packed bed of catalytic structures, e.g. particles, packing elements characterised by the form of the structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1029Catalysts in the form of a foam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

一种在催化作用下从烃原料产生富含氢的气体的方法。含有烃原料、水和空气的气流被预加热到可以引发烃原料的催化部分氧化的足够高的温度。预加热后的气流随即被注入含有层状催化剂构件的、温度足以引发和维持催化部分氧化和催化蒸汽转化的自热反应器中。至少部分烃原料被部分氧化,原料中剩余的烃被蒸汽转化而产生更多的富含氢的气体。层状催化剂构件包含一个整块载体,该载体含有至少一层蒸汽转化催化剂和至少一层催化部分氧化催化剂,且两者相互接触。蒸汽转化催化剂包含一种或多种铂族金属组分,而催化部分氧化催化剂含有钯组分。

Description

产生富含氢的气体的方法
                         发明的领域
本发明涉及一种使用带有层状催化剂构件的自热反应器(在文献中又被称为自热转化器),在催化作用下,产生富含氢的气体(常被称为“合成气”)的方法。
                         发明的背景
在催化作用下通过部分氧化和/或蒸汽转化烃原料而制备富含氢的气体的方法,在文献中是为人所熟知的。典型的此类方法使用一个反应器在催化作用下部分氧化烃原料以制备富含氢的气体,或在催化作用下蒸汽转化烃原料以制备富含氢的气体。除此以外,文献还披露了在一个自热反应器中进行催化部分氧化反应和催化蒸汽转化反应两个反应的方法。其他的文献也披露了在单一自热反应器中进行两个反应的方法,反应器装有几个催化剂区,在每一个区内各自进行每一类反应。披露了此类方法的文献的例子包括以下专利和已公开的专利申请:US 3,418,722、US 3,976,507、US 4,501,823、US 4,522,894、US 4,844,837、US4,927,857、US 5,112,527、EP 0 112 613 A2、EP 0 495 534 A2、EP 0 673 074 B1、WO 96/00186、WO 99/48804和WO 99/48805。
本发明中的方法可以在一个自热反应器中进行,而不需要在反应器中提供多个有次序的催化剂区,与此相比,以上引用的文献中的方法较为复杂。催化部分氧化反应本质上是放热的,由此产生的热被用于进行本质上吸热的蒸汽转化反应。通过使催化部分氧化层与蒸汽转化催化层紧密接触,可以更有效地控制绝热的反应器(即自热反应器)中的工艺热。与使用多个自热反应器或一个带有多个催化剂区的自热反应器时产生的热损失相比,通过使两个催化剂层相互接触,可以显著地将热损失减少到最小。
本发明中的方法还在反应器容积和整块载体的成本方面节约了成本,以及导致在催化部分氧化和蒸汽转化反应中更少的压力下降。由此,本发明的方法使放热的催化部分氧化反应中产生的热得到了更有效的利用和更均匀的使用,由于热损失更少,与之相伴随的反应速度较快,且处在绝热条件下,吸热的蒸汽转化反应可以在略高的温度下进行。其结果是,催化部分氧化反应的温度可以被稍降低,其幅度估计约为50度,以此相伴随地,蒸汽转化反应的温度可以被升高约50度,这样,催化剂的寿命可以得到改善,且蒸汽转化反应的速度可以得到加快。此外,将催化部分氧化和蒸汽转化的催化剂作为相互接触的层来使用,可以避免不利的反应,例如氧和铑的反应以及氧和铂的反应。
                        发明的概述
本发明的目的之一是提供一种能够比文献中的方法更有效地产生富含氢的气体的方法。
本发明的另一个目的是提供一种能够比文献中的方法更经济地产生富含氢的气体的方法。
本发明涉及通过以下步骤产生富含氢的气体:
a)将预加热后的包含烃原料、水和空气的进气气流注入带有层状催化剂构件的自热反应器,气流与构件接触时的温度应足够高,以引发和维持催化部分氢化和蒸汽转化两个反应(在本发明中,“水”应被理解为包括“蒸汽”);
b)将至少部分烃原料催化部分氧化,从而产生包含氢和碳氧化物的排出物;且
c)将原料中剩余的烃蒸汽转化,从而产生富含氢的排出物。
层状催化剂构件包含一个整块载体,在其表面上包含至少一层蒸汽转化催化剂和一层催化部分氧化催化剂,两个层相互接触。蒸汽转化催化剂层和催化部分氧化催化剂层包含下文所述的成分。
                   附图的简要描述
图1是本发明使用的层状催化剂构件的第一个实施方案的优选取向的透视图。
图2是本发明使用的层状催化剂构件的第二个实施方案的优选取向的透视图。
图3是本发明使用的层状催化剂构件的第三个实施方案的优选取向的透视图。
                   优选的实施方案
在本发明方法的第一个步骤中,包含了用于产生富含氢的气体的烃原料、空气(或含有氧的气体)和水的进气气流被预加热到约200至约900℃,并被送入一个适当的、温度被典型地维持在约250至约1100℃的自热反应器中。进气气流典型地以每整块载体体积约2,000至约500,000体积的体积小时速率被输入到自热反应器中。自热反应器装有以下将更完整地描述的层状催化剂构件。气流与催化剂构件接触时的温度足以引发和维持催化部分氧化和蒸汽转化两个反应。
烃原料可以由C5和更重的烃构成,但更优选的是通常为气体或容易蒸发的烃,诸如C1-C4烷烃,例如甲烷、丙烷和丁烷等。典型地,送入自热反应器中的烃原料、水和空气在进气气流中的量被控制以维持水与碳的比至少为约0.3∶1和氧与碳的比为约0.2至0.7∶1。
一般地,在自热反应器中绝热条件更普遍,原因在于部分氧化反应本质上是放热的,而在此反应过程中所产生的热通常足以引发和维持本质上吸热的蒸汽转化反应。因此,通过合理地选择预加热的温度、反应器的设计、体积小时速率等,两个反应都可以在温度为约250至约1000℃在反应器中进行而不需要提供来自外部的对反应的加热和冷却。尽管如此,如果为了将两个反应都连续地维持在高速率下而对反应器提供加热或冷却,也在本发明的范围中。
在该方法的第二个步骤中,烃原料通过与部分氧化催化剂层接触而被催化部分氧化。产生的排出物包含氢和碳氧化物。
在该方法的第三个步骤中,原料中剩余的、未被催化部分氧化的烃通过与蒸汽转化催化剂层接触而被蒸汽转化,从而产生富含氢的排出物。
从该方法的第三个步骤得到的富含氢的排出物优选被用于进一步的水-气转移反应。在蒸汽转化反应的过程中,烃与水反应产生主要含有氢气和一氧化碳以及任何未反应的烃的产物气体。为了降低一氧化碳的含量和增加氢气的含量,排出物可以被送入一个转换器,其中排出物与催化剂(例如Fe/Cr氧化物或Cu/Zn氧化物)相接触,从而使一氧化碳与水反应以产生二氧化碳和更大量的氢。
在本发明的方法中所使用的层状催化剂构件包含一个整块载体,至少一层催化部分氧化催化剂和至少一层蒸汽转化催化剂,其中催化部分氧化催化剂与蒸汽转化催化剂相接触。在催化部分氧化催化剂层与蒸汽转化催化剂层相接触的前提下,催化部分氧化催化剂层或蒸汽转化催化剂层之一或二者可以被放置在整块载体的表面上。可以理解的是,层状催化剂构件还可以包含多个蒸汽转化催化剂层和/或多个催化部分氧化催化剂层,每一个催化剂层包含不同的蒸汽转化催化剂组分和/或不同的部分氧化催化剂组分。预加热后的进气气流首先与催化部分氧化催化剂层相接触是特别优选的。
更优选的催化部分氧化催化剂层和蒸汽转化催化剂层的放置方式是使得一层在另一层上面并且与之相接触。特别优选的是蒸汽转化催化剂层处于整块载体的表面上,而催化部分氧化催化剂层在蒸汽转化催化剂层的上面,并且与之相接触。另一种放置方式是,蒸汽转化催化剂层和催化部分氧化催化剂层被“分区”和“渐变”地放置在整块载体的同一平面上,并使得它们互相重叠和接触。在本发明中,所谓“分区”和“渐变”是可以互换使用的,并表明各层的厚度(从而亦指各层中催化剂组分的浓度)是逐渐变化的。在一个特别优选的实施方案中,催化部分氧化催化剂层的厚度在与预加热后的进气气流刚刚开始接触的点处值最大,且该厚度沿着整块载体的长度逐渐减小。同时,蒸汽转化催化剂层的厚度在与预加热后的进气气流刚刚开始接触的点处值最小,且该厚度沿着整块载体的长度逐渐增加。这些排列方式将在以下更详细地描述。
                       整块载体
催化部分氧化催化剂层和/或蒸汽转化催化剂层是被放置在一块整块载体的表面上的,其中,整块载体包括一个或多个整块体,整块体带有大量被细密地分隔的贯穿的气体流动通道。这种整块载体经常被称为“蜂窝”型载体,在文献中是为人所熟知的。更优选的载体是由相当惰性的和刚性的耐火材料制成的,在约1450℃的高温下可以维持其形状不变和机械状态足够好。典型的被用作载体的材料具有热膨胀系数低、抗热冲击性能好的性质,以热传导性低的为更好。
已知的用于制造整块载体的材料有两大类。一类是类似陶瓷的多孔材料,由一种或多种金属氧化物组成,例如氧化铝、氧化铝-二氧化硅、氧化铝-二氧化硅-氧化钛、高铝红柱石、堇青石、氧化锆、氧化锆-二氧化铈、氧化锆-尖晶石、氧化锆-高铝红柱石和碳化硅等。一种特别优选的、商业上可以得到的、可以用作载体而在约1093℃以下的操作中使用的材料是堇青石(一种氧化铝-氧化镁-氧化硅材料)。对于用到约1093℃以上的操作的应用,氧化铝-二氧化硅-氧化钛材料更优选。
商业上可以得到的整块载体有各种尺寸和形状。典型的整块载体包含例如一个通常为筒状(横截面为圆形或椭圆形)的堇青石构件,并带有大量平行的横截面为多边形的贯穿的气体流动通道。典型的气流通道的尺寸使得在每英寸表面积上的气流通道数为约50至约1,200个,更优选的是200至600个。
另一类优选的用于制造整块载体的材料是耐热和耐氧化的金属,例如不锈钢或铁-铬合金。典型的用此类材料制造整块载体的方法是将扁平的、波纹状的金属片层叠放置后将叠起的金属片卷成一个轴平行构件外形的管状,从而得到有大量带有细小的、平行的气流通道的筒状体,其典型的每平方英寸表面积上的气流通道的数量可以为约200至约1,200。
整块载体的形式也可以是陶瓷或金属的泡沫。泡沫形式的整块载体在文献中是为人们所熟知的,例如,参看美国专利3,111,396和题为“一种用于汽车催化转化器的新催化剂载体结构”的汽车工程师学会技术文件971032(1997年2月)。整块载体也可以采取热交换器的形式,例如管壳式热交换器或汽车散热器经常使用的鳍状热交换器。
蒸汽转化催化剂层和/或催化部分氧化催化剂层可以直接置于整块载体的表面上。但是,更优选的方法是将一层粘合剂涂层沉积在金属整块载体的表面上,即在整块载体的表面和蒸汽转化催化剂层和/或催化部分氧化催化剂层之间。该粘合剂层的典型的量最高至每立方英寸整块载体1.0g,典型的粘合剂层包含高表面积氧化铝。
                 催化部分氧化催化剂层
催化部分氧化催化剂层中使用的催化剂应满足几个条件。该催化剂的适用条件应是可以变化的,即可以从反应器进气口处的氧化条件变化为反应器出口处的还原条件。该催化剂应能够在约400至1050℃之间有效使用而不会产生显著的温度退化。该催化剂应能在一氧化碳、烯烃、芳烃和硫化物的存在下有效地使用。该催化剂应产生低水平的结焦,例如应优先催化碳与水的反应以生成一氧化碳和氢,从而在催化剂表面生成仅为少量的碳。该催化剂必须能够抵抗常见毒剂(例如硫和卤素的化合物)的毒化。此外,所有上述条件必须被同时满足。
催化部分氧化催化剂层优选包含一种或多种“铂族”金属化合物,已经发现,这些化合物可以满足上述要求。在此,名词“铂族”金属指铂、钯、铑、铱、锇、钌及其混合物。优选的铂族金属组分是钯和铂以及铑,其中铑是非必需的。按金属元素计算,优选的催化部分氧化催化剂层包含约10至约90%重量的钯组分和约10%至90%重量的铂组分。典型的催化部分氧化催化剂层的存在的量为约0.1至约3.0g/in3载体。
铂族金属组分可以非必需地补充加入一种或多种基础金属,特别是元素周期表上第VII、IB、VB、和VIB族的基础金属。优选的基础金属是铁、钴、镍、铜、钒和铬中之一种或多种。
                   蒸汽转化催化剂层
蒸汽转化催化剂层所使用的具有催化活性的金属包括任何一种可以用于此目的的催化金属组分,例如镍、钴及其混合物。更优选的蒸汽转化催化剂包含一种铂族金属组分,例如铂、钯、铑、铱、锇、钌及其混合物。特别优选的用于蒸汽转化催化剂层中的蒸汽转化催化剂包括铂、钯、和铑金属组分,特别是按金属元素计算,含有约10至约100%重量的铑组分和约90至约0%重量的铂组分的混合物。典型的蒸汽转化催化剂的存在的量为约0.1至约5.0g/in3载体。
蒸汽转化催化剂层和催化部分氧化催化剂层应以“涂”在整块载体的表面上的薄涂层的形式存在。典型的此类薄涂层包含以蒸汽转化催化剂和催化部分氧化催化剂浸渍的氧化铝。更优选地,每一层包含一种与一种或多种稀土金属氧化物和/或一种或多种碱土金属氧化物,例如镧、铈、锆、镨、钇、钙、钡、锶、镁及其混合物的一种或多种氧化物相混合的催化剂。典型的稀土金属氧化物和碱土金属氧化物存在的量,按重量约为氧化物加γ-氧化铝的重量的2至约10%,每一薄涂层存在的量为约0.02至约5.0g/in3整块载体。
第一层催化剂被沉积在整块载体的表面上。这一步骤将在本发明方法的层状催化剂构件第一实施方案的优选方式,即蒸汽转化催化剂层的沉积中进行说明。蒸汽转化催化剂,例如一种或多种铂族金属组分,如铂和铑组分(以含有一种或多种稀土和/或碱土金属氧化物为宜)的典型施加方法是通过将整块载体浸入含铂-铑(以含有一种或多种稀土和/或碱土金属氧化物为宜)的含水的浆中而实现的。典型的铂-铑溶液的制备方法是将42g形式为H2Pt(OH)6的铂溶解在单乙醇胺和18g形式为Rh(NO3)·2H2O的Rh中,并将上述材料在水中合并而得到1,186ml溶液,用硝酸调整pH后pH为0.7。整块载体被浸泡在Pt-Rh溶液中,干燥(例如在120℃下干燥30分钟)从而减少水分含量,然后在温度为约400至约650℃下在空气流中烘烤约0.5至约4小时,从而得到带有一层包含沉积在整块载体表面上的Pt和Rh组分的蒸汽转化催化剂的整块载体。
重复以上过程以将第二个催化剂层(即催化部分氧化催化剂层)沉积在第一个催化剂层(即蒸汽转化催化剂层)的表面上。包含例如Pd和Pt组分的催化部分氧化催化剂可以通过将金属的盐(例如氯化钯和氯铂酸)溶解在水中制备。带有蒸汽转化催化剂层的整块载体随后被浸入Pd-Pt的混合水溶液中,干燥(例如在约120℃下干燥约30分钟)从而减少水分含量,然后在温度为约300至约650℃下在氢气流或空气流中烘烤约0.5至约4小时,从而得到完成的、含有整块载体的层状催化剂构件,其中在整块载体的表面上带有蒸汽转化催化剂层和在蒸汽转化催化剂层上带有催化部分氧化催化剂层。
带有多个含有不同蒸汽转化催化剂配方的层和/或多个含有不同催化部分氧化催化剂配方的层的层状催化剂构件,可以按与上述方法相同的方式制备。每一层蒸汽转化催化剂配方通过相同的方法加载,并再加载下一层前干燥和在空气流中烘烤。
图3中所示的“分区”的层状催化剂构件可以按以下方法制备:催化部分氧化催化剂和蒸汽转化催化剂的浆按上述方法制备。在第一步中,载体以被控制的长度浸入得到的浆中。在第二步中,用空气刀除去多余的浆。在第三步中,已涂上涂层的载体在120℃下干燥1小时。此后,重复第一至三步直到达到催化剂的浓度和在载体上的位置的目标值。最后,涂上涂层的载体按上述方法烘烤。
                   附图的详细描述
图1所示的是第一个实施方案的层状催化剂构件10。层状催化剂构件10包括含有通道13的整块载体12,进气气流(包含烃原料、水和空气)在通道13中流动。蒸汽转化催化剂层14沉积在整块载体12的表面上,催化部分氧化催化剂层15沉积在蒸汽转化催化剂14的表面上,其优选与层14在整个长度上相接触。催化剂构件10的优选的取向使进气气流从左方进入自热反应器(未显示)并首先与催化部分氧化催化剂层15相接触。
图2所示的是第二个实施方案的层状催化剂构件20。层状催化剂构件20包括含有通道23的整块载体22,进气气流(包含烃原料、水和空气)在通道23中流动。蒸汽转化催化剂层24a沉积在整块载体22的表面上,蒸汽转化催化剂层24b沉积在蒸汽转化催化剂层24a的表面上(蒸汽转化催化剂层24a和24b含有不同的蒸汽转化催化剂配方)。催化部分氧化催化剂层25a沉积在蒸汽转化催化剂24b的表面上,催化部分氧化催化剂层25b沉积在催化部分氧化催化剂层25a的表面上(催化部分氧化催化剂层25a和25b含有不同的催化部分氧化催化剂配方)。层24a、24b、25a、25b优选在其整个长度上互相接触。如图2所示,优选的催化剂构件20的取向使进气气流从左方进入自热反应器(未显示)并首先与催化部分氧化催化剂层25a相接触。
图3所示的是第三个实施方案的层状催化剂构件30。层状催化剂构件30包括含有通道33的整块载体32,进气气流(包含烃原料、水和空气)在通道33中流动。然而,与图1所示的第一个实施方案不同,催化部分氧化催化剂层35和蒸汽转化催化剂34是“分区”的或“分级”的。催化部分氧化催化剂层35在构件30的最左端具有最大的厚度,而蒸汽转化催化剂34在构件30的最右端具有最大的厚度。催化部分氧化催化剂层35的厚度沿着构件30的长度从其在构件30的最左端的最大值逐渐减小,在构件30的最右端实际变为零,而蒸汽转化催化剂层34的厚度从其在构件30的最右端的最大值沿着构件30的长度逐渐减小,在构件30的最左端实际变为零。层35和34优选在整个长度上互相接触。优选的层状催化剂构件30的取向使进气气流从左方进入自热反应器(未显示)并首先与催化部分氧化催化剂层35相接触。
本发明将在以下的非限制性的实施例中更详细地描述,其中所有的份数和百分数都是基于重量的,除非另有说明。
实施例A-催化部分氧化催化剂层的制备
两种γ-氧化铝粉(表面积为150m2/g的“SBA 150”和表面积为225m2/g的“VGL 15”)按2/1的比例在一混合器内混合5分钟。混合后的γ-氧化铝粉用H2Pt(OH)6在单乙醇胺里的的稀溶液浸渍,随后用硝酸钯的稀溶液浸渍,从而γ-氧化铝粉上的载量为0.5%Pt和4.8%Pd。该粉随即与铈和锆的氧化物的复合物混合,然后在一2加仑球磨罐内与乙酸铈、乙酸锶、乙酸镧、乙酸锆、乙酸和氢氧化钡的混合溶液进一步混合。在球磨罐内再加水使浆的固体含量为45%。
以上得到的浆被球磨至颗粒尺寸为90%<10微米。在浆内加水调整固体含量,从而得到固体含量为38%、粘度在20℃时为245厘泊和pH4.53的催化部分氧化催化剂浆。
将整块载体浸入催化部分氧化催化剂浆,用空气刀将多余的浆除去,以达到整块载体上的薄涂层的湿增重的目标值,从而得到催化部分氧化催化剂层。得到的载体随即在120℃下干燥一小时,在550℃下在空气中煅烧两小时。得到的薄涂层含有0.928g/in3 Al2O3,0.04g/in3 CeO2,0.30g/in3二氧化铈/氧化锆复合物,0.04g/in3SrO,0.033g/in3LaO,0.04g/in3ZrO和0.04g/in3 BaO。
实施例B-蒸汽转化催化剂层的制备
两种γ-氧化铝粉(表面积为150m2/g的“SBA 150”和表面积为225m2/g的“VGL 15”)按2/1的比例在一混合器内混合5分钟。混合后的γ-氧化铝粉用H2Pt(OH)6在单乙醇胺里的的稀溶液浸渍,随后用硝酸铑的稀溶液浸渍,从而使γ-氧化铝粉上的载量为0.96% Pt和0.48% Rh。该粉随即与铈和锆的氧化物的复合物混合,然后在一2加仑球磨罐内与乙酸铈、乙酸锶、乙酸锆、乙酸和氢氧化钡的混合溶液进一步混合。在球磨罐内再加水使浆的固体含量为45%。
以上得到的浆被球磨至颗粒尺寸为90%<10微米。在浆内加水调整固体含量,从而得到固体含量为38%、粘度在20℃时为410厘泊和pH 6.49的蒸汽转化催化剂浆。
将整块载体浸入蒸汽转化催化剂浆,用空气刀将多余的浆除去,以达到整块载体上的薄涂层的湿增重的目标值,从而得到蒸汽转化催化剂层。得到的载体随即在120℃下干燥一小时,在550℃下在空气中煅烧两小时。得到的薄涂层含有1.70g/in3 Al2O3,0.052g/in3 CeO2,0.50g/in3二氧化铈/氧化锆复合物,0.040g/in3 SrO,0.052g/in3 ZrO和0.096g/in3 BaO。
实施例C-双层催化剂的制备
使用实施例A和B制备的浆制备带有双层催化剂的载体。将整块载体浸入蒸汽转化催化剂浆,用空气刀将多余的浆除去,以达到整块载体上的薄涂层的湿增重的目标值,从而得到蒸汽转化催化剂层。得到的载体随即在120℃下干燥一小时,然后在550℃下在空气中煅烧两小时。
带有蒸汽转化催化剂的载体随即被浸入催化部分氧化催化剂浆,用空气刀将多余的浆除去,以达到整块载体上的薄涂层的湿增重的目标值。得到的载体随即在120℃下干燥一小时,然后在550℃下在空气中煅烧两小时。
将两种催化剂构件(即实施例C的双层催化剂构件和实施例A和B的两个单层催化剂构件)进行比较。双层催化剂构件和两个单层催化剂构件都使用了可从Corning Glass Works获得的由高表面积氧化铝构成的整块载体;每种构件的形状都是直径1.91cm,长7.62的筒形,每in2有400个蜂窝。所有构件都使用了相同的催化部分氧化催化剂和蒸汽转化催化剂配方。催化部分氧化和蒸汽转化层的组成在以下阐明。每一构件的处理方式尽可能地使本发明中的双层催化剂构件中催化部分氧化和蒸汽转化层的量,与两个单层催化剂构件中的催化部分氧化催化剂层和蒸汽转化催化剂层的总量相同。
在本发明的双层催化剂构件中,底层含有2.40g/in3蒸汽转化催化剂配方,顶层含有1.42g/in3催化部分氧化催化剂层。而对于两个单层催化剂构件,一个构件在一个整块载体上含有1.42g/in3的催化部分氧化催化剂层,另一个构件在另一整块载体上含有2.40g/in3的蒸汽转化催化剂层。催化剂构件的制备过程在实施例A、B和C中描述。配方如下:
成分   催化部分氧化催化剂,g/in 3 蒸汽转化催化剂,g/in 3
Al2O3粉      0.928                  1.700
Pd(NO3)2     0.0568
H2Pt2(OH)6 0.0059                 0.0119
Rh(NO3)3     -                      0.00594
Ba氧化物       0.0400                 0.096
Ce氧化物       0.0400                 0.052
La氧化物       0.0330
Sr氧化物       0.0400                 0.040
Zr氧化物       0.0400                 0.052
XZO 738*      0.3000                 0.500
*XZO 738是铈和锆的氧化物的复合物
得到的催化剂构件随后被置于实验室用自热反应器中,进气气流被催化部分氧化和蒸汽转化。进气气流(即甲烷、乙烷、氮、氧和水)的组成和使用双层催化剂构件和两个单层催化剂构件在不同的氧∶碳和水∶碳的比例下的结果显示在下面表I和表II中。试验在一个自热反应器中进行。进气气流被加热到200℃后以44,000体积/小时的空速进入反应器。进气稳定后,反应器温度被从200℃升高到550℃。甲烷的转化率和产物气体的组成由Agilent微气相色谱测定。结果显示在下面表I和表II中。
                       表I
             本发明中的双层催化剂构件
                                  产物  产物  产物O 2 ∶C  H 2 O∶C  N 2 ,%  O 2 ,%  CH 4 ,%  C 2 H 6 ,%  H 2 ,%  CO,%  CO 2 ,%0.36      1.60      38.73      0.54      13.43      0.05           31.64    14.47     2.170.43      1.42      42.88      0.47      12.18      0.05           36.39    12.58     5.230.52      1.83      41.16      0.51      5.13       0.02           35.40    10.85     6.150.63      2.13      42.92      0.51      0.00       0.02           36.02    9.95      7.20
                       表II
               两个单层催化剂构件
                                产物  产物  产物
O 2 ∶C  H 2 O∶C  N 2 ,%  O 2 ,%  CH 4 ,%  C 2 H 6 ,%  H 2 ,%  CO,%  CO 2 ,%
0.34     2.13       37.12     0.29       17.21      0.06          29.67      9.98     4.86
0.36     1.28       36.94     0.27       14.33      0.03          32.51      9.90     5.82
0.41     1.42       37.83     0.24       11.37      0.03          33.10      9.51     6.43
0.45     1.60       38.48     0.32       7.26       0.02          36.16      7.91     8.52
0.52     1.83       39.65     0.27       6.30       0.01          35.22      8.43     7.94
从以上的表I和表II的结果可以看出,与两个单层催化剂相比,本发明的双层催化剂构件产生了更多的氢和更多的一氧化碳而产生较少的二氧化碳。值得注意的是,在水的存在下,通过将产品排出物与转移催化剂接触,一氧化碳可以容易地转化出更多的氢。这样的结果清楚地表明,本发明中的双层催化剂构件比含有同样组成的两个单层催化剂构件更为有效。

Claims (34)

1.一种从烃原料产生富含氢的排出物的方法,其步骤是:
a)将预加热后的、含有烃原料、水和空气的进气气流送入带有层状催化剂构件的自热反应器,并使气流与构件在足以引发和维持催化部分氧化和蒸汽转化二者的温度下相接触;
b)催化部分氧化至少一部分烃原料,以产生含有氢和碳氧化物的排出物;和
c)蒸汽转化原料中剩余的的烃,以产生富含氢的排出物,
所述催化剂构件包含一整块载体,在其表面上含有至少一层蒸汽转化催化剂和与之接触的至少一层催化部分氧化催化剂。
2.根据权利要求1的方法,其中整块载体在其表面上含有至少一层蒸汽转化催化剂和至少一层催化部分氧化催化剂,上述催化部分氧化催化剂覆盖蒸汽转化催化剂并与之接触。
3.根据权利要求1的方法,其中蒸汽转化催化剂层以多层蒸汽转化催化剂的形式存在,其中多层催化剂含有不同的蒸汽转化催化剂组分。
4.根据权利要求1的方法,其中催化部分氧化催化剂层以层多催化部分氧化催化剂的形式存在,其中多层催化剂含有不同的催化部分氧化催化剂组分。
5.根据权利要求1的方法,其中整块载体在其表面上含有渐变的蒸汽转化催化剂层和渐变的催化部分氧化催化剂层,且二者相互接触。
6.根据权利要求1的方法,其中催化剂构件相对于进气气流的取向使进气气流首先与催化部分氧化催化剂层相接触。
7.根据权利要求1的方法,其中还包括将步骤(c)产生的富含氢气的排出物取出,用于水-气转移反应,在此反应中,上述排出物与一催化剂接触,从而使该排出物中的一氧化碳与水反应,产生二氧化碳和额外量的氢。
8.根据权利要求1的方法,其中进气气流在进入自热反应器前被加热到约200至约900℃。
9.根据权利要求1的方法,其中自热反应器的温度被维持在约250至约1100℃。
10.根据权利要求1的方法,其中注入反应器的气流的体积小时速率为每体积整块载体约2,000至500,000体积。
11.根据权利要求1的方法,其中整块载体包含多孔陶瓷。
12.根据权利要求11的方法,其中多孔陶瓷选自氧化铝、氧化铝-二氧化硅、氧化铝-二氧化硅-氧化钛、高铝红柱石、堇青石、氧化锆、氧化锆-二氧化铈、氧化锆-尖晶石、氧化锆-高铝红柱石和碳化硅。
13.根据权利要求12的方法,其中多孔陶瓷以泡沫的形式存在。
14.根据权利要求1的方法,其中整块载体包含耐热和耐氧化的金属。
15.根据权利要求14的方法,其中金属选自不锈钢和铁/铬合金。
16.根据权利要求14的方法,其中金属以泡沫的形式存在。
17.根据权利要求1的方法,其中整块载体以热交换器的形式存在。
18.根据权利要求14的方法,其中整块载体的表面含有一种在该表面和蒸汽转化催化剂层或催化部分氧化催化剂层之间的粘合剂涂层。
19.根据权利要求18的方法,其中粘合剂包含高表面积氧化铝。
20.根据权利要求1的方法,其中蒸汽转化催化剂层和催化部分氧化催化剂层以薄涂层的形式存在,薄涂层含有用蒸汽转化催化剂浸渍的氧化铝和用催化部分氧化催化剂浸渍的氧化铝。
21.根据权利要求20的方法,其中氧化铝含有与一种或多种稀土金属氧化物和/或一种或多种碱土金属氧化物混合的γ-氧化铝。
22.根据权利要求21的方法,其中γ-氧化铝与一种或多种镧、铈、锆、镨、钇、钙、钡、锶和镁的氧化物或其混合物相混合。
23.根据权利要求21的方法,其中稀土金属氧化物和/或碱土金属氧化物的存在量为氧化物和γ-氧化铝的重量的约2至10重量%。
24.根据权利要求20的方法,其中每一薄涂层存在的量为约0.02至约5.0g/in3整块载体。
25.根据权利要求1的方法,其中催化部分氧化催化剂层包括一种或多种铂族金属组分。
26.根据权利要求25的方法,其中铂族金属选自铂、钯、铑、铱、锇、钌及其混合物。
27.根据权利要求25的方法,其中铂族金属组分包含钯和铂组分的混合物。
28.根据权利要求27的方法,其中催化部分氧化催化剂层,按金属元素计算,包含约10至约90%重量钯组分和约10至约90%重量铂组分。
29.根据权利要求1的方法,其中催化部分氧化催化剂层的存在量为约0.1至约3.0g/in3整块载体。
30.根据权利要求1的方法,其中蒸汽转化催化剂层包含一种镍组分、一种钴组分或镍和钴组分的混合物。
31.根据权利要求1的方法,其中蒸汽转化催化剂层包含一种或多种铂族金属组分。
32.根据权利要求31的方法,其中铂族金属组分选自铂、钯、铑、铱、锇、钌及其混合物。
33.根据权利要求32的方法,其中铂族金属组分包含,按金属元素计算,约10至约100%重量铑组分和约90至约0%重量铂组分。
34.根据权利要求1的方法,其中蒸汽转化催化剂层的存在量为约0.1至约5.0g/in3整块载体。
CN01814933A 2000-08-31 2001-08-27 产生富含氢的气体的方法 Pending CN1449361A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/652,710 US6436363B1 (en) 2000-08-31 2000-08-31 Process for generating hydrogen-rich gas
US09/652,710 2000-08-31

Publications (1)

Publication Number Publication Date
CN1449361A true CN1449361A (zh) 2003-10-15

Family

ID=24617850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN01814933A Pending CN1449361A (zh) 2000-08-31 2001-08-27 产生富含氢的气体的方法

Country Status (8)

Country Link
US (2) US6436363B1 (zh)
EP (1) EP1315671B1 (zh)
JP (1) JP4216067B2 (zh)
KR (1) KR20030055252A (zh)
CN (1) CN1449361A (zh)
AU (1) AU2001286793A1 (zh)
CA (1) CA2420595A1 (zh)
WO (1) WO2002018269A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002378A (zh) * 2010-11-25 2011-04-06 邵素英 煤低温干馏生产方法
TWI386365B (zh) * 2009-07-24 2013-02-21 Wei Hsin Chen 富氫與純氫氣體製造之整合裝置與方法
CN101460437B (zh) * 2004-12-23 2013-05-29 沙特阿拉伯石油公司 基于石油的液态烃的热中和重整
CN103596671A (zh) * 2011-04-11 2014-02-19 沙特阿拉伯石油公司 金属负载的二氧化硅基催化膜反应器组件

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU779487B2 (en) * 1999-08-17 2005-01-27 Battelle Memorial Institute Chemical reactor and method for catalytic gas phase reactions
US7335346B2 (en) * 1999-08-17 2008-02-26 Battelle Memorial Institute Catalyst and method of steam reforming
US20030007926A1 (en) * 2000-03-02 2003-01-09 Weibin Jiang Metal catalyst and method of preparation and use
US20060058184A1 (en) * 2000-03-02 2006-03-16 Weibin Jiang Metal catalyst and method of preparation and use
DE10013895A1 (de) * 2000-03-21 2001-10-04 Dmc2 Degussa Metals Catalysts Cerdec Ag Verfahren zur katalytischen Umsetzung von Kohlenmonoxid in einem Wasserstoff enthaltenden Gasgemisch
DE10025032A1 (de) * 2000-05-20 2001-11-29 Dmc2 Degussa Metals Catalysts Verfahren zur autothermen, katalytischen Dampfreformierung von Kohlenwasserstoffen
US6436363B1 (en) * 2000-08-31 2002-08-20 Engelhard Corporation Process for generating hydrogen-rich gas
WO2002020395A2 (en) * 2000-09-05 2002-03-14 Conoco Inc. Lanthanide-promoted rhodium catalysts and process for producing synthesis gas
US6652830B2 (en) * 2001-02-16 2003-11-25 Battelle Memorial Institute Catalysts reactors and methods of producing hydrogen via the water-gas shift reaction
US20020174603A1 (en) * 2001-03-23 2002-11-28 Shabbir Ahmed Method for generating hydrogen for fuel cells
US6713040B2 (en) * 2001-03-23 2004-03-30 Argonne National Laboratory Method for generating hydrogen for fuel cells
JP4648567B2 (ja) * 2001-05-11 2011-03-09 Jx日鉱日石エネルギー株式会社 オートサーマルリフォーミング触媒および燃料電池用燃料ガスの製造方法
JP4648566B2 (ja) * 2001-05-11 2011-03-09 Jx日鉱日石エネルギー株式会社 オートサーマルリフォーミング触媒および燃料電池用燃料ガスの製造方法
US6967063B2 (en) * 2001-05-18 2005-11-22 The University Of Chicago Autothermal hydrodesulfurizing reforming method and catalyst
DE10157155A1 (de) * 2001-11-22 2003-06-12 Omg Ag & Co Kg Verfahren zur katalytischen autothermen Dampfreformierung von höheren Alkoholen, insbesondere Ethanol
AU2003220126A1 (en) * 2002-03-08 2003-09-22 Nuvera Fuel Cells, Inc. Protection of reduced catalysts in stream reforming and water gas shift reactions
JP3999557B2 (ja) * 2002-04-30 2007-10-31 株式会社日本触媒 炭化水素の部分酸化用触媒及び該触媒を用いた水素含有ガスの製造方法
JP4171978B2 (ja) * 2002-05-27 2008-10-29 ソニー株式会社 燃料改質器及びその製造方法、並びに電気化学デバイス用電極及び電気化学デバイス
EP1393804A1 (de) * 2002-08-26 2004-03-03 Umicore AG & Co. KG Mehrschichtiger Katalysator zur autothermen Dampfreformierung von Kohlenwasserstoffen und Verfahren zu seiner Verwendung
US7118717B2 (en) 2002-09-06 2006-10-10 Engelhard Corporation Simplified article for carbon monoxide removal
US7255848B2 (en) * 2002-10-01 2007-08-14 Regents Of The Univeristy Of Minnesota Production of hydrogen from alcohols
US7262334B2 (en) * 2002-11-13 2007-08-28 Regents Of The University Of Minnesota Catalytic partial oxidation of hydrocarbons
US7105148B2 (en) * 2002-11-26 2006-09-12 General Motors Corporation Methods for producing hydrogen from a fuel
US7459224B1 (en) * 2002-11-26 2008-12-02 General Motors Corporation Methods, apparatus, and systems for producing hydrogen from a fuel
US6977067B2 (en) * 2003-02-12 2005-12-20 Engelhard Corporation Selective removal of olefins from hydrocarbon feed streams
US7208136B2 (en) * 2003-05-16 2007-04-24 Battelle Memorial Institute Alcohol steam reforming catalysts and methods of alcohol steam reforming
US7153334B2 (en) * 2003-05-21 2006-12-26 General Motors Corporation Fuel reforming system and method of operation
US7722854B2 (en) * 2003-06-25 2010-05-25 Velocy's Steam reforming methods and catalysts
US8277773B2 (en) 2004-02-13 2012-10-02 Velocys Corp. Steam reforming method
DE10329162A1 (de) 2003-06-27 2005-01-13 Alstom Technology Ltd Katalytischer Reaktor und zugehöriges Betriebsverfahren
DE10334590B4 (de) * 2003-07-28 2006-10-26 Uhde Gmbh Verfahren zur Gewinnung von Wasserstoff aus einem methanhaltigen Gas, insbesondere Erdgas und Anlage zur Durchführung des Verfahrens
US20050025701A1 (en) * 2003-07-30 2005-02-03 Millennium Research Laboratories, Inc. Steam reforming catalyst composition and process
JP4514419B2 (ja) * 2003-08-20 2010-07-28 株式会社日本触媒 炭化水素部分酸化用触媒、その製造方法および水素含有ガスの製造方法
US7410626B2 (en) * 2003-09-10 2008-08-12 Basf Catalysts Llc Layered ammonia oxidation catalyst
JP4875295B2 (ja) * 2003-10-29 2012-02-15 株式会社日本触媒 部分酸化用改質触媒および改質方法
US20050095183A1 (en) * 2003-11-05 2005-05-05 Biomass Energy Solutions, Inc. Process and apparatus for biomass gasification
US7377101B2 (en) * 2004-02-13 2008-05-27 Fleetguard, Inc. Plasma fuel converter NOx adsorber system for exhaust aftertreatment
WO2005080259A1 (en) * 2004-02-17 2005-09-01 Modine Manufacturing Company Integrated fuel processor for distributed hydrogen production
US7214331B2 (en) * 2004-02-26 2007-05-08 The Boc Group, Inc. Catalyst configuration and methods for syngas production
US7427388B2 (en) * 2004-03-19 2008-09-23 Air Products And Chemicals, Inc. Process for improving prereforming and reforming of natural gas containing higher hydrocarbons along with methane
US8617265B2 (en) * 2004-04-12 2013-12-31 Intelligent Energy, Inc. Hydrogen generation apparatus incorporating a staged catalyst and method for using same
US7683232B2 (en) 2004-05-25 2010-03-23 Regents Of The University Of Minnesota Production of olefins having a functional group
US7767619B2 (en) * 2004-07-09 2010-08-03 Sud-Chemie Inc. Promoted calcium-aluminate supported catalysts for synthesis gas generation
US7585810B2 (en) * 2004-09-01 2009-09-08 Umicore Ag & Co. Kg Method for partial oxidation of hydrocarbons, catalyst member therefor and method of manufacture
US7601671B2 (en) * 2004-10-28 2009-10-13 Umicore Ag & Co. Kg Drying method for exhaust gas catalyst
US7569085B2 (en) * 2004-12-27 2009-08-04 General Electric Company System and method for hydrogen production
KR100719484B1 (ko) * 2004-12-31 2007-05-18 한국에너지기술연구원 금속모노리스 촉매를 이용한 컴팩트형 수증기개질구조촉매 및 이를 이용한 수소의 제조방법
MY161064A (en) * 2005-06-13 2017-04-14 Osaka Gas Co Ltd Method and apparatus for producing hydrogen-containing gas
US8216323B2 (en) * 2005-06-30 2012-07-10 General Electric Company System and method for hydrogen production
WO2007008581A2 (en) * 2005-07-07 2007-01-18 Zeropoint Clean Tech, Inc. Thermally coupled monolith reactor
JP4860226B2 (ja) * 2005-10-03 2012-01-25 Jx日鉱日石エネルギー株式会社 部分酸化改質触媒および部分酸化改質方法
US20070111884A1 (en) * 2005-11-14 2007-05-17 Laiyuan Chen Catalyst support, supported catalyst, and methods of making and using the same
US20070122339A1 (en) * 2005-11-28 2007-05-31 General Electric Company Methods and apparatus for hydrogen production
KR101293679B1 (ko) * 2005-12-23 2013-08-06 에스케이이노베이션 주식회사 산화/환원 반응용 백금계 촉매 및 그 용도
US20070175094A1 (en) * 2006-01-30 2007-08-02 Reinke Michael J Integrated autothermal reformer recuperator
KR100723392B1 (ko) * 2006-02-02 2007-05-30 삼성에스디아이 주식회사 복합 산화물 담지체, 저온 쉬프트 반응 촉매 및 그의 제조방법
KR101320388B1 (ko) * 2006-02-18 2013-10-22 삼성에스디아이 주식회사 탄화수소 개질 촉매, 그 제조방법 및 이를 포함하는연료처리장치
US7569511B2 (en) * 2006-05-05 2009-08-04 Basf Catalysts Llc Catalyst composition for alcohol steam reforming
US20070275278A1 (en) * 2006-05-27 2007-11-29 Dr. Herng Shinn Hwang Integrated catalytic and turbine system and process for the generation of electricity
US7901565B2 (en) * 2006-07-11 2011-03-08 Basf Corporation Reforming sulfur-containing hydrocarbons using a sulfur resistant catalyst
WO2008008839A2 (en) * 2006-07-11 2008-01-17 Basf Catalysts Llc Reforming sulfur-containing hydrocarbons using a sulfur resistant catalyst
WO2008147458A1 (en) * 2006-11-28 2008-12-04 Georgia Tech Research Corporation Droplet impingement chemical reactors and methods of processing fuel
US7700005B2 (en) * 2006-12-26 2010-04-20 Saudi Arabian Oil Company Oil-based thermo-neutral reforming with a multi-component catalyst
US8397509B2 (en) * 2007-06-06 2013-03-19 Herng Shinn Hwang Catalytic engine
US8061120B2 (en) 2007-07-30 2011-11-22 Herng Shinn Hwang Catalytic EGR oxidizer for IC engines and gas turbines
DE102007046297B4 (de) * 2007-09-27 2016-12-22 Süd-Chemie Ip Gmbh & Co. Kg Neues Katalysatordesign und Herstellungsmethode für Dampfreformierungskatalysatoren
KR100905422B1 (ko) * 2007-11-06 2009-07-02 한국과학기술원 연료개질기 및 그 제조방법
US20090175773A1 (en) * 2008-01-08 2009-07-09 Chen Shau-Lin F Multilayered Catalyst Compositions
US20100040510A1 (en) * 2008-08-18 2010-02-18 Randhava Sarabjit S Method for converting biomass into synthesis gas using a pressurized multi-stage progressively expanding fluidized bed gasifier followed by an oxyblown autothermal reformer to reduce methane and tars
US8349035B2 (en) * 2008-10-20 2013-01-08 Uchicago Argonne, Llc Autothermal and partial oxidation reformer-based fuel processor, method for improving catalyst function in autothermal and partial oxidation reformer-based processors
KR101008025B1 (ko) * 2008-12-22 2011-01-14 삼성에스디아이 주식회사 탄화수소 개질촉매, 그의 제조 방법 및 이를 포함하는 연료전지
KR101019234B1 (ko) * 2009-04-14 2011-03-04 한국에너지기술연구원 컴팩트 개질 반응기용 금속구조체촉매의 제조방법과 그 금속구조체촉매, 금속구조체촉매 모듈
JP2010247079A (ja) * 2009-04-16 2010-11-04 Denso Corp 排ガス浄化触媒の製造方法
US9174199B2 (en) * 2009-05-26 2015-11-03 Basf Corporation Methanol steam reforming catalysts
US20120258266A1 (en) * 2011-04-06 2012-10-11 Basf Corporation Coatings For Engine And Powertrain Components To Prevent Buildup Of Deposits
US10865709B2 (en) 2012-05-23 2020-12-15 Herng Shinn Hwang Flex-fuel hydrogen reformer for IC engines and gas turbines
US9440851B2 (en) 2012-05-23 2016-09-13 Herng Shinn Hwang Flex-fuel hydrogen generator for IC engines and gas turbines
US20150194686A1 (en) * 2012-06-28 2015-07-09 International Engine Intellectual Property Company Llc Catalytic hydrogen combustor
BR102012031208A2 (pt) * 2012-12-07 2014-09-02 Petroleo Brasileiro Sa Método de preparo de sistemas catalíticos estruturados
JP6293416B2 (ja) * 2013-03-07 2018-03-14 大阪瓦斯株式会社 炭化水素化合物類のオートサーマル改質方法
JP6187282B2 (ja) * 2014-01-23 2017-08-30 株式会社村田製作所 炭化水素改質触媒
US10684081B2 (en) * 2015-08-28 2020-06-16 Kyocera Corporation Flow path member
US10626790B2 (en) 2016-11-16 2020-04-21 Herng Shinn Hwang Catalytic biogas combined heat and power generator
US9987612B1 (en) * 2017-04-13 2018-06-05 Caterpillar Inc. Reactor assembly
CN109126818B (zh) * 2018-08-17 2021-12-07 新奥科技发展有限公司 一种复合催化剂及其制备方法
US11358128B2 (en) 2019-12-30 2022-06-14 Saudi Arabian Oil Company High activity reforming catalyst formulation and process for low temperature steam reforming of hydrocarbons to produce hydrogen
KR102346725B1 (ko) * 2020-09-24 2022-01-04 한국생산기술연구원 신에너지 전력 계통 연계 촉매가 코팅된 금속 구조체 모듈 일체형 고주파 유도가열 촉매 반응기 및 이를 활용한 이동식 콤팩트 수소생산 시스템

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE663695A (zh) 1964-05-15 1900-01-01
US3976507A (en) 1975-02-12 1976-08-24 United Technologies Corporation Pressurized fuel cell power plant with single reactant gas stream
US4522894A (en) 1982-09-30 1985-06-11 Engelhard Corporation Fuel cell electric power production
US4927857A (en) 1982-09-30 1990-05-22 Engelhard Corporation Method of methanol production
US4844837A (en) 1982-09-30 1989-07-04 Engelhard Corporation Catalytic partial oxidation process
DE3382193D1 (de) 1982-09-30 1991-04-11 Engelhard Corp Verfahren zur herstellung von wasserstoffreichem gas aus kohlenwasserstoffen.
JPS59199042A (ja) 1983-04-28 1984-11-12 Nissan Motor Co Ltd メタノ−ル改質用触媒
JPS62114158A (ja) * 1985-11-14 1987-05-25 Teac Co デイスク装置
EP0495534A3 (en) 1988-03-12 1992-10-07 Akira C/O Kohgakuin University Igarashi Catalyst for steam reforming of hydrocarbon
JP3061399B2 (ja) * 1990-06-20 2000-07-10 株式会社日本触媒 ディーゼルエンジン排ガス浄化用触媒および浄化方法
IT1242994B (it) 1990-08-29 1994-05-23 Snam Progetti Processo catalitico per la produzione di gas di sintesi mediante reazione di combustione e di reforming degli idrocarburi
US5112527A (en) 1991-04-02 1992-05-12 Amoco Corporation Process for converting natural gas to synthesis gas
JP3281087B2 (ja) * 1993-02-10 2002-05-13 日本碍子株式会社 排ガス浄化用触媒
NL9300833A (nl) * 1993-05-13 1994-12-01 Gastec Nv Werkwijze voor de produktie van waterstof/koolmonoxide mengsels of waterstof uit methaan.
GB9403198D0 (en) 1994-02-19 1994-04-13 Rolls Royce Plc A solid oxide fuel cell stack
KR100361417B1 (ko) * 1994-06-17 2003-01-24 엥겔하드 코포레이션 적층촉매복합물
GB9412786D0 (en) 1994-06-24 1994-08-17 Johnson Matthey Plc Improved reformer
GR1002714B (el) 1995-05-03 1997-06-10 Zhang Zhaolong Καταλυτες για τη μερικη οξειδωση ελαφρων υδρογονανθρακων προς αεριο συνθεσης.
GB9806199D0 (en) 1998-03-24 1998-05-20 Johnson Matthey Plc Catalytic generation of hydrogen
ID28037A (id) 1998-06-30 2001-05-03 Shell Internat Res Maatschaapp Oksidasi parsial katalitik dengan dua logam yang aktif secara katalitik
US6440895B1 (en) * 1998-07-27 2002-08-27 Battelle Memorial Institute Catalyst, method of making, and reactions using the catalyst
US6797244B1 (en) 1999-05-27 2004-09-28 Dtc Fuel Cells Llc Compact light weight autothermal reformer assembly
JP3743995B2 (ja) 1999-12-15 2006-02-08 日産自動車株式会社 メタノール改質触媒
US6436363B1 (en) * 2000-08-31 2002-08-20 Engelhard Corporation Process for generating hydrogen-rich gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460437B (zh) * 2004-12-23 2013-05-29 沙特阿拉伯石油公司 基于石油的液态烃的热中和重整
TWI386365B (zh) * 2009-07-24 2013-02-21 Wei Hsin Chen 富氫與純氫氣體製造之整合裝置與方法
CN102002378A (zh) * 2010-11-25 2011-04-06 邵素英 煤低温干馏生产方法
CN103596671A (zh) * 2011-04-11 2014-02-19 沙特阿拉伯石油公司 金属负载的二氧化硅基催化膜反应器组件
CN103596671B (zh) * 2011-04-11 2016-06-29 沙特阿拉伯石油公司 金属负载的二氧化硅基催化膜反应器组件

Also Published As

Publication number Publication date
KR20030055252A (ko) 2003-07-02
EP1315671A2 (en) 2003-06-04
WO2002018269A3 (en) 2002-05-10
EP1315671B1 (en) 2017-07-26
JP2004507425A (ja) 2004-03-11
WO2002018269A2 (en) 2002-03-07
AU2001286793A1 (en) 2002-03-13
US6436363B1 (en) 2002-08-20
US6849572B2 (en) 2005-02-01
US20030021748A1 (en) 2003-01-30
JP4216067B2 (ja) 2009-01-28
CA2420595A1 (en) 2002-03-07

Similar Documents

Publication Publication Date Title
CN1449361A (zh) 产生富含氢的气体的方法
KR100981517B1 (ko) 일산화탄소 제거 반응기
CN101314128B (zh) 一种自热重整制氢催化剂及其制备方法
CN1134297C (zh) 含有储氧组分的催化剂组合物
EP1669135B1 (en) Exhaust gas purification catalyst
CN1296272C (zh) 金属催化剂及其制备和使用方法
KR100542911B1 (ko) 연료전지 자동차에 이용되는 가솔린 개질용 저압차 촉매와 이의 제조방법
US20020141938A1 (en) Enhanced stability water-gas shift reaction catalysts
US20050176580A1 (en) Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst
JP2001322803A (ja) 水素を含有する気体混合物中の一酸化炭素の転化法およびこのための触媒
CN1684771A (zh) 用于烃自热水蒸气转化的多层催化剂和使用所述催化剂的方法
CN1909963A (zh) 废气净化催化剂
US6977067B2 (en) Selective removal of olefins from hydrocarbon feed streams
JP2003183002A (ja) 触媒によるアルコールの自己熱水蒸気改質のためのプロセス
JP2008056539A (ja) 一酸化炭素のメタネーション方法
CN113042045A (zh) 排气净化用催化剂
RU2292237C1 (ru) Катализатор, способ его приготовления и способ получения синтез-газа
CN101428238A (zh) 热稳定性的层状复合载体
US7842634B2 (en) Blended catalyst with improved performance
CN1305564C (zh) 一种甲醇自热重整制氢催化剂及其制备方法和应用
US20240116020A1 (en) Mixer for reverse flow reactor
JP2005058972A (ja) 炭化水素部分酸化用触媒、その製造方法および水素含有ガスの製造方法
JP2004322001A (ja) 炭化水素部分酸化用触媒及び該触媒の製造方法、並びに該触媒を用いた水素含有ガスの製造方法
JP2006231132A (ja) 燃料改質触媒
RU2244589C1 (ru) Катализатор, способ его приготовления и способ получения синтез-газа

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication