CN103779415B - 平面型功率mos器件及其制造方法 - Google Patents

平面型功率mos器件及其制造方法 Download PDF

Info

Publication number
CN103779415B
CN103779415B CN201410024892.9A CN201410024892A CN103779415B CN 103779415 B CN103779415 B CN 103779415B CN 201410024892 A CN201410024892 A CN 201410024892A CN 103779415 B CN103779415 B CN 103779415B
Authority
CN
China
Prior art keywords
polycrystalline
stopper
interarea
conductive type
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410024892.9A
Other languages
English (en)
Other versions
CN103779415A (zh
Inventor
殷允超
丁磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHANGJIAGANG CASS SEMICONDUCTOR CO Ltd
Original Assignee
ZHANGJIAGANG CASS SEMICONDUCTOR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHANGJIAGANG CASS SEMICONDUCTOR CO Ltd filed Critical ZHANGJIAGANG CASS SEMICONDUCTOR CO Ltd
Priority to CN201410024892.9A priority Critical patent/CN103779415B/zh
Publication of CN103779415A publication Critical patent/CN103779415A/zh
Application granted granted Critical
Publication of CN103779415B publication Critical patent/CN103779415B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种可减少光刻次数的平面型功率MOS器件的制造方法,步骤为:a)提供将第一导电类型外延层的表面作为第一主面、将第一导电类型衬底的表面作为第二主面的半导体基板;b)在第一主面上生长绝缘栅氧化层;c)淀积导电多晶硅;d)选择性地掩蔽和刻蚀多晶硅,e)注入第二导电类型杂质、并推阱,形成第二导电类型深阱区;f)淀积介质层;g)形成刻蚀孔,h)选择性地刻蚀介质层;i)注入第一导电类型杂质并推阱形成N+区,然后;j)以介质层为阻挡,刻蚀多晶阻挡块和多晶阻挡块底部剩余的栅氧化层;k)填充孔并淀积金属,并刻蚀金属形成源极金属和截止环金属;1)在第一导电类型衬底底部淀积金属作为漏极。

Description

平面型功率MOS器件及其制造方法
技术领域
本发明涉及一种功率MOS器件及其制造方法,具体涉及到一种平面型功率MOS器件及其制造方法。
背景技术
功率MOS场效应管的使用和发展已经有多年的历史,其设计和制造方法一直在不断地改进,从性能上,主要是朝着高耐压、低导通电阻、高频率、高可靠性的方向发展。但随着市场竞争的日趋激烈,对于成本的控制要求也越来越高,如何在保证器件的性能不下降的前提下,尽量地降低制造成本,已经成为现今技术研发领域的重要方向。
对于功率MOS器件来讲,控制制造成本,主要有两个方向:第一为减小芯片面积,即在同样大小的硅片上做出更多的芯片;第二减少光刻的次数,简化制造工艺,一般来说,生产成本与光刻的次数成正比,减少光刻次数对降低成本意义重大。
如图1所示,功率MOS器件的结构通常包括:元胞区(也称单胞区)以及位于元胞区周围的终端保护环结构,元胞区的元胞集成度和终端保护结构的耐压能力共同影响着产品的特性,目前,传统的平面型功率MOS器件,通常要经过六至七次光刻完成,工艺步骤繁多,制造成本较高。具体的制造方法包括以下步骤:
第一步:场氧化层生长;
第二步:保护环区光刻/刻蚀/注入/推阱(光刻版1);
第三步:有源区光刻/刻蚀(光刻版2);
第四步:多晶硅生长/光刻/刻蚀(光刻版3);
第五步:P阱注入推阱;
第六步:N+源极光刻/注入(光刻版4);
第七步:介质淀积;
第八步:接触孔光刻/刻蚀(光刻版5);
第九步:金属层光刻/刻蚀(光刻版6)。
当然,有些高压器件还需要钝化层保护,光刻版数会增加至七次。
发明内容
本发明所要解决的技术问题是:提供一种可以减少光刻次数、从而降低制造成本的平面型功率MOS器件的制造方法。
为解决上述技术问题,本发明采用的技术方案为:平面型功率MOS器件的制造方法,其步骤为:
a)在第一导电类型衬底上生长第一导电类型外延层即第一导电类型漂移区,形成半导体基板,第一导电类型外延层的表面为第一主面,第一导电类型衬底的表面为第二主面;
b)在第一主面上生长绝缘栅氧化层;
c)淀积导电多晶硅;
d)选择性地掩蔽和刻蚀导电多晶硅,形成间断的多晶硅体;间断的多晶硅体包括:单胞区的MOS栅极多晶、场限环多晶和多晶阻挡块,多晶阻挡块的宽度不能太大,以保证后续注入在其两边的第二导电类型杂质在推阱后能够扩散在一起;同样,多晶阻挡块的宽度也不能太小,以保证后续注入在其两边的第一导电类型杂质在推阱后不相接;
e)注入第二导电类型杂质、并热推阱,形成第二导电类型阱;此处由于推阱作用,位于多晶阻挡块两边的第二导电类型杂质会扩散相接,形成MOS的阱区;
f)淀积绝缘介质层;
g)涂光刻胶,光刻显影光刻胶形成孔刻蚀的掩膜结构;
h)以g)步骤形成的掩膜,刻蚀绝缘介质层,在单胞区中露出多晶阻挡块;
去除光刻胶
i)以h)步中刻蚀后的绝缘介质层以及多晶阻挡块为阻挡层,注入第一导电类型杂质,并热推阱,形成第一导电类型注入区;
j)以绝缘介质层为阻挡,刻蚀多晶阻挡块和多晶阻挡块底部剩余的栅氧化层;
k)在第一主面上方淀积金属,选择性地掩蔽和刻蚀金属层,形成源极金属和截止环金属;
1)在第一导电类型衬底底部淀积金属作为漏极。
本发明还提供了一种采用本发明所述的制造方法得到的、可大幅降低制造成本的平面型功率MOS器件,包括:半导体基板,半导体基板下部为重掺杂的第一导电类型衬底,上部为轻掺杂的第一导电类型漂移区;半导体基板上设置有由并联的单胞组成阵列布置的中心区即单胞区、位于单胞阵列外围的终端保护结构,单胞阵列通过导电多晶硅连成一个整体,终端保护结构包括位于内圈的场限环区和位于外围的截止环区,场限环区中设置有至少一个场限环,截止环区设置有至少一个截止环。
所述的中心区在第一导电类型漂移区内间断设置有至少一个栅极多晶硅区,所述的场限环区在第一导电类型漂移区内间断设置有至少一个场限环多晶硅区,所述的栅极多晶硅区、场限环多晶硅区与第一导电类型漂移区之间设有用于隔离的绝缘栅氧化层;相邻的栅极多晶硅区之间、相邻的场限环多晶硅区之间以及相邻的栅极多晶硅区与场限环多晶硅区之间在第一导电类型漂移区内分别设置有一个第二导电类型阱;中心区所对应的第二导电类型阱内设置有两个第一导电类型注入区;所述截止环区内对应的第二导电类型阱内设置有一个第一导电类型注入区;第一主面上覆盖有绝缘介质层,绝缘介质层在两两栅极多晶硅区之间以及截止环区开设有接触孔,中心区的绝缘介质层和接触孔中淀积有中心区金属,形成源极,截止环区的绝缘介质层和接触孔中淀积有截止环金属;第二主面上淀积有第二金属,形成漏极。
所述的场限环区在第一导电类型漂移区间断设置有至少两个场限环多晶硅区。
本发明的有益效果是:本发明在形成场限环区内的阱过程中,巧妙地使用多晶硅作为阻挡层来替代场氧阻挡层,使得场限环区内阱的形成和单胞区内阱的形成可以一起完成,这样可以有效地省去保护环光刻版以及相应工艺步骤;再者,由于场氧光刻省略,场氧层最初也无需形成,这样又可以省略有源区光刻以及相应工艺步骤,此两次光刻的省略可以大大降低制造成本;此外,还通过巧妙地设置多晶硅阻挡块,少了一次源极光刻过程,进一步降低了成本。这样一来,本发明所述的制造方法一共可以节省三次光刻,节省了制造成本近50%;另外,本发明所述的平面型功率MOS器件还可以通过改变场限环的数量、每个场限环的宽度、相邻场限环的间距等参数来满足不同击穿电压产品的需求。
附图说明
图1为背景技术中所述的平面型功率MOS器件的结构示意图。
图2~图13为本发明所述的平面型功率MOS器件在制造各阶段中的结构示意图。
图2至图13中的附图标记:6、N型衬底,7、N型外延层,8、绝缘栅氧化层,91、栅极多晶硅,92、场限环多晶硅,93、多晶硅阻挡块,10、P型杂质预注区,11、P阱,12、绝缘介质层,13、光刻胶,14、N型杂质预注区,15、N型注入区,16、源极,17、截止环金属,18、漏极。
具体实施方式
首先,以N型平面型功率MOS器件为例详细描述本发明所述的平面型功率MOS器件的制造方法,其步骤为:
a)在重掺杂的N型衬底6上生长轻掺杂的N型外延层7,形成以N型外延层7(又称N型漂移区)的表面作为第一主面和以N型衬底6的表面作为第二主面的半导体基板——参见图2所示;
b)在第一主面上生长绝缘栅氧化层8;
c)淀积一层导电多晶硅;
d)选择性地掩蔽和刻蚀导电多晶硅,形成间断的多晶硅体;间断的多晶硅体包括:单胞区的MOS的栅极多晶硅91、场限环多晶硅92和多晶硅阻挡块93——参见图3所示;其中,多晶硅阻挡块93的宽度不能太大,以保证后续注入在其两边的P型杂质预注区10在推阱后形成的P阱11能够扩散在一起;多晶硅阻挡块93的宽度也不能太小,以保证后续注入在其两边的N型杂质预注区14在推阱后形成的N型注入区15不能相连;
e)注入硼等P型杂质,形成P型杂质预注入区10——参见图4所示,然后热推阱,温度在1000至1200℃之间,形成P阱11——参见图5所示;由于推阱作用,位于多晶硅阻挡块93两边的P型杂质会扩散相接,形成MOS的阱区;
f)淀积绝缘介质层12——参见图6所示;
g)涂光刻胶13,光刻显影光刻胶形成孔刻蚀的掩膜结构;
h)以g)步骤中形成的掩膜刻蚀介质层12;在单胞区中露出多晶阻挡块93——参见图7所示;去除光刻胶——参见图8所示;
i)以h)步刻蚀后的绝缘介质层以及多晶阻挡块93为阻挡层,注入磷或砷等N型杂质,形成N型杂质预注区14——参见图9所示,然后,热推阱,温度通常在900至1000℃之间,由于磷或砷的原子量比硼大,相对于硼而言,推阱扩散的速率较小,形成各自独立(不会扩散相接)的N型注入区15(N+)——参见图10所示;
j)以绝缘介质层为阻挡,刻蚀多晶阻挡块93——参见图11所示,然后刻蚀多晶阻挡块93底部剩余的栅氧化层8——参见图12所示;
k)填充孔并淀积金属,并刻蚀金属形成源极金属16和截止环金属17;
1)在N型衬底底部淀积金属作为漏极18——参见图13所示。
实际应用时,还需将所有单胞区内的导电多晶硅相并接、并引出,形成栅极(属于本领域的常规技术,图中未画出)。
如图13所示,采用本发明所述的制造方法得到的平面型功率MOS器件,其结构包括:半导体基板,半导体基板下部为重掺杂的N型衬底6,上部为轻掺杂的N型漂移区7;半导体基板上设置有由并联的单胞组成阵列布置的中心区即单胞区、位于单胞阵列外围的终端保护结构,单胞阵列通过导电多晶硅连成一个整体并引出,形成栅级;终端保护结构包括位于内圈的场限环区和位于外围的截止环区,场限环区中设置有至少一个场限环,截止环区设置有至少一个截止环;在本实施例中,所述的中心区在N型漂移区7上间断设置有至少一个栅极多晶硅区91,所述的场限环区在N型漂移区7上间断设置有至少两个场限环多晶硅区92,所述的栅极多晶硅区91、场限环多晶硅区92与N型漂移区7之间设有用于隔离的绝缘栅氧化层8;相邻的栅极多晶硅区91之间、相邻的场限环多晶硅区92之间以及相邻的栅极多晶硅区91与场限环多晶硅区92之间在N型漂移区7内分别设置有一个P阱11;中心区所对应的P阱11内设置有两个N型注入区15;所述截止环区内对应的P阱11内设置有一个N型注入区15;第一主面上覆盖有绝缘介质层12,绝缘介质层12在两两栅极多晶硅区91之间以及截止环区开设有接触孔,中心区的绝缘介质层12和接触孔中淀积有中心区金属,形成源极16,截止环区的绝缘介质层12和接触孔中淀积有截止环金属17;第二主面上淀积有第二金属,形成漏极18。

Claims (1)

1.一种平面型功率MOS器件的制造方法,其步骤为:
a)在第一导电类型衬底上生长第一导电类型外延层即第一导电类型漂移区,形成半导体基板,第一导电类型外延层的外表面为第一主面,第一导电类型衬底的外表面为第二主面;
b)在第一主面上生长绝缘栅氧化层;
c)淀积导电多晶硅;
d)选择性地掩蔽和刻蚀导电多晶硅,形成间断的多晶硅体;间断的多晶硅体包括:单胞区的MOS栅极多晶、场限环多晶和多晶阻挡块,多晶阻挡块的宽度应保证后续注入在其两边的第二导电类型杂质在推阱后能够扩散在一起,同时要保证后续注入在其两边的第一导电类型杂质在推阱后不相接;
e)注入第二导电类型杂质、并热推阱,形成第二导电类型阱;此处由于推阱作用,位于多晶阻挡块两边的第二导电类型杂质会扩散相接,形成MOS的阱区;
f)淀积绝缘介质层;
g)涂光刻胶,光刻显影光刻胶形成孔刻蚀的掩膜结构;
h)以g)步骤形成的掩膜,刻蚀绝缘介质层,在单胞区中露出多晶阻挡块;去除光刻胶;
i)以h)步中刻蚀后的绝缘介质层以及多晶阻挡块为阻挡层,注入第一导电类型杂质,并热推阱,形成第一导电类型注入区;
j)以绝缘介质层为阻挡,刻蚀多晶阻挡块和多晶阻挡块底部剩余的栅氧化层;
k)在第一主面上方淀积金属,选择性地掩蔽和刻蚀金属层,形成源极金属和截止环金属;
l)在第二主面上淀积金属作为漏极。
CN201410024892.9A 2014-01-20 2014-01-20 平面型功率mos器件及其制造方法 Active CN103779415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410024892.9A CN103779415B (zh) 2014-01-20 2014-01-20 平面型功率mos器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410024892.9A CN103779415B (zh) 2014-01-20 2014-01-20 平面型功率mos器件及其制造方法

Publications (2)

Publication Number Publication Date
CN103779415A CN103779415A (zh) 2014-05-07
CN103779415B true CN103779415B (zh) 2016-03-02

Family

ID=50571465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410024892.9A Active CN103779415B (zh) 2014-01-20 2014-01-20 平面型功率mos器件及其制造方法

Country Status (1)

Country Link
CN (1) CN103779415B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180857B (zh) * 2016-03-10 2020-08-07 北大方正集团有限公司 Vdmos器件的制作方法
CN106252235A (zh) * 2016-08-30 2016-12-21 西安龙腾新能源科技发展有限公司 低成本超结功率场效应管的制备方法
CN110828540B (zh) * 2018-08-10 2022-03-11 无锡华润上华科技有限公司 半导体器件及其制造方法
CN110176401B (zh) * 2019-06-13 2022-08-30 深圳市锐骏半导体股份有限公司 一种降低vdmos生产成本的方法
CN114093866B (zh) * 2021-11-19 2023-03-14 陕西亚成微电子股份有限公司 集成启动装置的mosfet结构及制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5723882A (en) * 1994-03-10 1998-03-03 Nippondenso Co., Ltd. Insulated gate field effect transistor having guard ring regions
CN201163629Y (zh) * 2008-03-18 2008-12-10 苏州硅能半导体科技股份有限公司 带有多晶硅场板的功率mos场效应管
JP2009289904A (ja) * 2008-05-28 2009-12-10 Toshiba Corp 半導体装置
CN203071079U (zh) * 2012-12-04 2013-07-17 国网智能电网研究院 一种具有终端保护结构的igbt芯片

Also Published As

Publication number Publication date
CN103779415A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
CN103779415B (zh) 平面型功率mos器件及其制造方法
CN104733531A (zh) 使用氧化物填充沟槽的双氧化物沟槽栅极功率mosfet
CN109888018A (zh) 一种集成启动管、采样管和电阻的dmos及其制造方法
CN102983171B (zh) 垂直无结环栅mosfet器件的结构及其制造方法
CN101982873A (zh) 具有超结结构的功率器件及其制造方法
CN111463281A (zh) 集成启动管、采样管和电阻的高压超结dmos结构及其制备方法
CN103178093A (zh) 高压结型场效应晶体管的结构及制备方法
CN104253153A (zh) 场截止型反向导通绝缘栅双极型晶体管及其制造方法
CN201163629Y (zh) 带有多晶硅场板的功率mos场效应管
CN104253151A (zh) 场截止型反向导通绝缘栅双极型晶体管及其制造方法
CN108649072A (zh) 一种低导通电阻的沟槽mosfet器件及其制造方法
CN102737970B (zh) 半导体器件及其栅介质层制造方法
CN103681315A (zh) 埋层的形成方法
CN203721733U (zh) 平面型功率mos器件
CN114464667A (zh) 一种可优化终端电场的屏蔽栅沟槽mosfet结构及其制造方法
CN101964343A (zh) 半导体装置
CN104517855A (zh) 超级结半导体器件制造方法
CN100589246C (zh) 带有多晶硅场板的功率mos场效应管及其制造方法
CN204375758U (zh) 具有超高元胞密度的深沟槽功率mos器件
CN102104023B (zh) Bcd工艺中的自对准高压cmos制造工艺方法
CN101471381A (zh) 沟槽栅mosfet及其制造方法
CN102437193B (zh) Bcd工艺中的双向高压mos管及其制造方法
CN206134689U (zh) 高集成度的低压沟槽栅dmos器件
CN109119341A (zh) 一种vdmos器件终端结构及其制作方法
CN106920846A (zh) 功率晶体管及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant