CN106252235A - 低成本超结功率场效应管的制备方法 - Google Patents

低成本超结功率场效应管的制备方法 Download PDF

Info

Publication number
CN106252235A
CN106252235A CN201610778637.2A CN201610778637A CN106252235A CN 106252235 A CN106252235 A CN 106252235A CN 201610778637 A CN201610778637 A CN 201610778637A CN 106252235 A CN106252235 A CN 106252235A
Authority
CN
China
Prior art keywords
carry out
preparation
field effect
power field
effect pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610778637.2A
Other languages
English (en)
Inventor
周宏伟
张园园
任文珍
徐永年
徐西昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XI'AN LONTEN RENEWABLE ENERGY TECHNOLOGY Inc
Original Assignee
XI'AN LONTEN RENEWABLE ENERGY TECHNOLOGY Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XI'AN LONTEN RENEWABLE ENERGY TECHNOLOGY Inc filed Critical XI'AN LONTEN RENEWABLE ENERGY TECHNOLOGY Inc
Priority to CN201610778637.2A priority Critical patent/CN106252235A/zh
Publication of CN106252235A publication Critical patent/CN106252235A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明实施例提供一种低成本超结功率场效应管的制备方法,该制备方法通过以下步骤实现:步骤一:在N+衬底上生长N‑外延层;步骤二:通过body光刻版注入体区,然后进行推阱;步骤三:深沟槽的刻蚀和p型EPI的回填,并进行CMP工艺将沟槽外的p型EPI去掉,形成p‑pillar;步骤四:进行栅氧、多晶硅栅极的生长和回刻;步骤五:Nsource注入并推阱;步骤六:进行层间介质(ILD)的淀积;步骤七:电极光刻,孔注;步骤八:源极金属的淀积和光刻,形成器件的最终结构。本发明省掉了有源区这块光刻版,不长厚场氧,同时器件击穿特性不受影响,因此降低了超结功率场效应管的制造成本。

Description

低成本超结功率场效应管的制备方法
技术领域
本发明属于超结功率场效应管制造技术领域,具体涉及一种低成本超结功率场效应管的制备方法。
背景技术
前高压超结产品主要有两种工艺技术路径:1.以Infineon和ST为代表的多次外延和注入技术的技术。2.以Toshiba和华虹宏力为代表的沟槽刻蚀和回填技术。两种技术基本上都要长1-2um的热场氧,然后光刻有源区,进行后续的器件制备工艺;现有的超结技术制造工艺,都有厚场氧工艺,也都会用到有源区光刻版,制造工艺相对昂贵。
发明内容
有鉴于此,本发明的主要目的在于提供一种低成本超结功率场效应管的制备方法。
为达到上述目的,本发明的技术方案是这样实现的:
本发明实施例提供一种低成本超结功率场效应管的制备方法,该制备方法通过以下步骤实现:
步骤一:在N+衬底上生长N-外延层;
步骤二:通过body光刻版注入体区,然后进行推阱;
步骤三:深沟槽的刻蚀和p型EPI的回填,并进行CMP工艺将沟槽外的p型EPI去掉,形成p-pillar;
步骤四:进行栅氧、多晶硅栅极的生长和回刻;
步骤五:Nsource注入并推阱;
步骤六:进行层间介质(ILD)的淀积;
步骤七:电极光刻,孔注;
步骤八:源极金属的淀积和光刻,形成器件的最终结构。
上述方案中,所述步骤五中Nsource采用As或P注入并推阱。
上述方案中,所述步骤六中层间介质的厚度为1-3um。
与现有技术相比,本发明的有益效果:
本发明省掉了有源区这块光刻版,不长厚场氧,同时器件击穿特性不受影响,因此降低了超结功率场效应管的制造成本。
附图说明
图1为本发明步骤一的示意图;
图2为本发明步骤二的示意图;
图3为本发明步骤三的示意图;
图4为本发明步骤四的示意图;
图5为本发明步骤五的示意图;
图6为本发明步骤六的示意图;
图7为本发明步骤七的示意图;
图8为本发明步骤八的示意图;
图9为场氧和有源区光刻版的情况下和本发明情况下的器件终端的击穿电压情况图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种低成本超结功率场效应管的制备方法,该制备方法通过以下步骤实现:
步骤一:在N+衬底上生长N-外延层,如图1所示;
步骤二:通过body光刻版注入体区,然后进行推阱,如图2所示;
步骤三:深沟槽的刻蚀和p型EPI的回填,并进行CMP工艺将沟槽外的p型EPI去掉,形成p-pillar,如图3所示;
步骤四:省去场氧过程,直接进行栅氧、多晶硅栅极的生长和回刻,如图4所示,这一步省去了长时间的场氧热过程,同时也节省了有源区光刻版;
步骤五:Nsource注入并推阱,如图5所示;
具体地,步骤五中Nsource采用As或P注入并推阱。
步骤六:进行层间介质(ILD)的淀积,如图6所示;
具体地,所述步骤六中层间介质的厚度为1-3um,足够厚的ILD是保证器件在省去场氧过程后,击穿电压不变的关键。
步骤七:电极光刻,孔注,如图7所示;
步骤八:源极金属的淀积和光刻,形成器件的最终结构,如图8所示。
通过器件仿真(Sentaurus),对比了在其他工艺条件基本相同的情况下,有场氧和有源区光刻版的情况下和本发明情况下,器件终端的击穿电压,发现两种情况的击穿电压基本相同,如图9所示。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (3)

1.一种低成本超结功率场效应管的制备方法,其特征在于,该制备方法通过以下步骤实现:
步骤一:在N+衬底上生长N-外延层;
步骤二:通过body光刻版注入体区,然后进行推阱;
步骤三:深沟槽的刻蚀和p型EPI的回填,并进行CMP工艺将沟槽外的p型EPI去掉,形成p-pillar;
步骤四:进行栅氧、多晶硅栅极的生长和回刻;
步骤五:Nsource注入并推阱;
步骤六:进行层间介质(ILD)的淀积;
步骤七:电极光刻,孔注;
步骤八:源极金属的淀积和光刻,形成器件的最终结构。
2.根据权利要求1所述的低成本超结功率场效应管的制备方法,其特征在于:所述步骤五中Nsource采用As或P注入并推阱。
3.根据权利要求1或2所述的低成本超结功率场效应管的制备方法,其特征在于:所述步骤六中层间介质的厚度为1-3um。
CN201610778637.2A 2016-08-30 2016-08-30 低成本超结功率场效应管的制备方法 Pending CN106252235A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610778637.2A CN106252235A (zh) 2016-08-30 2016-08-30 低成本超结功率场效应管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610778637.2A CN106252235A (zh) 2016-08-30 2016-08-30 低成本超结功率场效应管的制备方法

Publications (1)

Publication Number Publication Date
CN106252235A true CN106252235A (zh) 2016-12-21

Family

ID=58081003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610778637.2A Pending CN106252235A (zh) 2016-08-30 2016-08-30 低成本超结功率场效应管的制备方法

Country Status (1)

Country Link
CN (1) CN106252235A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050133859A1 (en) * 2003-12-22 2005-06-23 Denso Corporation Semiconductor device and design-aiding program
CN103779415A (zh) * 2014-01-20 2014-05-07 张家港凯思半导体有限公司 平面型功率mos器件及其制造方法
CN104779298A (zh) * 2015-04-24 2015-07-15 无锡同方微电子有限公司 一种超结mosfet终端结构及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050133859A1 (en) * 2003-12-22 2005-06-23 Denso Corporation Semiconductor device and design-aiding program
CN103779415A (zh) * 2014-01-20 2014-05-07 张家港凯思半导体有限公司 平面型功率mos器件及其制造方法
CN104779298A (zh) * 2015-04-24 2015-07-15 无锡同方微电子有限公司 一种超结mosfet终端结构及其制作方法

Similar Documents

Publication Publication Date Title
CN102646701B (zh) 一种jfet器件及其形成方法
CN102412126B (zh) 超高压ldmos的工艺制作方法
CN101719515B (zh) 栅下具有横向扩散埋层的ldmos器件
CN105489500A (zh) 超结vdmos的制备方法及其超结vdmos器件
CN105679820A (zh) Jfet及其制造方法
CN103855210A (zh) 射频横向双扩散场效应晶体管及其制造方法
CN106298943B (zh) 一种具有体电场调制的横向双扩散金属氧化物半导体场效应管
CN103035674B (zh) 射频横向双扩散场效应晶体管及其制造方法
CN104282763B (zh) 射频横向双扩散场效应晶体管制作方法
CN101393857A (zh) 在超高密度沟槽型功率器件设计中实现分阱结构的方法
CN104576732A (zh) 一种寄生FinFET的横向双扩散半导体器件
CN106252235A (zh) 低成本超结功率场效应管的制备方法
CN103094124B (zh) 高压结型场效应管的结构及制造方法
CN105185827A (zh) 一种AlGaN/GaN高电子迁移率功率半导体器件
CN213026140U (zh) 一种沟槽mosfet结构
CN103325834B (zh) 晶体管及其沟道长度的形成方法
CN104518021A (zh) 一种vdmos器件元胞结构及其制作方法
CN109698228A (zh) 一种超级结器件及制造方法
CN106252277A (zh) 低温多晶硅薄膜晶体管阵列基板、制作方法以及显示装置
CN201570499U (zh) 栅下具有横向扩散埋层的ldmos器件
CN102130184B (zh) 一种应用于高压静电保护的高鲁棒性反偏二极管
CN205789988U (zh) 一种超结vdmos器件
CN105336736A (zh) Bcd器件及其制造方法
CN104716187A (zh) 射频ldmos器件及工艺方法
CN204029815U (zh) 横向对称dmos管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161221

RJ01 Rejection of invention patent application after publication