CN105185827A - 一种AlGaN/GaN高电子迁移率功率半导体器件 - Google Patents

一种AlGaN/GaN高电子迁移率功率半导体器件 Download PDF

Info

Publication number
CN105185827A
CN105185827A CN201510566720.9A CN201510566720A CN105185827A CN 105185827 A CN105185827 A CN 105185827A CN 201510566720 A CN201510566720 A CN 201510566720A CN 105185827 A CN105185827 A CN 105185827A
Authority
CN
China
Prior art keywords
algan
layer
doped layer
grid
insulating barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510566720.9A
Other languages
English (en)
Inventor
刘斯扬
魏家行
周迁
任晓飞
孙伟锋
陆生礼
时龙兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201510566720.9A priority Critical patent/CN105185827A/zh
Publication of CN105185827A publication Critical patent/CN105185827A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

一种AlGaN/GaN高电子迁移率功率半导体器件,包括:Si基衬底,在Si基衬底上形成有AlN成核层,在AlN成核层上形成有本征GaN层,在本征GaN层上形成有AlGaN掺杂层,在AlGaN掺杂层中形成有栅氧化层,所述栅氧化层贯穿AlGaN掺杂层且始于AlGaN掺杂层的下表面并止于AlGaN掺杂层的上表面,在栅氧化层的上表面形成有栅极,在AlGaN掺杂层的上表面栅极的一侧形成有源极,在AlGaN掺杂层的上表面栅极的另一侧形成有漏极,在栅极、源极和漏极上形成有钝化层,且源极和漏极通过钝化层与栅极相隔离,其特征在于,在AlGaN掺杂层的内部设有绝缘层且绝缘层的上表面裸露于AlGaN掺杂层的上表面,所述绝缘层与栅氧化层相接触且位于所述栅氧化层与漏极之间,这种结构的优点在于能够有效提高器件的击穿电压。

Description

一种AlGaN/GaN高电子迁移率功率半导体器件
技术领域
本发明主要涉及一种宽禁带功率半导体器件,特别是涉及一种应用于电力开关领域的高压增强型高电子迁移率晶体管。
背景技术
GaN材料具有良好的电学特性,如宽的禁带宽度、高击穿电场、高热导率、耐腐蚀等,被誉为是继第一代Ge、Si半导体材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料,是制作高频、高压、高温、大功率电子器件和短波长、大功率光电子器件的理想材料。
AlGaN/GaN高电子迁移率器件由于压电极化和自发极化效应,在AlGaN/GaN界面的GaN层中出现了浓度很高的二维电子气(2DEG),因此AlGaN/GaN高电子迁移率器件具有击穿电压高、电子漂移速度快和抗辐射能力强等优势,使其在高频高温大功率领域具有十分广泛的应用前景。沟道处2DEG高的迁移率使得它具有超高功率密度和低功耗特性。在此之前,对于AlGaN/GaN高电子迁移率器件的研究一直集中在微波器件领域,耐压多在200V以下。近几年随着大尺寸Si基制作GaN器件成为可能之后,AlGaN/GaN高电子迁移率器件在中高压功率器件领域的研究又成为了一个热点。
AlGaN/GaN高电子迁移率器件作为横向器件,在截止状态下,沟道耗尽区内的正电荷发出的电力线集中指向栅极边缘,在栅极靠近漏端一侧形成电场峰值是制约器件击穿电压提高的主要原因之一。过大的峰值电场使器件电场峰值分布不均,器件容易在较低源漏电压下被击穿,无法充分发挥GaN材料的高耐压优势。为了提高AlGaN/GaN高电子迁移率器件的击穿电压,最常采用的方法是引入场板结构,如栅场板、源场板等,场板的采用可以在场板的边缘引入另一个电场峰值,使得栅漏之间的电场得到重新分布,降低了近漏端栅极边缘的电场峰值,大大提高了击穿电压。然而,场板的加入会增加器件寄生电容的大小,使得器件的高频特性受抑制。
发明内容
本发明针对上述问题,提出了一种AlGaN/GaN高电子迁移率功率半导体器件,该结构在保持器件导通特性和频率特性基本不变的基础上,能够有效提高击穿电压。
本发明采用如下技术方案:一种AlGaN/GaN高电子迁移率功率半导体器件,包括:Si基衬底,在Si基衬底上形成有AlN成核层,在AlN成核层上形成有本征GaN层,在本征GaN层上形成有AlGaN掺杂层,在AlGaN掺杂层中形成有栅氧化层,所述栅氧化层贯穿AlGaN掺杂层且始于AlGaN掺杂层的下表面并止于AlGaN掺杂层的上表面,在栅氧化层的上表面形成有栅极,在AlGaN掺杂层的上表面栅极的一侧形成有源极,在AlGaN掺杂层的上表面栅极的另一侧形成有漏极,在栅极、源极和漏极上形成有钝化层,且源极和漏极通过钝化层与栅极相隔离,其特征在于,在AlGaN掺杂层的内部设有绝缘层且绝缘层的上表面裸露于AlGaN掺杂层的上表面,所述绝缘层与栅氧化层相接触且位于所述栅氧化层与漏极之间。
与现有技术相比,本发明具有如下优点:
(1)、本发明器件采用绝缘层10沿着栅宽方向均匀间隔分布的结构,通过改变部分栅漏之间二维电子气的浓度,在不显著影响器件导通特性的基础上,使得整个器件电场分布更加均匀,击穿电压得到提高。
AlGaN/GaN高电子迁移率器件由于强烈的极化效应,会在AlGaN/GaN界面靠近GaN一侧形成高浓度的二维电子气。实验发现,减小AlGaN势垒层的厚度,可以使得极化效应减弱,二维电子气的浓度降低。因此本发明通过刻蚀AlGaN,在近漏端的栅氧化层一侧形成绝缘层结构,因为绝缘层的引入,使得其下方对应的AlGaN势垒层厚度减薄,因此该区域的二维电子气浓度减小,栅漏之间形成类似MOSFET中的LDD(LightlyDopedDrain)结构。由于沟道中二维电子气浓度的阶梯分布,这时在绝缘层靠近漏极的边缘就会出现一个新的电场峰值,因此栅漏之间的电场分布得到调整,从而击穿电压得到提高。然而,若是绝缘层10沿着器件栅宽方向无间隙分布,则器件的导通特性会因绝缘层下方沟道中的二维电子气浓度减小而受到影响。为了减小由于绝缘层10的引入而导致的器件导通特性变坏,将绝缘层10沿着栅宽方向均匀间隔分布,此时没有引入绝缘层10下方的二维电子气浓度并不会减小,其导通特性也不会受到影响。图5为本发明器件a-a’和b-b’两个地方所对应沟道处的二维电子气浓度分布图,可以发现在有绝缘层10的地方,二维电子气浓度沿着栅漏方向是阶梯式递增的,而在没有绝缘层10地方,二维电子气浓度沿着栅漏方向是均匀分布的。图6为本发明器件与常规器件的击穿电压对比曲线图,可以发现本发明器件与常规器件相比,击穿电压得到了提高。
(2)、本发明器件的好处在于绝缘层10的存在还在一定程度上减小了栅极漏电流。由于绝缘层10的引入,栅极近漏端峰值电场处的绝缘层加厚了,使得栅极漏电流得到了减小。
(3)、本发明器件的好处在于提高了器件的击穿电压,减小了栅极漏电流的基础上,导通特性基本保持不变。图7为本发明器件与常规器件的导通特性对比图,可以发现本发明器件与常规器件相比,器件的导通特性基本保持不变。
(4)、本发明器件的好处在于提高了器件的击穿电压,减小了栅极漏电流的基础上,器件的频率特性基本保持不变。绝缘层10结构和传统的场板结构相比,前者通过在器件内部做结构调整,改变器件内部的电场分布,并没有引入额外的寄生电容,因此寄生电容基本保持不变,保证了器件的频率特性不受影响。
附图说明
图1是常规的AlGaN/GaN高电子迁移率功率半导体器件结构剖面图。
图2是本发明的AlGaN/GaN高电子迁移率功率半导体器件结构剖面图。
图3是本发明的AlGaN/GaN高电子迁移率功率半导体器件去钝化层后的结构剖面图。
图4是本发明的AlGaN/GaN高电子迁移率功率半导体器件去钝化层和金属层后的结构剖面图。
图5是本发明器件a-a’和b-b’所对应沟道处的二维电子气浓度分布曲线图。可以看出本发明器件使得栅漏间二维电子气沿着栅漏方向呈阶梯式增长。
图6是本发明器件与常规器件的击穿电压比较图。可以看出本发明器件使得击穿电压得到了明显的提高。
图7是本发明器件与常规器件的导通特性比较图。可以看出本发明器件与常规器件相比,导通特性基本保持不变。
具体实施方式
下面结合图2和图3详细说明,一种AlGaN/GaN高电子迁移率功率半导体器件,包括:Si基衬底1,在Si基衬底1上形成有AlN成核层2,在AlN成核层2上形成有本征GaN层3,在本征GaN层3上形成有AlGaN掺杂层4,在AlGaN掺杂层4中形成有栅氧化层5,所述栅氧化层5贯穿AlGaN掺杂层4且始于AlGaN掺杂层4的下表面并止于AlGaN掺杂层4的上表面,在栅氧化层5的上表面形成有栅极6,在AlGaN掺杂层4的上表面栅极6的一侧形成有源极7,在AlGaN掺杂层4的上表面栅极6的另一侧形成有漏极8,在栅极6、源极7和漏极8上形成有钝化层9,且源极7和漏极8通过钝化层9与栅极6相隔离,其特征在于,在AlGaN掺杂层4的内部设有绝缘层10且绝缘层10的上表面裸露于AlGaN掺杂层4的上表面,所述绝缘层10与栅氧化层5相接触且位于所述栅氧化层5与漏极8之间。所述绝缘层10在器件的栅宽方向至少分布有2个,且它们沿着器件栅宽方向均匀分布。所述绝缘层10的下表面距离本征GaN层3的距离为15~20nm。所述绝缘层10的长度与栅极6到漏极8的长度比例为0.5~1:1。所述绝缘层10的宽度与相邻两个绝缘层10之间间隙的宽度比例为1~2:1。

Claims (5)

1.一种AlGaN/GaN高电子迁移率功率半导体器件,包括:Si基衬底(1),在Si基衬底(1)上形成有AlN成核层(2),在AlN成核层(2)上形成有本征GaN层(3),在本征GaN层(3)上形成有AlGaN掺杂层(4),在AlGaN掺杂层(4)中形成有栅氧化层(5),所述栅氧化层(5)贯穿AlGaN掺杂层(4)且始于AlGaN掺杂层(4)的下表面并止于AlGaN掺杂层(4)的上表面,在栅氧化层(5)的上表面形成有栅极(6),在AlGaN掺杂层(4)的上表面栅极(6)的一侧形成有源极(7),在AlGaN掺杂层(4)的上表面栅极(6)的另一侧形成有漏极(8),在栅极(6)、源极(7)和漏极(8)上形成有钝化层(9),且源极(7)和漏极(8)通过钝化层(9)与栅极(6)相隔离,其特征在于,在AlGaN掺杂层(4)的内部设有绝缘层(10)且绝缘层(10)的上表面裸露于AlGaN掺杂层(4)的上表面,所述绝缘层(10)与栅氧化层(5)相接触且位于所述栅氧化层(5)与漏极(8)之间。
2.根据权利要求1所述的AlGaN/GaN高电子迁移率功率半导体器件,其特征在于,所述绝缘层(10)在器件的栅宽方向至少分布有2个,且它们沿着器件栅宽方向均匀分布。
3.根据权利要求1所述的AlGaN/GaN高电子迁移率功率半导体器件,其特征在于,所述绝缘层(10)的下表面距离本征GaN层(3)的距离为15~20nm。
4.根据权利要求1所述的AlGaN/GaN高电子迁移率功率半导体器件,其特征在于,所述绝缘层(10)的长度与栅极(6)到漏极(8)之间的长度比例为0.5~1:1。
5.根据权利要求1所述的AlGaN/GaN高电子迁移率功率半导体器件,其特征在于,所述绝缘层(10)的宽度与相邻两个绝缘层(10)之间间隙的宽度比例为1~2:1。
CN201510566720.9A 2015-09-08 2015-09-08 一种AlGaN/GaN高电子迁移率功率半导体器件 Pending CN105185827A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510566720.9A CN105185827A (zh) 2015-09-08 2015-09-08 一种AlGaN/GaN高电子迁移率功率半导体器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510566720.9A CN105185827A (zh) 2015-09-08 2015-09-08 一种AlGaN/GaN高电子迁移率功率半导体器件

Publications (1)

Publication Number Publication Date
CN105185827A true CN105185827A (zh) 2015-12-23

Family

ID=54907801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510566720.9A Pending CN105185827A (zh) 2015-09-08 2015-09-08 一种AlGaN/GaN高电子迁移率功率半导体器件

Country Status (1)

Country Link
CN (1) CN105185827A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461774A (zh) * 2018-11-01 2019-03-12 电子科技大学 一种含高介电系数介质块的hemt器件
WO2019100793A1 (zh) * 2017-11-21 2019-05-31 华南理工大学 一种与 Si-CMOS 工艺兼容的 AlGaN/GaN 异质结 HEMT 器件及其制作方法
CN109887818A (zh) * 2019-03-13 2019-06-14 西安众力为半导体科技有限公司 一种电子束器件及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090267078A1 (en) * 2008-04-23 2009-10-29 Transphorm Inc. Enhancement Mode III-N HEMTs
US20110057257A1 (en) * 2009-09-08 2011-03-10 Samsung Electro-Mechanics Co., Ltd. Semiconductor device and method for manufacturing the same
CN102237404A (zh) * 2010-05-04 2011-11-09 三星电子株式会社 高电子迁移率晶体管及其制造方法
US20130102140A1 (en) * 2008-07-15 2013-04-25 Imec Method of forming a semiconductor device
US20140183598A1 (en) * 2012-12-28 2014-07-03 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor and method of forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090267078A1 (en) * 2008-04-23 2009-10-29 Transphorm Inc. Enhancement Mode III-N HEMTs
US20130102140A1 (en) * 2008-07-15 2013-04-25 Imec Method of forming a semiconductor device
US20110057257A1 (en) * 2009-09-08 2011-03-10 Samsung Electro-Mechanics Co., Ltd. Semiconductor device and method for manufacturing the same
CN102237404A (zh) * 2010-05-04 2011-11-09 三星电子株式会社 高电子迁移率晶体管及其制造方法
US20140183598A1 (en) * 2012-12-28 2014-07-03 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor and method of forming the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019100793A1 (zh) * 2017-11-21 2019-05-31 华南理工大学 一种与 Si-CMOS 工艺兼容的 AlGaN/GaN 异质结 HEMT 器件及其制作方法
CN109461774A (zh) * 2018-11-01 2019-03-12 电子科技大学 一种含高介电系数介质块的hemt器件
CN109461774B (zh) * 2018-11-01 2021-08-17 电子科技大学 一种含高介电系数介质块的hemt器件
CN109887818A (zh) * 2019-03-13 2019-06-14 西安众力为半导体科技有限公司 一种电子束器件及其制作方法
CN109887818B (zh) * 2019-03-13 2024-03-12 西安众力为半导体科技有限公司 一种电子束器件及其制作方法

Similar Documents

Publication Publication Date Title
US10985270B2 (en) Nitride power transistor and manufacturing method thereof
EP2955757B1 (en) Nitride power component and manufacturing method therefor
CN105244376A (zh) 一种增强型AlGaN/GaN高电子迁移率晶体管
CN109461774B (zh) 一种含高介电系数介质块的hemt器件
CN113611750B (zh) Soi横向匀场高压功率半导体器件及制造方法和应用
CN102201445B (zh) 一种psoi横向超结功率半导体器件
CN102820325A (zh) 一种具有背电极结构的氮化镓基异质结场效应晶体管
CN105161539A (zh) 碳化硅mosfet器件及其制作方法
CN106920844A (zh) 一种具有n型浮空埋层的resurf hemt器件
CN102403349B (zh) Ⅲ族氮化物mishemt器件
CN103227199B (zh) 半导体电子器件
CN114447102A (zh) 具有衬底上复合半导体层的氮化镓异质结场效应晶体管
CN115376924A (zh) 低体二极管正向导通压降的沟槽型碳化硅mosfet的制造方法
CN105185827A (zh) 一种AlGaN/GaN高电子迁移率功率半导体器件
CN103745990B (zh) 耗尽型AlGaN/GaN MISHEMT高压器件及其制作方法
CN108511527A (zh) 具有电荷补偿块的垂直双扩散金属氧化物半导体场效应管及其制作方法
CN117253917A (zh) 一种通过表面陷阱屏蔽的GaN MIS HEMT及其制备方法
CN113394284B (zh) 具有复合层结构的高压mis-hemt器件
CN114551595B (zh) 应用于射频放大的沟道掺杂调制rfldmos器件及制法
CN109817711B (zh) 具有AlGaN/GaN异质结的氮化镓横向晶体管及其制作方法
CN111969055A (zh) 一种GaN高电子迁移率晶体管结构及其制作方法
CN105826392B (zh) 小能带隙iii-v族mosfet器件的非对称型源漏极结构
CN104201200A (zh) 一种具有电偶极层结构的氮化镓基异质结场效应晶体管
CN102427086B (zh) Ⅲ族氮化物增强型mishemt器件
CN113611741B (zh) 一种具有鳍状结构的GaN HMET器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151223