CN115376924A - 低体二极管正向导通压降的沟槽型碳化硅mosfet的制造方法 - Google Patents

低体二极管正向导通压降的沟槽型碳化硅mosfet的制造方法 Download PDF

Info

Publication number
CN115376924A
CN115376924A CN202210936276.5A CN202210936276A CN115376924A CN 115376924 A CN115376924 A CN 115376924A CN 202210936276 A CN202210936276 A CN 202210936276A CN 115376924 A CN115376924 A CN 115376924A
Authority
CN
China
Prior art keywords
layer
region
barrier layer
metal
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210936276.5A
Other languages
English (en)
Inventor
李昀佶
张长沙
周海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Power Technology Co Ltd
Original Assignee
Global Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Power Technology Co Ltd filed Critical Global Power Technology Co Ltd
Priority to CN202210936276.5A priority Critical patent/CN115376924A/zh
Publication of CN115376924A publication Critical patent/CN115376924A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供了一种低体二极管正向导通压降的沟槽型碳化硅MOSFET的制造方法,包括:在碳化硅衬底的漂移层上形成阻挡层,并对阻挡层蚀刻形成通孔,通过通孔对漂移层进行离子注入,分别形成第一掩蔽层、第二掩蔽层、多晶硅源区、第一夹断区以及第二夹断区;重新形成阻挡层,并对阻挡层和第一掩蔽层蚀刻形成栅极区,氧化栅极区,形成栅极绝缘层;淀积形成栅极多晶硅层;重新形成阻挡层,并对阻挡层蚀刻形成源区金属通孔;通过源区金属通孔对多晶硅源区淀积,形成源极金属层;重新形成阻挡层,并对阻挡层蚀刻栅极金属淀通孔,淀积形成栅极金属层;清除阻挡层,在碳化硅衬底上淀积金属,形成漏极金属层,降低源极到漏极的体二极管压降。

Description

低体二极管正向导通压降的沟槽型碳化硅MOSFET的制造方法
技术领域
本发明涉及一种低体二极管正向导通压降的沟槽型碳化硅MOSFET的制造方法。
背景技术
SiC器件碳化硅(SiC)材料因其优越的物理特性,广泛受到人们的关注和研究。其高温大功率电子器件具备输入阻抗高、开关速度快、工作频率高、耐高温高压等优点,在开关稳压电源、高频加热、汽车电子以及功率放大器等方面取得了广泛应用。
然而由于SiC临界击穿场强特别高而栅氧质量较差,在沟槽型SiC MOSFET中,其栅氧处承受大电压,电场强度极大,故需要解决栅底端的电场强度过大问题。同时导通电阻的降低是功率MOSFET永恒不变的追求,每一种降低导通电阻的方法都应该被重视。最后SiC由于其材料特性的原因,其体二极管的导通压降较大,在2V左右,其导通损耗较大,需要降低其体二极管导通压降,以降低MOSFET开启之前的导通损耗。
发明内容
本发明要解决的技术问题,在于提供一种低体二极管正向导通压降的沟槽型碳化硅MOSFET的制造方法,降低源极到漏极的体二极管压降。
本发明是这样实现的:一种低体二极管正向导通压降的沟槽型碳化硅MOSFET的制造方法,具体包括如下步骤:
步骤1、在碳化硅衬底的漂移层上形成阻挡层,并对阻挡层蚀刻形成通孔,通过通孔对漂移层进行离子注入,以形成第一掩蔽层以及第二掩蔽层;
步骤2、在漂移层上重新形成阻挡层,并对阻挡层蚀刻形成通孔,通过通孔对漂移层进行离子注入,以形成多晶硅源区;
步骤3、在漂移层上重新形成阻挡层,并对阻挡层蚀刻形成通孔,对漂移层进行离子注入,形成第一夹断区以及第二夹断区;
步骤4、重新形成阻挡层,并对阻挡层和第一掩蔽层蚀刻形成栅极区,氧化栅极区,形成栅极绝缘层;
步骤5、淀积形成栅极多晶硅层;
步骤6、重新形成阻挡层,并对阻挡层蚀刻形成源区金属通孔;通过源区金属通孔对多晶硅源区淀积,形成源极金属层;
步骤7、重新形成阻挡层,并对阻挡层蚀刻栅极金属淀通孔,淀积形成栅极金属层;
步骤8、清除阻挡层,在碳化硅衬底上淀积金属,形成漏极金属层。
进一步地,所述第一掩蔽层以及第二掩蔽层均为P+型。
进一步地,所述多晶硅源区为N型,所述漂移层为N型。
进一步地,所述第一夹断区以及第二夹断区均为P型;所述第一夹断区以及第二夹断区的掺杂浓度小于多晶硅源区的掺杂浓度,且高于漂移层的掺杂浓度。
本发明的优点在于:
一、该SiC MOSFET的源区不是传统的高掺n型区,而是n型多晶硅区,该源区深度超过了夹断区下方,延伸进入漂移区,和n型漂移区构成异质结,降低源极到漏极的体二极管压降;
二、在栅极下方有掩蔽层,该掩蔽层可以有效降低栅极下方和槽角处电场强度,提高栅氧可靠性;
三、在多晶硅源区下方有掩蔽层,可以提高多晶硅源区的耐压;
四、栅极控制区域包括横向的在源区和栅区之间的横向区域和栅极两侧的纵向区域,构建了横向和纵向的导电沟道,可以减低导通电阻;
五、在器件导通工作时,在横向栅极下方夹断区中,可以形成靠近多晶硅源区低电子浓度、远离多晶硅源区,靠近栅极高浓度的的浓度梯度导电通道,增加了导电区域,降低贴近栅的电流密度,避免热集中。
附图说明
下面参照附图结合实施例对本发明作进一步的说明。
图1是本发明一种双通道SiC横向LDMOS功率器件的制造方法流程图一。
图2是本发明一种双通道SiC横向LDMOS功率器件的制造方法流程图二。
图3是本发明一种双通道SiC横向LDMOS功率器件的制造方法流程图三。
图4是本发明一种双通道SiC横向LDMOS功率器件的制造方法流程图四。
图5是本发明一种双通道SiC横向LDMOS功率器件的制造方法流程图五。
图6是本发明一种双通道SiC横向LDMOS功率器件的制造方法流程图六。
图7是本发明一种双通道SiC横向LDMOS功率器件的制造方法流程图七。
图8是本发明一种双通道SiC横向LDMOS功率器件的制造方法流程图八。
图9是本发明一种双通道SiC横向LDMOS功率器件的原理示意图。
具体实施方式
请参阅图1至图9所示,本发明一种低体二极管正向导通压降的沟槽型碳化硅MOSFET的制造方法,具体包括如下步骤:
步骤1、在碳化硅衬底1的漂移层2上形成阻挡层a,并对阻挡层a蚀刻形成通孔,通过通孔对漂移层2进行离子注入,以形成第一掩蔽层21以及第二掩蔽层22,所述漂移层2为N型,所述第一掩蔽层21以及第二掩蔽层22均为P+型,所述漂移层2为N型;
步骤2、在漂移层2上重新形成阻挡层a,并对阻挡层a蚀刻形成通孔,通过通孔对漂移层2进行离子注入,以形成多晶硅源区3,所述多晶硅源区3为N型;
步骤3、在漂移层2上重新形成阻挡层a,并对阻挡层a蚀刻形成通孔,对漂移层2进行离子注入,形成第一夹断区6以及第二夹断区7;所述第一夹断区6以及第二夹断区7的掺杂浓度小于多晶硅源区3的掺杂浓度,且高于漂移层2的掺杂浓度;
步骤4、重新形成阻挡层a,并对阻挡层a和第一掩蔽层21蚀刻形成栅极区,氧化栅极区,形成栅极绝缘层4;
步骤5、淀积形成栅极多晶硅层5;
步骤6、重新形成阻挡层a,并对阻挡层a蚀刻形成源区金属通孔;通过源区金属通孔对多晶硅源区3淀积,形成源极金属层8,该源极金属层8的宽度大于等多晶硅源区3的宽度,且要大于第二夹断区7宽度的90%,源极金属层8可以与第一夹断区8连接,也可以与第二夹断区7连接,但是不与栅极金属层9连接;
步骤7、重新形成阻挡层a,并对阻挡层a蚀刻栅极金属淀通孔,淀积形成栅极金属层9;栅极金属层9的宽度大于等于栅极多晶硅5的宽度,可以连接到栅极绝缘层4,还可以连接到第二夹断区7;
步骤8、清除阻挡层a,在碳化硅衬底1上淀积金属,形成漏极金属层10。
如图9所示,上述制造方法得到的MOSFET,包括:
碳化硅衬底1;
漂移层2,所述漂移层2设于所述碳化硅衬底1上侧面,所述漂移层2上设有第一掩蔽层21以及第二掩蔽层22,所述第一掩蔽层21以及第二掩蔽层22均为P+型,所述漂移层2为N型;
多晶硅源区3,所述多晶硅源区3设于所述第二掩蔽层22上,且所述多晶硅源区3下部侧壁连接至所述漂移层2,所述多晶硅源区3为N型;
栅极绝缘层4,所述栅极绝缘层4为凹字型,所述栅极绝缘层4底部连接至所述第一掩蔽层21,所述栅极绝缘层4下部侧壁连接至所述漂移层2;
栅极多晶硅层5,所述栅极多晶硅层5设于所述栅极绝缘层4上;
第一夹断区6,所述第一夹断区6底部连接至所述漂移层2,且所述第一夹断区6侧壁连接至所述多晶硅源区3的一侧壁;
第二夹断区7,所述第二夹断区7底部连接至所述漂移层2,所述第二夹断区6一侧壁连接至所述多晶硅源区3的另一侧壁,所述第二夹断区7的另一侧壁连接至所述栅极绝缘层4的侧壁,所述第一夹断区6以及第二夹断区7均为P型;所述第一夹断区6以及第二夹断区7的掺杂浓度小于多晶硅源区3的掺杂浓度,且高于漂移层2的掺杂浓度;
源极金属层8,所述源极金属层8底部连接所述多晶硅源区3,该源极金属层8的宽度大于等多晶硅源区3的宽度,且要大于第二夹断区7宽度的90%,源极金属层8可以与第一夹断区8连接,也可以与第二夹断区7连接,但是不与栅极金属层9连接;
栅极金属层9,所述栅极金属层9底部连接所述栅极多晶硅层5;栅极金属层9的宽度大于等于栅极多晶硅5的宽度,可以连接到栅极绝缘层4,还可以连接到第二夹断区7;
以及,漏极金属层10,所述漏极金属层10连接至所述碳化硅衬底1的下侧面。
在栅极金属层9下方有P+型的第一掩蔽层21,所述第一掩蔽层21可以有效降低栅极金属层9下方和槽角处电场强度,提高栅氧可靠性;该SiC MOSFET的多晶硅源区3不是传统的高掺n型,而是N型多晶硅,该多晶硅源区3深度超过了第一夹断区6的深度,延伸进入漂移区2,在不影响构建栅氧表面横向导电沟道的同时,和N型的漂移区2构成异质结,降低源极到漏极的体二极管压降;在多晶硅源区3下方有第二掩蔽层22,可以提高多晶硅源区3的耐压,解决了源极金属层8延伸到漂移层2导致的器件耐压特性下降问题,栅极金属层9控制区域包括横向的在多晶硅源区3和栅极多晶硅层5之间的横向区域,以及栅极多晶硅层5两侧的纵向区域,构建了横向和纵向的导电沟道,可以减低导通电阻;在器件导通工作时,在第二夹断区7中,可以形成靠近多晶硅源区3的低电子浓度;远离多晶硅源区3,靠近栅极多晶硅层5高浓度的浓度梯度导电通道,增加了导电区域,降低贴近栅的电流密度,避免热集中。
多晶硅源区3在不降低其耐压特性的基础上可以构建异质结降低其体二极管导通压降,同时将器件的横向导电区域的深度向器件体内延伸,降低导通电阻,减少导电通道电流和热集中。
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。

Claims (4)

1.一种低体二极管正向导通压降的沟槽型碳化硅MOSFET的制造方法,其特征在于,具体包括如下步骤:
步骤1、在碳化硅衬底的漂移层上形成阻挡层,并对阻挡层蚀刻形成通孔,通过通孔对漂移层进行离子注入,以形成第一掩蔽层以及第二掩蔽层;
步骤2、在漂移层上重新形成阻挡层,并对阻挡层蚀刻形成通孔,通过通孔对漂移层进行离子注入,以形成多晶硅源区;
步骤3、在漂移层上重新形成阻挡层,并对阻挡层蚀刻形成通孔,对漂移层进行离子注入,形成第一夹断区以及第二夹断区;
步骤4、重新形成阻挡层,并对阻挡层和第一掩蔽层蚀刻形成栅极区,氧化栅极区,形成栅极绝缘层;
步骤5、淀积形成栅极多晶硅层;
步骤6、重新形成阻挡层,并对阻挡层蚀刻形成源区金属通孔;通过源区金属通孔对多晶硅源区淀积,形成源极金属层;
步骤7、重新形成阻挡层,并对阻挡层蚀刻栅极金属淀通孔,淀积形成栅极金属层;
步骤8、清除阻挡层,在碳化硅衬底上淀积金属,形成漏极金属层。
2.如权利要求1所述的一种低体二极管正向导通压降的沟槽型碳化硅MOSFET的制造方法,其特征在于,所述第一掩蔽层以及第二掩蔽层均为P+型。
3.如权利要求1所述的一种低体二极管正向导通压降的沟槽型碳化硅MOSFET的制造方法,其特征在于,所述多晶硅源区为N型,所述漂移层为N型。
4.如权利要求1所述的一种低体二极管正向导通压降的沟槽型碳化硅MOSFET的制造方法,其特征在于,所述第一夹断区以及第二夹断区均为P型;所述第一夹断区以及第二夹断区的掺杂浓度小于多晶硅源区的掺杂浓度,且高于漂移层的掺杂浓度。
CN202210936276.5A 2022-08-05 2022-08-05 低体二极管正向导通压降的沟槽型碳化硅mosfet的制造方法 Pending CN115376924A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210936276.5A CN115376924A (zh) 2022-08-05 2022-08-05 低体二极管正向导通压降的沟槽型碳化硅mosfet的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210936276.5A CN115376924A (zh) 2022-08-05 2022-08-05 低体二极管正向导通压降的沟槽型碳化硅mosfet的制造方法

Publications (1)

Publication Number Publication Date
CN115376924A true CN115376924A (zh) 2022-11-22

Family

ID=84064382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210936276.5A Pending CN115376924A (zh) 2022-08-05 2022-08-05 低体二极管正向导通压降的沟槽型碳化硅mosfet的制造方法

Country Status (1)

Country Link
CN (1) CN115376924A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117476774A (zh) * 2023-12-28 2024-01-30 深圳天狼芯半导体有限公司 垂直型碳化硅晶体管的结构、制造方法及电子设备
CN117673159A (zh) * 2024-01-31 2024-03-08 深圳天狼芯半导体有限公司 异质结碳化硅mosfet及其制备方法、芯片
CN117894684A (zh) * 2024-03-18 2024-04-16 泰科天润半导体科技(北京)有限公司 一种低导通电阻三栅纵向碳化硅mosfet的制造方法
CN117894684B (zh) * 2024-03-18 2024-05-24 泰科天润半导体科技(北京)有限公司 一种低导通电阻三栅纵向碳化硅mosfet的制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117476774A (zh) * 2023-12-28 2024-01-30 深圳天狼芯半导体有限公司 垂直型碳化硅晶体管的结构、制造方法及电子设备
CN117476774B (zh) * 2023-12-28 2024-05-07 深圳天狼芯半导体有限公司 垂直型碳化硅晶体管的结构、制造方法及电子设备
CN117673159A (zh) * 2024-01-31 2024-03-08 深圳天狼芯半导体有限公司 异质结碳化硅mosfet及其制备方法、芯片
CN117894684A (zh) * 2024-03-18 2024-04-16 泰科天润半导体科技(北京)有限公司 一种低导通电阻三栅纵向碳化硅mosfet的制造方法
CN117894684B (zh) * 2024-03-18 2024-05-24 泰科天润半导体科技(北京)有限公司 一种低导通电阻三栅纵向碳化硅mosfet的制造方法

Similar Documents

Publication Publication Date Title
CN114122123B (zh) 集成高速续流二极管的碳化硅分离栅mosfet及制备方法
CN115376924A (zh) 低体二极管正向导通压降的沟槽型碳化硅mosfet的制造方法
KR100762545B1 (ko) Lmosfet 및 그 제조 방법
CN114744023A (zh) 一种U型栅沟槽型SiC MOSFET的制造方法
CN107123684A (zh) 一种具有宽带隙材料与硅材料复合垂直双扩散金属氧化物半导体场效应管
CN107093623A (zh) 一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管
CN114512535B (zh) 一种双通道SiC横向LDMOS功率器件的制造方法
CN114496761B (zh) 一种圆形栅纵向mosfet功率器件的制造方法
CN108538909A (zh) 具有电荷补偿块的异质结垂直双扩散金属氧化物半导体场效应管及其制作方法
CN115360096A (zh) 一种集成异质结二极管的平面栅碳化硅mosfet的制造方法
CN110993691A (zh) 双沟道横向超结双扩散金属氧化物宽带隙半导体场效应管及其制作方法
CN108565286B (zh) 高k介质沟槽横向双扩散金属氧化物元素半导体场效应管及其制作方法
CN108511527A (zh) 具有电荷补偿块的垂直双扩散金属氧化物半导体场效应管及其制作方法
CN105304693A (zh) 一种ldmos器件的制造方法
CN114999922B (zh) 一种具有耐压结构的碳化硅mosfet的制造方法
CN218274607U (zh) 一种降低栅电荷的碳化硅mosfet
CN108172618B (zh) 高k介质沟槽横向双扩散金属氧化物宽带隙半导体场效应管及其制作方法
CN115831758A (zh) 一种集成肖特基的碳化硅umosfet的制造方法
CN114759079A (zh) 一种集成JBS的沟槽型SiC晶体管的制造方法
CN218274611U (zh) 一种低体二极管正向导通压降的沟槽型碳化硅mosfet
CN113410299B (zh) 一种高耐压的n沟道LDMOS器件及其制备方法
CN217485451U (zh) 一种U型栅沟槽型SiC MOSFET
CN218215312U (zh) 一种非对称沟槽型碳化硅mosfet
CN217485453U (zh) 一种集成JBS的沟槽型SiC晶体管
CN115084246B (zh) 一种降低栅电荷的碳化硅mosfet的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination