CN103748712A - 使用离散的碳纳米管的锂离子电池、制造离散的碳纳米管的方法以及由此得到的产品 - Google Patents

使用离散的碳纳米管的锂离子电池、制造离散的碳纳米管的方法以及由此得到的产品 Download PDF

Info

Publication number
CN103748712A
CN103748712A CN201280030167.1A CN201280030167A CN103748712A CN 103748712 A CN103748712 A CN 103748712A CN 201280030167 A CN201280030167 A CN 201280030167A CN 103748712 A CN103748712 A CN 103748712A
Authority
CN
China
Prior art keywords
tube
carbon nano
lithium ion
crystal
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280030167.1A
Other languages
English (en)
Other versions
CN103748712B (zh
Inventor
克莱夫·P·博什尼亚克
库尔特·W·斯沃格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Designed Nanotubes LLC
Original Assignee
Designed Nanotubes LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46420563&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN103748712(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Designed Nanotubes LLC filed Critical Designed Nanotubes LLC
Publication of CN103748712A publication Critical patent/CN103748712A/zh
Application granted granted Critical
Publication of CN103748712B publication Critical patent/CN103748712B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种用于锂离子电池的组合物以及获得该组合物的方法,该组合物包括表面附着有纳米尺寸的晶体或层的形式的锂离子活性材料的离散的经氧化的碳纳米管。组合物还可以包括石墨烯或含氧石墨烯。

Description

使用离散的碳纳米管的锂离子电池、制造离散的碳纳米管的方法以及由此得到的产品
该申请要求于2011年6月23号提交的题为“LITHIUM IONBATTERIES USING DISCRETE CARBON NANOTUBES,METHODS FOR PRODUCTION THEREOF AND PRODUCTSOBTAINED THEREFROM”的美国临时专利申请序列号61/500,560的优先权,其全部内容通过引用合并在本文中。
技术领域
本发明一般地涉及用于锂电池的改进技术的领域。在一些实施方案中,本发明涉及表面附着有锂离子活性材料的晶体或层的离散的碳纳米管。
背景技术
锂电池广泛用于便携式电子设备,并且正越来越多地用来为风能和太阳能提供备用电力。已知市场上使用的基于钴、镍或锰的氧化物用于阴极材料的锂离子(Li离子)可再充电电池由于其差的电导率和差的电化学稳定性导致差的循环(充电/放电)能力。橄榄石结构,例如磷酸铁锂(LiFePO4)或者磷酸锰锂(LiMnPO4),以较高的充放电速率运行,但仍然受限于低电导率和Li离子扩散动力学。
克服以上缺陷的尝试包括锂盐的纳米尺寸晶体(称为纳米晶体)以及锂盐和碳纳米管的混合物的合成。尽管碳纳米管与锂盐的纳米晶体的混合物在充电/放电速率上显示出改善,但是并不认为以前使用的碳纳米管是基本离散的(即,单个均匀分散的管)。如通过气相反应常规制造的碳纳米管导致颗粒直径在50微米至200微米的范围内的缠结管束。此外,锂纳米晶体不是离子地或共价地连接到离散的碳纳米管的表面以提供活性材料深入的电子迁移和增强的机械强度。在常规锂离子电池的充放电期间,纳米晶体膨胀和收缩。经过多次循环,这导致在活性材料的层中形成微裂纹,从而导致较高的内电阻以及电池性能的衰退。通过将晶体键合到离散的碳纳米管并与离散的碳纳米管互连,将阻碍由于剧烈的机械振动、弯曲、或膨胀和收缩而引起的微裂纹的形成。
锂盐也已经涂覆有在纳米尺度上的非常薄的碳涂层以增强颗粒间的电导率,但是碳涂层可使锂离子传输减慢,并且还可能随时间推移而与电解质不利地反应。认为碳涂层在结构上是无定形的并且与碳纳米管的结晶碳结构相比更容易与电解质反应。同样地,已将碳颗粒添加到锂盐的晶体以增强颗粒间导电性,但这通常会随着时间推移降低电池中的干燥浆料的机械强度,从而导致裂纹以及降低的性能。
通过将锂离子活性材料的纳米尺寸的晶体或纳米尺寸的层附着至离散的、功能化的且良好分散的碳纳米管的表面,本发明克服了低电导(尤其是由于在电池的充放电期间的材料膨胀和收缩而引起的)、改善的锂离子传输以及减缓潜在有害的化学副反应的困难。
同样地,对于锂电池阳极材料,可以将活性阳极材料(例如碳颗粒、氧化锡或者硅)附着到离散的碳纳米管表面以提供如改善的容量、电子和离子导电率以及机械强度等许多益处。
离散的碳纳米管网络除了提供用于锂电池的阴极或阳极材料的纳米尺寸的颗粒或层的支持和空间稳定性之外,其它的益处还包括改善的传热介质以避免热致失控、在制造期间浆料的结构强度以及提供良好能量密度的锂离子活性材料单位重量的高表面积。离散的管的均匀分散也将提供跨越阴极层或阳极层的更均匀的电压梯度,从而减小了在其中可引起局部性能加速衰退的局部高电阻率区域的可能性。
发明内容
本发明的一个方面为用于锂离子电池的组合物,该组合物包括表面附着有纳米尺寸的晶体或层的形式的锂离子活性材料的离散的碳纳米管。对于阴极,锂离子活性材料包含锂金属盐,该锂金属盐还可以包含铁、锰、钴、铜、镍、钒、钛或其混合物。组合物还可以包含具有橄榄石晶体结构的锂金属盐。对于阳极,锂离子活性材料可以包含碳、锡、硅、铜、锑、铝、锗、钛或其混合物。组合物的离散的碳纳米管优选地具有10至500的长径比和占碳纳米管的1wt%至15wt%的氧化水平。组合物还可以包括石墨烯或经氧化的石墨烯。在一个实施方案中,石墨烯与碳纳米管的重量比在0.1:99.9至99.9:0.1的范围内。
本发明的又一个方面是用于制造表面附着有纳米尺寸的晶体或层的形式的锂离子活性材料的离散的碳纳米管的方法,该方法包括以下步骤:
a)选择长径比为10至500并且氧化水平为1wt%至15wt%的碳纳米管;
b)将所述碳纳米管与高沸点液体,可选地与非离子表面活性剂混合;
c)可选地对碳纳米管液体混合物进行超声处理;
d)以正确的平衡添加试剂以合成期望的锂盐;
e)在期望温度使混合物反应以形成锂盐,同时对混合物进行超声处理;
f)将固体盐分离于液体;以及
g)在惰性气氛下在足以得到橄榄石晶体结构的温度下对附着有锂盐的固态离散的碳纳米管进行干燥和退火。
本发明的另一个方面为用于制造表面附着有纳米尺寸的晶体或层的形式的锂离子活性材料的离散的碳纳米管的方法,该方法包括以下步骤:
a)选择长径比为10至500并且氧化水平为1wt%至15wt%的碳纳米管;
b)将碳纳米管和期望的锂盐在液体中与表面活性剂混合;
c)对碳纳米管/锂盐液体混合物进行超声处理;
d)将固态盐分离于液体;
e)在惰性气氛下在足以得到橄榄石晶体结构的温度下对附着有锂盐的固态离散的碳纳米管进行干燥和退火。
本发明的另一个方面为用于锂离子电池的组合物,该组合物包括表面附着有以纳米尺寸的晶体或层的形式的锂离子活性材料的离散的碳纳米管,其中碳纳米管在0.1%至10%的碳纳米管与锂盐的重量比内。
本发明用于锂离子电池的又一个方面为组合物,该组合物包括表面附着有纳米尺寸的晶体或层的形式的锂离子活性材料的经氧化的碳纳米管,其中碳纳米管是在小于1微米的尺度范围内均匀分散的而非聚集的。
本发明的再一个方面为用于锂离子电池的组合物,该组合物包括表面离子地或化学地附着有锂离子活性材料的可均匀分散的经氧化的碳纳米管。
附图说明
图1示出作为纳米层涂覆在离散的碳纳米管上的锂盐。
图2示出本发明的具有5%的经氧化的碳纳米管的LiMnO4
图3示出附着于离散的碳纳米管的二氧化钛晶体。
具体实施方式
本文中所使用的术语“碳纳米管”是指具有圆柱形纳米结构的碳的同素异形体。纳米管可以为单壁、双壁或多壁。
本文中所使用的术语“离散的碳纳米管”是指能够被分离以得到单独的管的碳纳米管。
本文中所使用的术语“石墨烯”是指碳的单个原子厚度的片。
本文中所使用的术语“经氧化的石墨烯”是指对石墨烯片进行氧化的产物。经氧化的物质通常在石墨烯片的边缘。
本文中所使用的术语“经氧化的碳纳米管”是指对碳纳米管进行氧化的产物。通常经氧化的物质为羧基、酮或羟基官能团。
本文中所使用的术语“重量百分比”或“百分比重量”或“wt%”是通过将试剂的重量除以混合物的总重量而计算,所述混合物的总重量是添加该试剂之后添加有该试剂的混合物的总重量。例如,将1克试剂A添加至99克试剂B,由此形成的100克的混合物A+B相当于将1重量百分比的试剂A添加到混合物。
在制造离散的碳纳米管(其可以为单壁、双壁以及多壁构造)的过程期间,纳米管被切割为段,并且从制造商收到时在碳纳米管内部残留的催化剂颗粒被溶解。这种管的切割有助于剥离。管的切割将管的长度减小为在此定义为分子钢筋(Molecular Rebar)的碳纳米管段。相关于碳纳米管中的催化剂种类和分布的碳纳米管原料的适当选择使得能够对所得的各个管的长度和整体的管长度分布更多的控制。优选的选择为内部催化位点均匀分布并且催化剂是最有效的。可以使用电子显微镜以及剥离的管分布的确定来对选择进行评价。与不具有分子钢筋的材料相比,在将分子钢筋添加到其它材料中时该分子钢筋给予有利的机械和传输性能。
可迁移的离子和离子活性材料的种类
可以附着于离散的碳纳米管的离子活性材料在这里被定义为意指离子可以迁移进入或离开离子活性材料,由此交换电子。迁移离子优选地为锂离子,并且优选为按可用的可迁移离子的摩尔计的50%,更优选地为总的可迁移离子的75摩尔%或更高,最优选地占总的可迁移离子的95摩尔%或更高并且可以高达占总的可迁移离子的100摩尔%。其它可迁移离子可包括镁、铝、铁、锌、锰、钠、钾、铅、汞、银、金、镍、镉等。
离子活性材料的实例为磷酸铁锂、磷酸锰锂、氧化钴锂、二氧化硅、二氧化锰、镉、二氧化钛以及碳。
离子活性材料可以是相同的或者包含不同的活性材料。此外,在这些离子活性材料中的离子物质可以是相同的,或者它们可以不同。当使用可迁移离子的混合物时,锂离子优选地构成混合物中离子的大部分。在使用时,可迁移离子的混合物可以为各种比例的2种不同的离子,或者可以为三种或更多种不同的离子。另外,离子混合物可以为相同离子的不同价态(或氧化态),例如Fe2+或Fe3+
当混合用于附着于碳纳米管的离子活性材料时,混合物可以只是随机的,例如由离子活性材料化合物的自然状态产生,或者混合物可以是不同离子活性材料(包括处于不同化学或物理状态的离子活性材料)的有意混合。在包括使用锂离子的可迁移离子混合物的一些情况下,锂离子可以构成混合物中的少数离子成分,尽管这通常不是优选的构造。当使用多于一种离子时,则Li离子与其它总的离子的比例优选地为至少2:1或3:1或10:1并且可以高达25:1(摩尔比)。
附着到离散的碳纳米管的离子活性材料也可以用于例如燃料电池、传感器、电容器、光伏电池以及催化剂等应用。
实验实施例
包括以下实验实施例以证明本公开内容的具体方面。本领域的普通技术人员应该理解的是,以下实施例中描述的方法仅代表本公开内容的说明性实施方案。根据本公开内容,本领域的普通技术人员应该理解的是,在不脱离本公开内容的精神和范围下,可以在所述的具体实施方案中作出许多改变并且仍然得到相似或类似的结果。
实施例1
适用于锂离子电池阳极材料的附着有氧化铜纳米颗粒的离散的碳纳米管
将102mg氧化至约8wt%且长径比约60的多壁碳纳米管(CNano,级别C9000)添加到100mg硫酸铜、640mg EDTA钠、15mg的聚乙二醇、568mg的硫酸钠以及60mL的去离子水中。对混合物进行超声处理10分钟,然后加热到40℃。添加3mL的甲醛(37%的溶液)和500mg的氢氧化钠以使pH值为12.2。将混合物在85℃搅拌30分钟,然后使用5微米的PVDF过滤器过滤并且用200mL的去离子水洗涤。所得的经涂覆的多壁管示出铜色调的颜色。电子显微照片示出直径约50nm至150nm的氧化铜颗粒,所述氧化铜颗粒通过良好分散的碳纳米管相互连接。
实施例2
适用于锂离子电池阴极材料的具有涂覆在管的表面上的磷酸铁锂的离散的碳纳米管
将0.2克氧化至约8wt%且长径比约60的多壁碳纳米管(CNano,等级C9000)添加到23.5克的二甘醇,并且超声处理15分钟。溶液为灰色。添加溶解在4ml的去离子水中的1.16克的醋酸铁并且在氮气下加热混合物,搅拌并超声处理。在以140℃下1小时后,添加在4.2ml的去离子水中的0.65克醋酸锂和0.74克的磷酸铵的溶液。在30分钟内将温度升高到约185℃,然后在185℃保持4小时。将混合物冷却至110℃并且超声处理5分钟,然后在搅拌的同时进一步冷却至环境温度。通过离心分离使固体分离于混合物,随后通过乙醇洗涤。在真空中将所得粉末干燥至恒定重量。
测得所得到的干燥的粉末具有2000欧姆·厘米的电阻率,相比于市场上可得到样品测得具有19000欧姆·厘米的电阻率。
实施例3
在研钵和研杵中,以锂盐比碳纳米管为5:1和1:1的重量比将市场上获得的磷酸铁锂与氧化至约8wt%以及长径比约60的多壁碳纳米管(CNano,等级C9000)进行研磨。然后以相对碳纳米管为0.7:1的重量比添加十二烷基硫酸钠(SDS)并且将去离子水添加到所得混合物,以得到在有锂盐和表面活性剂存在的情况下的碳纳米管的0.5wt%的溶液。对混合物超声处理1小时,然后使用聚偏氟乙烯过滤器(0.2微米)过滤固体,用去离子水洗涤,并干燥。在图1中示出涂覆有磷酸铁锂的离散的碳纳米管的显微照片。在表1中给出粉末的电阻率的结果,电阻率的单位为欧姆·厘米。
表1
实施例4
在5wt%的经氧化的碳纳米管存在的情况下的磷酸锰锂的制备
将37.439g的醋酸锰II溶解在5.0ml的水中,并且将其添加到已经在反应器中的589mL的二甘醇(DEG)。然后在搅拌和徐缓的氮气流下将混合物加热至140℃的目标温度,以蒸馏出水。使用超声处理的同时搅拌30分钟来将1.119g的具有4%的氧化以及60的平均长径比的氧化的碳纳米管(最初地CNano,等级C9000,平均直径13nm)散在222.2mL的二甘醇(0.5%w/v)中。另外,将14.4434g醋酸锂和16.4497g磷酸二氢铵溶解在90mL的水中。在搅拌且伴随超声处理时,将经氧化的碳纳米管、醋酸锂以及磷酸二氢铵的分散体添加到反应介质。增加加热以保持180℃的目标温度3小时,同时保持恒定的氮气流。在反应结束之后,关掉加热和超声处理,而随着系统冷却至室温保持搅拌和氮气。
产物为高度粘稠、深灰色的流体。将涂覆有磷酸锰锂的碳纳米管离心分离,并且用无水乙醇洗涤固体三次。在图2中示出产物的电子显微照片。在图2中,示出管中的大多数具有约20nm至40nm厚度的磷酸锰锂涂层。如在实施例1中所见,涂层不平滑。
实施例5
用作锂电池中的阳极活性材料的组合物—从作为前体的异丙醇钛对TiO2-经氧化碳纳米管组合物的原位合成
将0.179g氧化至约4wt%并且长径比约60的碳纳米管(最初地CNano,等级C-9000)添加到27.3ml的NMP(N-甲基吡咯烷酮)和2.7ml的RO水并且超声处理1小时以得到完全剥离的溶液。通过将3.41ml的异丙醇钛(Sigma-Aldrich)添加到18ml的异丙醇(Ultra Pure Solutions,Inc.)来制备19% v/v溶液,并且在超声处理下的同时伴随搅拌将19% v/v溶液逐滴添加到剥离的碳纳米管分散体。然后,密封反应容器并将其温和地加热至略高于室温1小时。在整个反应期间保持超声处理和中等的搅拌速度。通过在真空下用布氏漏斗过滤、用乙醇洗涤以去除NMP以及在真空中干燥至恒定重量来得到反应产物。电子显微照片,图3,示出键合到离散的良好分散的碳纳米管的尺度为50nm至100nm的二氧化钛的晶体。

Claims (13)

1.一种用于锂离子电池的组合物,包括:
离散的碳纳米管,所述离散的碳纳米管具有附着到其表面的锂离子活性材料的晶体或层。
2.根据权利要求1所述的组合物,其中所述锂离子活性材料的晶体或层包含锂金属盐以及选自铁、锰、钴、铜、镍、钒、钛及其混合物的元素。
3.根据权利要求2所述的组合物,其中所述锂金属盐具有橄榄石晶体结构。
4.根据权利要求1所述的组合物,其中所述锂离子活性材料的晶体或层包含锡、硅、铜、锑、铝、锗、钛或其混合物。
5.根据权利要求1所述的组合物,其中所述离散的碳纳米管具有10至500的长径比以及按所述碳纳米管的重量计的从1%至15%的氧化水平。
6.根据权利要求1所述的组合物,还包括石墨烯或含氧石墨烯。
7.根据权利要求6所述的组合物,其中所述石墨烯与所述碳纳米管的重量比在0.1:99.9至99.9:0.1的范围内。
8.一种用于制造离散的碳纳米管的方法,所述离散的碳纳米管具有附着到其表面的锂离子活性材料的晶体或层,所述方法包括以下步骤:
a)选择长径比为10至500并且氧化水平为1wt%至15wt%的碳纳米管;
b)将所述碳纳米管与高沸点液体混合;
c)以正确的平衡添加试剂以合成锂盐;
d)在形成所述锂盐的温度下使所述混合物反应,同时超声处理所述混合物;
e)将固态离散的碳纳米管盐分离于所述液体;以及
f)在惰性气氛下在足以得到橄榄石晶体结构的温度下对所述固态离散的碳纳米管盐进行干燥和退火。
9.一种用于制造离散的碳纳米管的方法,所述离散的碳纳米管具有附着到其表面的锂离子活性材料的晶体或层,所述方法包括以下步骤:
a)选择长径比为10至500并且氧化水平为1wt%至15wt%的碳纳米管;
b)将所述碳纳米管与锂盐在具有表面活性剂的液体中混合;
c)超声处理所述液体碳纳米管/锂盐混合物;
d)将固态盐分离于所述液体;以及
e)在惰性气氛下在足以得到橄榄石晶体结构的温度下对附着有锂盐的固态离散的碳纳米管进行干燥和退火。
10.一种可用于锂离子电池的组合物,包括具有附着到其表面的锂离子活性材料的晶体或层的离散的碳纳米管,其中所述碳纳米管在0.1%至10%的碳纳米管与锂盐的重量比内。
11.一种可用于锂离子电池的组合物,包括具有附着到其表面的锂离子活性材料的晶体或层的经氧化的碳纳米管,其中所述碳纳米管是在小于1微米的尺度范围内均匀分散的而非聚集的。
12.一种可用于锂离子电池的组合物,包括具有附着到其表面的锂离子活性材料的晶体或层的可均匀分散的经氧化的碳纳米管。
13.根据权利要求12所述的组合物,其中所述锂离子活性材料的晶体或层化学附着到所述可分散的经氧化的碳纳米管的表面。
CN201280030167.1A 2011-06-23 2012-06-21 使用离散的碳纳米管的锂离子电池、制造离散的碳纳米管的方法以及由此得到的产品 Active CN103748712B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161500560P 2011-06-23 2011-06-23
US61/500,560 2011-06-23
PCT/US2012/043534 WO2012177865A1 (en) 2011-06-23 2012-06-21 Lithium ion batteries using discrete carbon nanotubes, methods for production thereof and products obtained therefrom

Publications (2)

Publication Number Publication Date
CN103748712A true CN103748712A (zh) 2014-04-23
CN103748712B CN103748712B (zh) 2017-05-17

Family

ID=46420563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280030167.1A Active CN103748712B (zh) 2011-06-23 2012-06-21 使用离散的碳纳米管的锂离子电池、制造离散的碳纳米管的方法以及由此得到的产品

Country Status (12)

Country Link
US (4) US10153483B2 (zh)
EP (3) EP4235854A3 (zh)
JP (1) JP6210980B2 (zh)
KR (1) KR102055804B1 (zh)
CN (1) CN103748712B (zh)
CA (1) CA2839614A1 (zh)
ES (1) ES2955519T3 (zh)
HU (1) HUE063512T2 (zh)
IN (1) IN2014DN00143A (zh)
SA (1) SA112330630B1 (zh)
TW (1) TW201301643A (zh)
WO (1) WO2012177865A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140461A (zh) * 2014-06-04 2015-12-09 清华大学 锂硫电池正极材料及其制备方法
CN106575767A (zh) * 2014-05-23 2017-04-19 日本贵弥功株式会社 正极材料、二次电池、正极材料的制造方法及二次电池的制造方法
CN109273689A (zh) * 2018-09-19 2019-01-25 惠州亿纬锂能股份有限公司 一种异质结构硅基负极材料及其制备方法和锂离子电池
CN111770958A (zh) * 2017-10-11 2020-10-13 钢筋分子设计有限责任公司 使用具有目标氧化水平的离散碳纳米管的屏蔽配制剂及其配制剂

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102156726B1 (ko) * 2011-08-29 2020-09-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 전지용 양극 활물질의 제작 방법
US11479652B2 (en) 2012-10-19 2022-10-25 Rutgers, The State University Of New Jersey Covalent conjugates of graphene nanoparticles and polymer chains and composite materials formed therefrom
CN103112846B (zh) * 2013-02-06 2014-12-10 华中科技大学 一种石墨烯-碳纳米管-纳米二氧化锡三维复合材料的制备方法及其产品
US9159999B2 (en) * 2013-03-15 2015-10-13 Nano One Materials Corp. Complexometric precursor formulation methodology for industrial production of fine and ultrafine powders and nanopowders for lithium metal oxides for battery applications
JP2014225508A (ja) 2013-05-15 2014-12-04 住友電気工業株式会社 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
EP3263330A4 (en) * 2015-02-23 2018-10-03 Lintec of America, Inc. Adhesive sheet
JP6304198B2 (ja) * 2015-11-04 2018-04-04 トヨタ自動車株式会社 非水電解液二次電池および非水電解液二次電池の製造方法
WO2017177176A1 (en) 2016-04-07 2017-10-12 Molecular Rebar Design, Llc Nanotube mediation of degradative chemicals for oil-field applications
CN109563302A (zh) 2016-04-07 2019-04-02 钢筋分子设计有限责任公司 具有靶向氧化水平的离散碳纳米管及其制剂
US11702518B2 (en) 2016-07-22 2023-07-18 Rutgers, The State University Of New Jersey In situ bonding of carbon fibers and nanotubes to polymer matrices
WO2019079457A2 (en) * 2017-10-20 2019-04-25 Northwestern University ANHYDROUS LIQUID PHASE EXFOLIATION OF ELECTROCHEMICALLY ACTIVE PRISTINE NANOFEIL
US11479653B2 (en) 2018-01-16 2022-10-25 Rutgers, The State University Of New Jersey Use of graphene-polymer composites to improve barrier resistance of polymers to liquid and gas permeants
CN110350144B (zh) 2018-04-03 2021-07-30 清华大学 电池电极、电池电极的制备方法及混合储能器件
CN110342493B (zh) 2018-04-03 2021-07-30 清华大学 过渡金属氧化物/碳纳米管复合材料及其制备方法
KR20210158747A (ko) * 2018-05-22 2021-12-31 몰레큘라 레바 디자인 엘엘씨 고표면적 나노튜브를 사용하는 개선된 리튬 이온 배터리
DE202018106258U1 (de) 2018-10-15 2020-01-20 Rutgers, The State University Of New Jersey Nano-Graphitische Schwämme
US11807757B2 (en) 2019-05-07 2023-11-07 Rutgers, The State University Of New Jersey Economical multi-scale reinforced composites
US11508966B2 (en) 2019-10-25 2022-11-22 Lyten, Inc. Protective carbon layer for lithium (Li) metal anodes
CN111106334B (zh) * 2019-12-16 2022-07-05 合肥国轩高科动力能源有限公司 一种锂离子电池复合负极片及其制备方法
US11901580B2 (en) 2020-01-10 2024-02-13 Lyten, Inc. Selectively activated metal-air battery
CN112573511A (zh) * 2020-12-03 2021-03-30 铜仁学院 一种石墨烯的简单制备方法
US11735745B2 (en) 2021-06-16 2023-08-22 Lyten, Inc. Lithium-air battery
KR20240036086A (ko) * 2021-07-23 2024-03-19 라이텐, 인코포레이티드 다수의 탄소질 영역으로부터 형성된 리튬-황 배터리 캐소드

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114068A (en) * 1997-05-06 2000-09-05 Mitsubishi Rayon Co., Ltd. Sheet for forming a polymer gelled electrolyte, a polymer gelled electrolyte using it, and a method for manufacture thereof
US20050006623A1 (en) * 2003-07-07 2005-01-13 Wong Stanislaus S. Carbon nanotube adducts and methods of making the same
CN101335347A (zh) * 2008-08-01 2008-12-31 黄德欢 锂离子电池的高导电性磷酸铁锂正极材料的制备方法
CN100539288C (zh) * 2004-12-02 2009-09-09 株式会社小原 全固态型锂离子二次电池及其固体电解质
WO2010117392A1 (en) * 2008-12-19 2010-10-14 Bosnyak Clive P Exfoliated carbon nanotubes, methods for production thereof and products obtained therefrom
CN101916851A (zh) * 2010-08-12 2010-12-15 深圳大学 磷酸铁锂-碳纤维复合阴极材料的制备方法和应用
US20110104551A1 (en) * 2009-11-05 2011-05-05 Uchicago Argonne, Llc Nanotube composite anode materials suitable for lithium ion battery applications

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785860A (ja) 1993-09-10 1995-03-31 Hyperion Catalysis Internatl Inc リチウム電池
US6872681B2 (en) * 2001-05-18 2005-03-29 Hyperion Catalysis International, Inc. Modification of nanotubes oxidation with peroxygen compounds
ATE550804T1 (de) 2003-09-18 2012-04-15 Commw Scient Ind Res Org Hochleistungsfähige energiespeichereinrichtungen
US20070280876A1 (en) * 2004-03-25 2007-12-06 William Marsh Rice University Functionalization of Carbon Nanotubes in Acidic Media
CA2566358C (en) 2004-05-21 2016-12-20 Agamatrix, Inc. Electrochemical cell and method for making an electrochemical cell
US20090317710A1 (en) 2008-06-20 2009-12-24 Mysticmd, Inc. Anode, cathode, grid and current collector material for reduced weight battery and process for production thereof
JP5345300B2 (ja) * 2006-06-27 2013-11-20 花王株式会社 リチウムイオン電池用複合正極材料およびこれを用いた電池
US7986509B2 (en) 2008-01-17 2011-07-26 Fraser Wade Seymour Composite electrode comprising a carbon structure coated with a thin film of mixed metal oxides for electrochemical energy storage
WO2009127901A1 (en) 2008-04-14 2009-10-22 High Power Lithium S.A. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
CN111710872A (zh) 2008-11-18 2020-09-25 Cps科技控股有限公司 电能量存储设备
KR20100073506A (ko) * 2008-12-23 2010-07-01 삼성전자주식회사 음극 활물질, 이를 포함하는 음극, 음극의 제조 방법 및 리튬 전지
US9093693B2 (en) * 2009-01-13 2015-07-28 Samsung Electronics Co., Ltd. Process for producing nano graphene reinforced composite particles for lithium battery electrodes
US9431649B2 (en) 2009-11-23 2016-08-30 Uchicago Argonne, Llc Coated electroactive materials
CN102668194B (zh) * 2009-12-04 2015-05-20 路透Jj股份有限公司 阴极活性材料前体和活性材料,及其制造方法
FR2957910B1 (fr) 2010-03-23 2012-05-11 Arkema France Melange maitre de nanotubes de carbone pour les formulations liquides, notamment dans les batteries li-ion
JP2012133959A (ja) 2010-12-21 2012-07-12 Furukawa Battery Co Ltd:The 鉛蓄電池用複合キャパシタ負極板及び鉛蓄電池
WO2013011516A1 (en) 2011-07-20 2013-01-24 Vulcan Automotive Industries Ltd Funcionalized carbon nanotube composite for use in lead acid battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114068A (en) * 1997-05-06 2000-09-05 Mitsubishi Rayon Co., Ltd. Sheet for forming a polymer gelled electrolyte, a polymer gelled electrolyte using it, and a method for manufacture thereof
US20050006623A1 (en) * 2003-07-07 2005-01-13 Wong Stanislaus S. Carbon nanotube adducts and methods of making the same
CN100539288C (zh) * 2004-12-02 2009-09-09 株式会社小原 全固态型锂离子二次电池及其固体电解质
CN101335347A (zh) * 2008-08-01 2008-12-31 黄德欢 锂离子电池的高导电性磷酸铁锂正极材料的制备方法
WO2010117392A1 (en) * 2008-12-19 2010-10-14 Bosnyak Clive P Exfoliated carbon nanotubes, methods for production thereof and products obtained therefrom
US20110104551A1 (en) * 2009-11-05 2011-05-05 Uchicago Argonne, Llc Nanotube composite anode materials suitable for lithium ion battery applications
CN101916851A (zh) * 2010-08-12 2010-12-15 深圳大学 磷酸铁锂-碳纤维复合阴极材料的制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575767A (zh) * 2014-05-23 2017-04-19 日本贵弥功株式会社 正极材料、二次电池、正极材料的制造方法及二次电池的制造方法
CN105140461A (zh) * 2014-06-04 2015-12-09 清华大学 锂硫电池正极材料及其制备方法
CN111770958A (zh) * 2017-10-11 2020-10-13 钢筋分子设计有限责任公司 使用具有目标氧化水平的离散碳纳米管的屏蔽配制剂及其配制剂
CN109273689A (zh) * 2018-09-19 2019-01-25 惠州亿纬锂能股份有限公司 一种异质结构硅基负极材料及其制备方法和锂离子电池

Also Published As

Publication number Publication date
SA112330630B1 (ar) 2016-03-08
WO2012177865A1 (en) 2012-12-27
KR20140051903A (ko) 2014-05-02
JP2014523613A (ja) 2014-09-11
IN2014DN00143A (zh) 2015-05-22
US20140322610A1 (en) 2014-10-30
KR102055804B1 (ko) 2019-12-13
CA2839614A1 (en) 2012-12-27
US8968924B2 (en) 2015-03-03
TW201301643A (zh) 2013-01-01
US20140154577A1 (en) 2014-06-05
US20150180029A1 (en) 2015-06-25
US20120328946A1 (en) 2012-12-27
EP4235854A3 (en) 2023-11-01
EP3139429A1 (en) 2017-03-08
EP2724403B1 (en) 2016-10-05
EP3139429B1 (en) 2023-06-07
EP2724403A1 (en) 2014-04-30
ES2955519T3 (es) 2023-12-04
US10153483B2 (en) 2018-12-11
US8808909B2 (en) 2014-08-19
CN103748712B (zh) 2017-05-17
EP4235854A2 (en) 2023-08-30
US9065132B1 (en) 2015-06-23
HUE063512T2 (hu) 2024-01-28
JP6210980B2 (ja) 2017-10-11

Similar Documents

Publication Publication Date Title
CN103748712B (zh) 使用离散的碳纳米管的锂离子电池、制造离散的碳纳米管的方法以及由此得到的产品
Liang et al. A chronicle review of nonsilicon (Sn, Sb, Ge)‐based lithium/sodium‐ion battery alloying anodes
JP5465307B2 (ja) 硫黄−グラフェン複合材料の製造方法
CN107408677B (zh) 多孔硅-硅氧化物-碳复合物和其制备方法
Jo et al. Continuous-flow synthesis of carbon-coated silicon/iron silicide secondary particles for Li-ion batteries
Lim et al. Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries
Xu et al. A maize-like FePO 4@ MCNT nanowire composite for sodium-ion batteries via a microemulsion technique
Wang et al. Facile construction of high-performance amorphous FePO4/carbon nanomaterials as cathodes of lithium-ion batteries
JP6197454B2 (ja) 金属酸化物ナノ粒子−導電剤複合体およびそれを用いてなるリチウムイオン二次電池及びリチウムイオンキャパシタ、ならびに金属酸化物ナノ粒子−導電剤複合体の製造方法
CN104541393A (zh) 电极材料及其制造方法
CN114039060B (zh) 一种N-TiO2/Ti3C2Tx异质MXene结构材料、制备及其应用
CN104781957A (zh) 电极材料的制造方法、电极材料及具备该电极材料的蓄电装置
JPWO2020090704A1 (ja) グラフェン分散液およびその製造方法ならびに二次電池用電極
Chen et al. Graphene confined core-shell Si@ Cu nanoparticles as integrated anode with enhanced capacity and high-rate performance for Li-ion batteries
JP6301838B2 (ja) 電極材料の製造方法
CN107706389A (zh) 一种含过渡金属磷酸盐的核壳结构复合材料及其构筑方法和应用
US11631854B2 (en) Battery electrode, method for making the same and hybrid energy storage device using the same
Abdel-Karim et al. Recent advances of nanomaterials for rechargeable lithium-ion batteries: opportunities and challenges
Zhong et al. Nanomaterials in Anodes for Lithium Ion Batteries: Science and Manufacturability

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant