CN103687901A - 微多孔性聚乙烯膜的制造方法 - Google Patents

微多孔性聚乙烯膜的制造方法 Download PDF

Info

Publication number
CN103687901A
CN103687901A CN201280034937.XA CN201280034937A CN103687901A CN 103687901 A CN103687901 A CN 103687901A CN 201280034937 A CN201280034937 A CN 201280034937A CN 103687901 A CN103687901 A CN 103687901A
Authority
CN
China
Prior art keywords
stretching
film
micro
solvent
masking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280034937.XA
Other languages
English (en)
Other versions
CN103687901B (zh
Inventor
伊藤达也
河野公一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Battery Separator Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Battery Separator Film Co Ltd filed Critical Toray Battery Separator Film Co Ltd
Publication of CN103687901A publication Critical patent/CN103687901A/zh
Application granted granted Critical
Publication of CN103687901B publication Critical patent/CN103687901B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0269Separators, collectors or interconnectors including a printed circuit board
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

本发明提供一种微多孔性聚乙烯膜的制造方法,该方法中,将聚乙烯和制膜用溶剂混炼,从模具挤出而形成片材,拉伸该片材,除去该制膜用溶剂,该拉伸具有如下工序:沿着长度方向以1.1~2.0倍的拉伸倍率拉伸的工序、以及沿着长度方向和宽度方向同时地、以4~50倍的面积倍率拉伸的工序。通过本发明提供的微多孔性聚乙烯膜的制造方法,在制成电池时,该微多孔性聚乙烯膜在卷绕方向上具有均匀的特性,长度方向的刚性、透气度、热收缩性的均衡性优异。

Description

微多孔性聚乙烯膜的制造方法
技术领域
本发明涉及一种微多孔膜的制造方法,该微多孔膜广泛用作物质的分离、选择透过等中使用的分离膜以及碱金属、锂二次电池、燃料电池、电容器等电化学反应装置的间隔材料等。尤其涉及一种适合用作锂离子电池用隔膜的聚烯烃制微多孔膜的制造方法。
背景技术
聚烯烃微多孔膜广泛用作各种物质的分离、选择过滤中使用的分离膜、隔膜等。例如,聚烯烃微多孔膜被用作微滤膜、燃料电池用隔膜、电容器用隔膜等。其中,聚烯烃微多孔膜特别适合用作笔记本电脑、手机、数码相机等中广泛使用的锂离子电池用的隔膜。其原因可举出:聚烯烃微多孔膜具有优异的膜的机械强度、关断(shutdown)特性。
作为锂离子电池用的隔膜,必须在制成电池的状态下在高温循环试验、热箱试验等中显示出优异的结果等高温下的热收缩特性也优异。然而,高强度化、关断性及高孔隙率与热收缩率的大小呈相反的关系,很难以高效率生产它们的均衡性优异的隔膜。
例如,专利文献1中记载了一种聚乙烯微多孔膜的制造方法,其中,对包含制膜用溶剂的混合物进行第一拉伸,对除去制膜用溶剂后的微多孔膜进行第二拉伸。
专利文献2中记载了一种聚烯烃微多孔膜的制造方法(层合方法),将聚乙烯和制膜用溶剂分别从不同的模具挤出后,在不同的温度下进行两步拉伸,制成层合膜。
专利文献1:日本特开2007-63547号公报
专利文献2:国际公开第2007/046473号
发明内容
在上述专利文献1中记载的制膜用溶剂除去后进行第二拉伸的情况下,作为沿着长度方向拉伸的方法,可例举将膜预热至规定温度后、在至少一对辊之间利用其圆周速度差进行拉伸的辊拉伸法,用布铗把持住膜的两端、将该布铗间隙沿着长度方向扩大来进行拉伸的布铗拉伸法。如果利用前者,则在辊或膜表面有附着异物时,容易产生因为针孔等表面缺陷而损害膜品质的问题。另外,利用布铗拉伸法,则不仅拉伸装置价格昂贵,损害经济性,而且布铗把持部分和产品部分的拉伸比例中,布铗把持部更高,因此存在膜容易断裂的问题。
另外,专利文献2中记载的现有技术中,虽然透气度、耐热收缩性等的均衡性良好,但膜长度方向的刚性不足,将隔膜卷起作为电池时有时会产生缺陷。
即,本发明是:
(1)一种微多孔性聚乙烯膜的制造方法,其中,将聚乙烯和制膜用溶剂混炼,从模具挤出而形成片材,将所述片材拉伸,除去所述制膜用溶剂,所述拉伸具有如下工序:
沿着长度方向以1.1~2.0倍的拉伸倍率拉伸的工序,以及
沿着长度方向和宽度方向同时地、以4~50倍的面积倍率拉伸的工序。
(2)(1)所述的微多孔性聚乙烯膜的制造方法,其中,所述沿着长度方向以1.1~2.0倍的拉伸倍率拉伸的工序在110~120℃下进行。
(3)(1)或(2)所述的微多孔性聚乙烯膜的制造方法,其中,所述沿着长度方向和宽度方向同时地、以4~50倍的面积倍率拉伸的工序在115~125℃下进行。
(4)(1)~(3)中任一项所述的微多孔性聚乙烯膜的制造方法,其中,除去制膜用溶剂后,进一步进行拉伸、热处理。
(5)(4)所述的微多孔性聚乙烯膜的制造方法,其中,除去所述制膜用溶剂后的拉伸以MD拉伸倍率1.1~1.5倍、TD拉伸倍率1.15~1.5倍进行。
通过本发明的微多孔性聚乙烯膜的制造方法,能得到长度方向的刚性、热收缩特性、透气度的均衡性优异的聚烯烃微多孔膜。
具体实施方式
本发明中使用聚乙烯作为原料。聚乙烯优选使用重均分子量1×106~5×106的超高分子量聚乙烯和重均分子量1×105~8×105的高密度聚乙烯的混合物。
重均分子量(Mw)1×106~5×106的超高分子量聚乙烯是指包含50%以上的来源于乙烯的单元的重复单元、优选重复单元的至少85%是聚乙烯的聚乙烯均聚物及/或聚乙烯共聚物,是Mw为1.0×106~5.0×106的聚乙烯。MWD优选为50以下,更优选为1.2~50.0。
另外,超高分子量聚乙烯优选乙烯均聚物或乙烯/α-烯烃共聚物,所述乙烯/α-烯烃共聚物中,5.0摩尔%以下是至少一种以上的α-烯烃等共聚单体(摩尔%是将共聚物设为100%的值)。共聚单体例如由选自丙烯、1-丁烯、1-戊烯、1-己烯、4-甲基-1-戊烯、1-辛烯、乙酸乙烯酯、甲基丙烯酸甲酯或苯乙烯的至少一种形成。这样的聚合物或共聚物可以使用齐格勒-纳塔催化剂或单活性中心催化剂而得到。另外,熔点优选为134℃以上。另外,作为超高分子量聚乙烯(UHMWPE),可例举HI-ZEX MILLION 240-m聚乙烯等。
重均分子量1×105~8×105的高密度聚乙烯是指包含50%以上的来源于乙烯的单元的重复单元、优选重复单元的至少85%是聚乙烯的聚乙烯均聚物及/或聚乙烯共聚物,Mw为1×105~8×105。另外,优选MWD在2~15的范围内,不饱和末端基团量少于0.20/1.0×104碳原子。更优选Mw为4.0×105~6.0×105,MWD为3.0~10.0。更优选的是不饱和末端基团量优选为0.14/1.0×104碳原子以下,更优选为0.12/1.0×104碳原子以下。更优选为0.05~0.14/1.0×104碳原子、0.05~0.12/1.0×104碳原子(下限为检测限)。
高密度聚乙烯优选乙烯均聚物或乙烯/α-烯烃共聚物,所述乙烯/α-烯烃共聚物中,5.0摩尔%以下是至少一种以上的α-烯烃等共聚单体(摩尔%是将共聚物设为100%的值)。共聚单体例如由选自丙烯、1-丁烯、1-戊烯、1-己烯、4-甲基-1-戊烯、1-辛烯、乙酸乙烯酯、甲基丙烯酸甲酯或苯乙烯的至少一种形成。这样的聚合物或共聚物可以使用齐格勒-纳塔催化剂或单活性中心催化剂而得到。
作为重均分子量1×105~8×105的高密度聚乙烯,可使用“SUNFINE”(注册商标)SH-800或SH-810((株)Asahi KaseiChemicals)。
本发明中使用采用这些超高分子量聚乙烯和高密度聚乙烯的聚乙烯组合物。作为超高分子量聚乙烯和高密度聚乙烯以外的含有物,例如为填料、抗氧化剂、稳定剂及/或耐热树脂。优选使用的添加剂的类型、种类可以使用与WO2007/132942、WO2008/016174、WO2008/140835中记载的同样的类型、种类。
(混合、挤出工序)
本发明中,将含有超高分子量聚乙烯和高密度聚乙烯和制膜用溶剂的混合物挤出,使其冷却、固化。制膜用溶剂一般与聚合物有相容性,可用于挤出。例如,制膜用溶剂可以是任意种类,也可以是其组合,在挤出温度下可以与树脂以单相的形式结合。作为制膜用溶剂的具体例,是脂肪族烃或环状烃,有壬烷、癸烷、萘烷、石蜡油、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯等邻苯二甲酸酯等。可以优选使用40℃的运动粘度为20×10-6~200×10-6m2/sec的石蜡油,可使用美国公开公报2008/0057388及2008/0057389中记载的石蜡油。
制膜用溶剂和聚乙烯组合物的混合比例优选为:制膜用溶剂:聚乙烯组合物=50质量%:50质量%~90质量%:10质量%。
本发明中的聚乙烯组合物和制膜用溶剂的混合物形成(混合)、挤出优选使用双螺杆挤出机来进行。这里,所述填料等可以通过侧部进料器来添加。
混合能优选以0.1~0.65KWh/kg混合。更优选0.66KWh/kg>混合能≥0.12KWh/kg。如果混合能在该范围内,则可提高拉伸倍率,能得到(a)高屈服点、(b)高强度。混合能为0.12KWh/kg以上时,膜的平面性提高。混合能大于0.66KWh/kg时,因聚合物的分解而导致双轴拉伸性差,有时难以进行3×3倍以上的拉伸。
上述混合物用450rpm以下的转速的挤出机混合,优选为430rpm以下,更优选为410rpm以下,另外,优选为150rpm以上,更优选为250rpm以上。聚乙烯组合物和制膜用溶剂的混合物的混合温度为140℃~250℃,优选为210℃~240℃。
将聚乙烯组合物和制膜用溶剂的混合物从模具挤出,形成挤出物。为了后续工序,将挤出物调节成优选厚度,进行调节以使得能得到拉伸后的最终膜的所希望的厚度(1.0μm以上)。例如,挤出物的厚度为0.1mm~10mm或0.5~5mm。挤出在混合物熔融的状态下进行。使用制造片材的模具时,模具通常加热至140~250℃。优选的制造条件记载于WO2007/132942、WO2008/016174。
需要时,将挤出物暴露在15~80℃的温度范围内,形成冷却挤出物。冷却速度不特别限定,优选小于30℃/min,冷却至挤出物的凝胶化温度附近。冷却的制造条件记载于WO2007/132942、WO2008/016174、WO2008/140835。
挤出物的拉伸(上游拉伸)
将挤出物或冷却挤出物沿着长度方向以1.1~2.0倍的拉伸倍率拉伸。如果拉伸倍率过低,则成为伴有颈部(necked portion)的不均匀拉伸,损害厚度的均匀性,或是很难得到目标的长度方向强度。另外,如果拉伸倍率过高,则长度方向的分子取向持续上升,在双轴拉伸工序中容易发生膜的断裂,损害生产性。另外,从膜厚的均匀性·孔隙形状的均匀性的观点来看,拉伸温度优选在110~120℃,更优选在115~118℃的范围内。
为了在商业上实现这样的拉伸,如下所述的方法的工序稳定性·设备经济性优异,因此优选:将所述冷却片材导入包括多个辊机构的拉伸装置(辊拉伸装置),通过多个加热辊将该片材预热后,在至少一对辊之间利用其圆周速度差沿着长度方向拉伸,然后立即用冷却辊冷却。预热工序包括多个辊装置,作为该辊材质,可使用金属辊、陶瓷辊、橡胶辊等,作为加热方法,适当选择使热媒、温水、加压温水、蒸气等在辊内循环的利用流体的方法、感应加热方式等。另外,在拉伸工序中,在至少一对辊之间进行拉伸,但可以利用多对辊机构进行多步拉伸。此时,适当选择以规定的圆周速度驱动多个辊来进行拉伸的方式、在设有圆周速度差的一对辊之间配置多个自由辊来进行拉伸的方式。进而,在满足该拉伸工序中的长度方向的拉伸倍率范围(1.1~2.0)的前提下,可以组合低于1.0倍的松弛工序。
该片材在制膜用溶剂的作用下,表面容易变得光滑,因此在该拉伸工序中,为了将片材固定在拉伸辊上,优选采用夹持机构,优选利用橡胶辊将该片材按压在拉伸辊上来防止滑动。作为橡胶辊材质,可例举有机硅、氯丁二烯等合成橡胶类,有机硅橡胶系的耐热性优异,优选使用。接着,将挤出物或冷却挤出物沿着MD(长度方向)、TD(宽度方向)同时地、以4~50倍的面积倍率拉伸(上游拉伸或湿拉伸)。该拉伸使混合物中的聚合物中产生取向。挤出物可以用拉幅机拉伸,可采用辊拉伸、吹胀法或它们的组合。这里的拉伸温度优选为115~125℃,更优选为118~125℃,进一步更优选为119~123℃。
通过具有采用该特定的拉伸倍率的特定的拉伸工序,能在保持透气度、热收缩性的情况下得到优异的长度方向的刚性。
制膜用溶剂的除去
为了得到干燥膜,将制膜用溶剂从经拉伸的挤出物中除去。除去用的溶剂用于除去制膜用溶剂。关于该方法,例如记载于WO2008/016174。
残留的挥发性成分在除去稀释成分后从干燥膜中除去。洗涤溶剂的除去可采用各种方法。例如有热干燥、风干燥等。用于除去挥发性成分的洗涤溶剂的条件可采用与WO2008/016174同样的方法。
膜的拉伸(下游拉伸)
干燥膜的拉伸(称为下游拉伸或干拉伸,在至少除去了制膜用溶剂的状态下拉伸)优选沿着至少一个方向、MD及/或TD进行。该拉伸产生膜中的聚合物的取向。干拉伸前的下游拉伸的宽度方向的TD长度称为初始干燥宽度,长度方向的MD长度称为初始干燥长度。拉幅机拉伸法的装置记载于WO2008/016174,可采用与其同样的方法。
下游拉伸中,MD、TD的拉伸倍率可以适当选择,以达到目标的膜物性。但是,根据本技术,通过上游拉伸强化了向MD的取向,即使要实施MD拉伸,也优选控制在低倍率,以初始干燥长度比计在1~1.3的范围内,更优选为1~1.2。TD拉伸倍率以初始干燥宽度比计为1.1~1.6,如此则膜的品质均匀性良好,因此优选。特别是在电池用途中,TD的热收缩与MD的热收缩相比,对电池特性的影响更大,因此TD的拉伸倍率通常优选不超过MD的综合拉伸倍率。这里,将上游MD拉伸倍率和下游MD拉伸之积定义为综合MD拉伸倍率。作为更优选的拉伸倍率,MD拉伸倍率为1.1~1.5,更优选为1.2~1.4,TD拉伸倍率优选为1.15~1.5,更优选为1.2~1.4。可以在该范围内适当分配上游MD拉伸倍率和下游MD拉伸倍率。
干拉伸对于MD和TD可采用依次拉伸或同时双轴拉伸。双轴拉伸时,优选MD和TD同时拉伸。干拉伸为依次拉伸时,优选以MD、TD的顺序拉伸。
干拉伸中,干燥膜在Tm以下的温度、例如晶体分散温度(crystaldispersion temperature)(Tcd)-30℃~Tm的范围内进行。膜暴露在70℃~135℃的范围内的温度下。优选为120℃~132℃,更优选为128℃~132℃。需要说明的是,这里的Tcd和Tm是挤出物中使用的以5重量份以上混合的聚乙烯中熔点最低的聚乙烯的值。晶体分散温度作为ASTM D4065中记载的动态粘弹性测定的特性温度来测定。
拉伸速度在MD、TD上均优选为3%/sec以上,分别独立地选择。更优选5%/sec以上,进一步更优选10%/sec以上。优选5~25%/sec的范围。为了防止膜破损,上限优选为50%/sec。
热处理工序
认为热处理工序使晶体稳定化,在膜中形成均匀的薄层(lamella),并且使其热松弛,由此消除膜中残存的应力应变。本发明中,在热处理工序中,在微多孔膜从在至少一部分工序中把持微多孔膜两端的布铗上割裂开的状态下连续地进行热处理。热处理通过将膜暴露在Tcd~Tm之间的温度下来进行,优选为100℃~135℃,更优选为120℃~132℃,进一步更优选为122℃~130℃。热处理温度可采用与下游拉伸温度相同的温度。一般来说,热处理只要有足够的时间能在膜中形成均匀的薄层、通过热松弛来消除膜中残存的应力应变即可,但从生产性的观点来看,优选在1~300sec的范围内,更优选在1~120sec的范围内。
热处理工序后,将聚烯烃微多孔膜卷绕。
另外,本发明中,因为能连续地进行挤出、拉伸、制膜用溶剂除去、干燥、热处理,所以生产性优异。
上述本发明中得到的聚烯烃微多孔膜的热收缩特性优异,并且能连续地以良好的生产性制造热收缩特性优异的聚烯烃微多孔膜。
实施例
以下用实施例对本发明的具体例进行说明,但本发明不限定于此。
(评价方法)
1.膜厚
在微多孔膜的整个30cm的宽度范围内以5mm的长度方向间隔用接触厚度计测定5次膜厚,取其平均值而求得。膜厚测定机可使用(株)Mitsutoyo制的旋转卡尺(Rotary Caliper)RC-1。
2.戳穿强度
对用前端为球面(曲率半径R:0.5mm)的直径1mm的针以2mm/sec的速度戳穿膜厚T1的微多孔膜时的最大负荷进行测定。将最大负荷的测定值L1通过式:L2=(L1×20)/T1换算成膜厚为20μm时的最大负荷L2,作为戳穿强度。
3.孔隙率
微多孔膜的孔隙率通过膜的质量w1和与其等同的无孔隙的聚合物的重量w2(宽度、长度、组成相同的聚合物)之间的比较来测定。孔隙率通过下式来确定,是5次的测定值的平均值。
孔隙率(%)=(w2-w1)/w2×100
4.热收缩率
微多孔膜的平面方向(MD、TD)上的105℃下的热收缩率如下所述测定。(i)测定23℃下的微多孔膜的尺寸(MD及TD)。(ii)将样品在无负荷下暴露在105℃、8小时的条件下。然后,(iii)测定MD、TD的尺寸。MD和TD的热收缩率是将(iii)的尺寸除以(i)的尺寸,用1减去该值,以百分比表示。对于3个样品进行同样的测定,将其平均值作为热收缩率。
5.透气度
对于膜厚T1的微多孔膜按照JIS P 8117进行测定,将所得的透气度P1通过式:P2=(P1×20)/T1换算成膜厚为20μm时的透气度P2。测定进行3次,将其平均值作为透气度。
6.长度方向的刚性
沿着长度方向(MD)测定拉伸强度。测定使用宽10mm的长方形状试验片按照ASTM D882来测定。测定进行3次,将其平均值作为长度方向的刚性。
7.分子量
采用凝胶渗透法(GPC)。以单分散聚苯乙烯基准算出,如下所述定义。
数均分子量:Mn=(Σni·Mi)/Σni
重均分子量:Mw=(Σni·Mi2)/(Σni·Mi)
多分散性:Mw/Mn
·测定装置:Waters Corporation制GPC-150C
·柱:昭和电工(株)制Shodex UT806M
·柱温:135℃
·溶剂(流动相):邻二氯苯
·溶剂流速:1.0mL/min
·试样浓度:0.1质量%(溶解条件:135℃/hr)
·上样量:500μL
·检测器:Waters Corporation制差示折射计
·校正曲线:根据用单分散聚苯乙烯标准试样得到的校正曲线,用规定的换算常数制成。
8.熔点·结晶化温度
采用差示扫描量热测定(Differential scanning calorimetry)在以下条件下测定。
·测定装置 使用PerkinElmer公司制Pyris 1DSC。
·测定方法 将调整至5.5~6.5g的样品封入铝盘,从30℃开始升温,以10℃/min的速度升温至230℃,在230℃下保持10min。接着,将样品从230℃以10℃/min的冷却速度冷却至25℃(结晶化),在25℃下保持10min。然后,以10℃/min的速度升温至230℃(第二熔化)。记录结晶化和第二熔化这两者的热分析。熔点(Tm)是第二熔化曲线的峰,对3个样品进行测定,采用其平均值。
9.晶体分散温度
在以下条件下进行动态粘弹性行为的测定,求出晶格的松弛峰(relaxation peak of a crystal lattice),作为晶体分散温度。通过ASTMD4065中记载的方法来测定。
(实施例1)
(1)聚合物和制膜用溶剂的混合物的制备
聚合物和制膜用溶剂的混合物通过将液体石蜡和聚乙烯1(PE1)、聚乙烯2(PE2)的共混物混合来制备。该聚合物共混物使用(a)Mw为3.0×105、MWD为4.05、不饱和末端基团量为0.14/1.0×104碳原子、熔点Tm为136.0℃的PE1 95质量%,(b)Mw为2.0×106、熔点为136.0℃的PE2 5质量%。这里,质量%以混合的聚合物的重量为基准。
(2)膜的制造
将聚合物和制膜用溶剂的混合物送入挤出机,从片材形成模具挤出成片状挤出物。模具温度为210℃。挤出物用20℃的冷却辊冷却。将冷却的挤出物在115℃下拉伸至1.4倍后,在117℃下在TD、MD上均以5倍的拉伸倍率用拉幅机进行同时双轴拉伸。将经拉伸的凝胶状片材浸渍于25℃的二氯甲烷后,去除液体石蜡,然后通过室温的送风使其干燥。在此期间,膜的尺寸恒定,接着,用拉幅机在128℃的温度下以7%/sec的拉伸速度沿着TD方向干拉伸至1.1倍,形成最终的微多孔性聚乙烯膜。原料、工艺条件、膜特性记载于表1。
(实施例2)
实施例1中,在120℃下拉伸至1.8倍后,在123℃下在TD、MD上均以5倍的拉伸倍率用拉幅机进行同时双轴拉伸,除此以外与实施例1同样地得到微多孔性聚乙烯膜。制膜条件及测定结果示于表1。
(实施例3)
除去液体石蜡后,不进行拉伸,除此以外与实施例1同样地得到微多孔性聚乙烯膜。制膜条件及测定结果示于表1。
(比较例1)
实施例1中,在混合物的挤出后不进行1.4倍的拉伸,在117℃下在TD、MD上均以5倍的拉伸倍率用拉幅机进行同时双轴拉伸,除此以外与实施例1同样地得到微多孔性聚乙烯微多孔膜。制膜条件及测定结果示于表1。
(比较例2)
实施例1中,在混合物的挤出后,在115℃下进行2.2倍的拉伸,在120℃下在TD、MD上均以5倍的拉伸倍率用拉幅机进行同时双轴拉伸,除此以外与实施例1同样地得到微多孔性聚乙烯微多孔膜。制膜条件及测定结果示于表1。
Figure BDA0000456670390000131
工业适用性
通过本发明的制造方法得到的聚烯烃制微多孔膜可以特别适合用作锂离子电池用隔膜。

Claims (5)

1.一种微多孔性聚乙烯膜的制造方法,其中,将聚乙烯和制膜用溶剂混炼,从模具挤出而形成片材,将所述片材拉伸,除去所述制膜用溶剂,所述拉伸具有如下工序:
沿着长度方向以1.1~2.0倍的拉伸倍率拉伸的工序,以及
沿着长度方向和宽度方向同时地、以4~50倍的面积倍率拉伸的工序。
2.如权利要求1所述的微多孔性聚乙烯膜的制造方法,其中,所述沿着长度方向以1.1~2.0倍的拉伸倍率拉伸的工序在110~120℃下进行。
3.如权利要求1或2所述的微多孔性聚乙烯膜的制造方法,其中,所述沿着长度方向和宽度方向同时地、以4~50倍的面积倍率拉伸的工序在115~125℃下进行。
4.如权利要求1~3中任一项所述的微多孔性聚乙烯膜的制造方法,其中,在除去制膜用溶剂后,进一步进行拉伸、热处理。
5.如权利要求4所述的微多孔性聚乙烯膜的制造方法,其中,除去所述制膜用溶剂后的拉伸以MD拉伸倍率1.1~1.5倍、TD拉伸倍率1.15~1.5倍进行。
CN201280034937.XA 2011-07-22 2012-04-20 微多孔性聚乙烯膜的制造方法 Expired - Fee Related CN103687901B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2011-160666 2011-07-22
JP2011160666 2011-07-22
JP2011226309 2011-10-14
JP2011-226309 2011-10-14
JP2011264325 2011-12-02
JP2011-264325 2011-12-02
PCT/JP2012/060649 WO2013014986A1 (ja) 2011-07-22 2012-04-20 微多孔性ポリエチレンフィルムの製造方法

Publications (2)

Publication Number Publication Date
CN103687901A true CN103687901A (zh) 2014-03-26
CN103687901B CN103687901B (zh) 2015-11-25

Family

ID=47600846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280034937.XA Expired - Fee Related CN103687901B (zh) 2011-07-22 2012-04-20 微多孔性聚乙烯膜的制造方法

Country Status (5)

Country Link
US (1) US20140159271A1 (zh)
JP (1) JP5920602B2 (zh)
KR (1) KR101852803B1 (zh)
CN (1) CN103687901B (zh)
WO (1) WO2013014986A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106661264A (zh) * 2014-08-12 2017-05-10 东丽电池隔膜株式会社 聚烯烃微多孔膜及其制造方法、非水电解液系二次电池用隔膜、以及非水电解液系二次电池
CN114228122A (zh) * 2022-02-24 2022-03-25 佛山市盟思拉伸机械有限公司 薄膜双向混合拉伸装置与方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE035392T2 (en) * 2012-03-30 2018-05-02 Toray Industries Polyethylene microporous membrane and process
WO2017073788A1 (ja) * 2015-10-30 2017-05-04 住友化学株式会社 フィルム製造方法、フィルム製造装置、およびフィルム
CN105552280B (zh) * 2016-03-07 2018-09-11 上海恩捷新材料科技股份有限公司 一种锂离子电池隔膜的制备方法
JP7334719B2 (ja) * 2018-10-10 2023-08-29 東レ株式会社 ポリオレフィン微多孔膜、多層ポリオレフィン微多孔膜、電池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233176A (zh) * 2005-08-04 2008-07-30 东燃化学株式会社 聚乙烯微多孔膜及其制造方法以及电池用隔离件
CN101291794A (zh) * 2005-10-19 2008-10-22 东燃化学株式会社 聚烯烃多层微孔膜的制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082983B2 (ja) * 1988-05-12 1996-01-17 株式会社トクヤマ 多孔性フィルムの製造方法
JPH05117440A (ja) * 1991-10-31 1993-05-14 Mitsubishi Kasei Corp 多孔化ポリオレフインフイルムの製造方法
JP3953840B2 (ja) * 2002-02-28 2007-08-08 東燃化学株式会社 ポリオレフィン微多孔膜の製造方法及びその製造方法によるポリオレフィン微多孔膜
JP4344550B2 (ja) * 2002-06-25 2009-10-14 東燃化学株式会社 ポリオレフィン微多孔膜の製造方法及びポリオレフィン微多孔膜
JP4600970B2 (ja) * 2003-11-28 2010-12-22 旭化成イーマテリアルズ株式会社 ポリオレフィン微多孔膜の製造方法
US7807287B2 (en) * 2006-08-31 2010-10-05 Tonen Chemical Corporation Multi-layer, microporous membrane, battery separator and battery
KR100873851B1 (ko) * 2006-09-29 2008-12-15 도레이새한 주식회사 폴리올레핀 미다공막의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233176A (zh) * 2005-08-04 2008-07-30 东燃化学株式会社 聚乙烯微多孔膜及其制造方法以及电池用隔离件
CN101291794A (zh) * 2005-10-19 2008-10-22 东燃化学株式会社 聚烯烃多层微孔膜的制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106661264A (zh) * 2014-08-12 2017-05-10 东丽电池隔膜株式会社 聚烯烃微多孔膜及其制造方法、非水电解液系二次电池用隔膜、以及非水电解液系二次电池
CN106661264B (zh) * 2014-08-12 2019-12-10 东丽株式会社 聚烯烃微多孔膜及其制造方法、非水电解液系二次电池用隔膜、以及非水电解液系二次电池
CN114228122A (zh) * 2022-02-24 2022-03-25 佛山市盟思拉伸机械有限公司 薄膜双向混合拉伸装置与方法

Also Published As

Publication number Publication date
WO2013014986A1 (ja) 2013-01-31
CN103687901B (zh) 2015-11-25
KR101852803B1 (ko) 2018-04-27
US20140159271A1 (en) 2014-06-12
JPWO2013014986A1 (ja) 2015-02-23
JP5920602B2 (ja) 2016-05-18
KR20140051181A (ko) 2014-04-30

Similar Documents

Publication Publication Date Title
CN103687901B (zh) 微多孔性聚乙烯膜的制造方法
KR100943697B1 (ko) 물성, 생산성 및 품질 균일도가 우수한 폴리에틸렌 미세다공막 및 그 제조방법
JP5779644B2 (ja) 生産性に優れ、物性調節が容易なポリオレフィン微多孔膜の製造方法
CN104220499B (zh) 聚乙烯微多孔膜及其制造方法
KR101716249B1 (ko) 폴리올레핀 미세 다공막 및 이의 제조 방법
EP3252850B1 (en) Multilayered heat-resistant separator element and method for manufacturing same
KR102386487B1 (ko) 미다공막, 리튬 이온 2차 전지, 및 미다공막 제조 방법
US10658639B2 (en) Method of preparing microporous membrane, microporous membrane, battery separator, and secondary battery
KR20140119019A (ko) 폴리올레핀 미세 다공 필름, 폴리올레핀 미세 다공 필름 롤, 그들의 제조 방법 및 그들을 사용한 전지용 세퍼레이터
WO2012102129A1 (ja) 微多孔膜、その製造方法及びそれを用いたバッテリーセパレーター
JP2011526547A (ja) 微多孔膜を製造するための冷却ロールアセンブリおよび微多孔膜の製造方法
JPWO2018043331A1 (ja) 微多孔膜、リチウムイオン二次電池及び微多孔膜製造方法
TWI770003B (zh) 聚烯烴微多孔膜及其製造方法以及電池用隔膜及其製造方法
JP2013514389A (ja) 微多孔膜、その製造方法、及びその電池用セパレータフィルムとしての使用
TW201838225A (zh) 聚烯烴微多孔膜及使用其之電池
US20120208090A1 (en) Microporous membranes, methods for making such membranes, and the use of such membranes
JP5924263B2 (ja) 多孔性ポリプロピレンフィルムおよびその製造方法
JP2011162669A (ja) 多孔性ポリプロピレンフィルムロールおよびその製造方法
JP2013108045A (ja) ポリオレフィン微多孔膜の製造方法
JP4925238B2 (ja) ポリオレフィン製微多孔膜の製造方法
JP7470297B2 (ja) ポリオレフィン微多孔膜およびその製造方法
JP2022023000A (ja) ポリオレフィン微多孔膜の製造方法
KR20120063877A (ko) 고안전성 폴리올레핀 미다공막의 제조방법 및 이로부터 제조된 고안전성 폴리올레핀 미다공막
TWI716496B (zh) 電池用隔膜及其製造方法以及電池用隔膜之捲繞體
JP2024060490A (ja) 微多孔膜捲回体、微多孔膜捲回体の製造方法、および二次電池用セパレータ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170719

Address after: Tokyo, Japan

Patentee after: TORAY INDUSTRIES, Inc.

Address before: Tochigi County, Japan

Patentee before: TORAY BATTERY SEPARATOR FILM Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

CF01 Termination of patent right due to non-payment of annual fee