WO2013014986A1 - 微多孔性ポリエチレンフィルムの製造方法 - Google Patents

微多孔性ポリエチレンフィルムの製造方法 Download PDF

Info

Publication number
WO2013014986A1
WO2013014986A1 PCT/JP2012/060649 JP2012060649W WO2013014986A1 WO 2013014986 A1 WO2013014986 A1 WO 2013014986A1 JP 2012060649 W JP2012060649 W JP 2012060649W WO 2013014986 A1 WO2013014986 A1 WO 2013014986A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
stretching
polyethylene
microporous
longitudinal direction
Prior art date
Application number
PCT/JP2012/060649
Other languages
English (en)
French (fr)
Inventor
伊藤達也
河野公一
Original Assignee
東レバッテリーセパレータフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レバッテリーセパレータフィルム株式会社 filed Critical 東レバッテリーセパレータフィルム株式会社
Priority to CN201280034937.XA priority Critical patent/CN103687901B/zh
Priority to KR1020137034332A priority patent/KR101852803B1/ko
Priority to JP2013525602A priority patent/JP5920602B2/ja
Priority to US14/233,243 priority patent/US20140159271A1/en
Publication of WO2013014986A1 publication Critical patent/WO2013014986A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0269Separators, collectors or interconnectors including a printed circuit board
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separation membrane used for separation of substances, selective permeation, and the like, and a method for producing a microporous membrane widely used as a separator for an electrochemical reaction device such as an alkali, lithium secondary battery, fuel cell, capacitor, etc. About.
  • the present invention relates to a method for producing a polyolefin microporous membrane that is suitably used as a lithium ion battery separator.
  • Polyolefin microporous membranes are widely used as separation membranes, separators and the like used for separation of various substances and selective filtration.
  • polyolefin microporous membranes are used as microfiltration membranes, fuel cell separators, capacitor separators, and the like.
  • the polyolefin microporous membrane is particularly preferably used as a separator for lithium ion batteries widely used in notebook personal computers, mobile phones, digital cameras and the like. The reason is that the polyolefin microporous membrane has excellent mechanical strength and shutdown characteristics of the membrane.
  • the battery As a separator for a lithium ion battery, the battery must be excellent in heat shrink characteristics at high temperatures, such as showing excellent results in a high-temperature cycle test, an oven test, etc. in a battery state.
  • the increase in strength, shutdown performance and high porosity are in conflict with the magnitude of the heat shrinkage, and it has been difficult to efficiently produce a separator excellent in balance between these.
  • Patent Document 1 in the method for producing a polyethylene microporous membrane, a first stretching is performed on a mixture containing a film-forming solvent, and a second stretching is performed on the microporous membrane from which the film-forming solvent has been removed.
  • a method for producing a polyethylene microporous membrane is described.
  • Patent Document 2 describes a production method (laminating method) of a polyolefin microporous membrane, but after extruding polyethylene and a film-forming solvent from different dies, they are stretched in two stages at different temperatures, Manufactures laminated films.
  • the film is preheated to a predetermined temperature, and then the peripheral speed between at least a pair of rolls.
  • a roll stretching method that stretches using the difference
  • a clip stretching method that stretches the film by gripping both ends of the film with clips and expanding the clip gap in the longitudinal direction.
  • Patent Document 2 Although the balance of air permeability, heat shrinkage resistance, etc. is good, the rigidity in the film longitudinal direction is insufficient, and there is a defect when winding a separator as a battery. It sometimes occurred.
  • the present invention (1) A method for producing a microporous film in which polyethylene and a film-forming solvent are kneaded, a sheet extruded from a die is stretched, and the film-forming solvent is removed, wherein the stretching is 1 in the longitudinal direction.
  • a method for producing a microporous polyethylene film having a step of stretching at a draw ratio of 1 to 2.0 times, and a step of simultaneously drawing at an area magnification of 4 to 50 times in the longitudinal direction and the width direction;
  • a microporous polyethylene film of the present invention it is possible to obtain a polyolefin microporous film having an excellent balance of rigidity in the longitudinal direction, heat shrinkage characteristics, and air permeability.
  • polyethylene is used as a raw material.
  • the polyethylene is preferably a mixture of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1 ⁇ 10 6 to 5 ⁇ 10 6 and high density polyethylene having a weight average molecular weight of 1 ⁇ 10 5 to 8 ⁇ 10 5 .
  • Ultra high molecular weight polyethylene having a weight average molecular weight (Mw) of 1 ⁇ 10 6 to 5 ⁇ 10 6 includes 50% or more of repeating units derived from ethylene, and preferably at least 85% of the repeating units are polyethylene.
  • the MWD is preferably 50 or less, more preferably 1.2 to 50.0.
  • the ultra high molecular weight polyethylene is preferably an ethylene homopolymer or an ethylene / ⁇ -olefin copolymer, and 5.0 mol% or less is a comonomer such as at least one ⁇ olefin (mol% is 100% of the copolymer). %).
  • the comonomer is, for example, selected from at least one of propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, vinyl acetate, methyl methacrylate, or styrene.
  • Such a polymer or copolymer can be obtained using a Ziegler-Natta catalyst or a single site catalyst.
  • fusing point is 134 degreeC or more.
  • UHMWPE ultra high molecular weight polyethylene
  • HI-ZEX Examples include MILLION 240-m polyethylene.
  • the high density polyethylene having a weight average molecular weight of 1 ⁇ 10 5 to 8 ⁇ 10 5 contains 50% or more of repeating units derived from ethylene, and preferably a polyethylene homopolymer wherein at least 85% of the repeating units are polyethylene And / or a polyethylene copolymer with an Mw of 1 ⁇ 10 5 to 8 ⁇ 10 5 .
  • the MWD is in the range of 2 to 15 and the amount of unsaturated end groups is less than 0.20 / 1.0 ⁇ 10 4 carbon atoms. More preferably, Mw is 4.0 ⁇ 10 5 to 6.0 ⁇ 10 5 and MWD is 3.0 to 10.0.
  • the amount of unsaturated end groups is preferably 0.14 / 1.0 ⁇ 10 4 carbon atoms or less, and more preferably 0.12 / 1.0 ⁇ 10 4 carbon atoms or less. . More preferably, they are 0.05 to 0.14 / 1.0 ⁇ 10 4 carbon atoms, and 0.05 to 0.12 / 1.0 ⁇ 10 4 carbon atoms (the lower limit is the measurement limit). ).
  • the high density polyethylene is preferably an ethylene homopolymer or an ethylene / ⁇ -olefin copolymer, and 5.0 mol% or less is a comonomer such as at least one ⁇ olefin (mol% is 100% of the copolymer). Value.
  • the comonomer is, for example, selected from at least one of propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, vinyl acetate, methyl methacrylate, or styrene.
  • Such a polymer or copolymer can be obtained using a Ziegler-Natta catalyst or a single site catalyst.
  • high-density polyethylene having a weight average molecular weight of 1 ⁇ 10 5 to 8 ⁇ 10 5
  • SUNFINE registered trademark
  • SH-800 registered trademark
  • SH-810 As the high-density polyethylene having a weight average molecular weight of 1 ⁇ 10 5 to 8 ⁇ 10 5
  • a polyethylene composition using these ultrahigh molecular weight polyethylene and high density polyethylene is used.
  • the content other than the ultra high molecular weight polyethylene and the high density polyethylene include a filler, an antioxidant, a stabilizer, and / or a heat resistant resin.
  • the types and types of additives preferably used can be the same as those described in WO2007 / 132942, WO2008 / 016174, WO2008 / 140835. (Mixing, extrusion process)
  • a mixture containing ultrahigh molecular weight polyethylene, high density polyethylene and a solvent for film formation is extruded, cooled and solidified. Film-forming solvents are generally compatible with polymers and used for extrusion.
  • the formation (mixing) and extrusion of the polyethylene composition and the solvent for film formation are preferably performed using a twin screw extruder.
  • the filler and the like may be added by a side feeder.
  • the mixing energy is preferably 0.1 to 0.65 kWh / kg. More preferably, 0.66 kWh / kg> mixing energy ⁇ 0.12 kWh / kg.
  • the draw ratio can be increased, and (a) a high yield point and (b) a high strength can be obtained.
  • the mixing energy is 0.12 kWh / kg or more, the flatness of the film is improved.
  • the mixing energy is larger than 0.66 kWh / kg, the biaxial stretching property is poor due to the decomposition of the polymer, and stretching of 3 ⁇ 3 times or more may be difficult.
  • the above-mentioned mixture is mixed with an extruder having a rotational speed of 450 rpm or less, preferably 430 rpm or less, more preferably 410 rpm or less, preferably 150 rpm or more, more preferably 250 rpm or more.
  • the mixing temperature of the mixture of the polyethylene composition and the film-forming solvent is 140 ° C. to 250 ° C., preferably 210 ° C. to 240 ° C.
  • the mixture of the polyethylene composition and the film-forming solvent is extruded from the die to form an extrudate.
  • the extrudate is adjusted to a preferred thickness for subsequent processing and adjusted to obtain the desired thickness (1.0 ⁇ m or more) of the final film after stretching.
  • the thickness of the extrudate is 0.1 mm to 10 mm or 0.5 to 5 mm.
  • Extrusion is performed with the mixture in a molten state.
  • the die is usually heated to 140-250 ° C. Preferred production conditions are described in WO2007 / 132294 and WO2008 / 016174.
  • the extrudate is exposed to a temperature range of 15-80 ° C. to form a cooled extrudate.
  • the cooling rate is not particularly critical, but is preferably less than 30 ° C./min, and is cooled to around the gel temperature of the extrudate. Manufacturing conditions for cooling are described in WO2007 / 132294, WO2008 / 016174, and WO2008 / 140835.
  • Stretching of extrudate (upstream stretching) The extrudate or cooled extrudate is stretched in the longitudinal direction at a draw ratio of 1.1 to 2.0 times. If the draw ratio is too low, non-uniform stretching with a neck portion occurs, and the thickness uniformity is impaired, or it becomes difficult to obtain the desired longitudinal strength.
  • the stretching temperature is preferably 110 to 120 ° C., more preferably 115 to 118 ° C., from the viewpoints of film thickness uniformity and pore shape uniformity.
  • the cooling sheet is led to a stretching apparatus (roll stretching apparatus) including a plurality of roll mechanisms, and after the sheet is preheated by a plurality of heating rolls, at least between a pair of rolls.
  • the method of stretching in the longitudinal direction using the difference in peripheral speed and immediately cooling with a cooling roll is preferable because of excellent process stability and equipment economy.
  • the preheating process includes a plurality of roll devices, and the roll material can be a metal roll, a ceramic roll, a rubber roll, etc., and the heating method is a heating medium, hot water, pressurized hot water, steam, etc.
  • a method using a circulating fluid, an induction heating method, or the like is appropriately selected.
  • Residual volatile components are removed from the dry film after removal of the diluted components.
  • Various methods can be used to remove the washing solvent. For example, heat drying or wind drying.
  • the conditions of the washing solvent for removing volatile components can be the same method as in WO2008 / 016174.
  • Film stretching (downstream stretching) Stretching of the dry film (referred to as downstream stretching or dry stretching, which is performed in a state where at least the solvent for film formation is removed) is preferably performed in at least one direction MD and / or TD. Such stretching results in the orientation of the polymer in the film.
  • the TD length in the width direction of downstream stretching before dry stretching is referred to as initial drying width
  • the MD length in the length direction is referred to as initial drying length.
  • a device for the tenter stretching method is described in WO2008 / 016174, and a method similar to this can be used.
  • the overall MD stretch ratio is defined as the product of the upstream MD stretch ratio and the downstream MD stretch ratio. More preferable draw ratio is MD draw ratio of 1.1 to 1.5, more preferably 1.2 to 1.4, and TD draw ratio is preferably 1.15 to 1.5, more preferably 1.2 to 1.4. Within this range, the upstream MD stretch ratio and the downstream MD stretch ratio can be appropriately distributed.
  • Dry stretching can use sequential stretching or simultaneous biaxial stretching for MD and TD.
  • biaxial stretching it is preferable to stretch simultaneously with MD and TD.
  • dry stretching is sequential stretching, it is preferable to stretch in the order of MD and TD.
  • the dry film is formed at a temperature not higher than Tm, for example, in the range of crystal dispersion temperature (Tcd) ⁇ 30 ° C. to Tm.
  • Tcd crystal dispersion temperature
  • the membrane is exposed to a temperature in the range of 70 ° C to 135 ° C. 120 ° C to 132 ° C is preferable, and 128 ° C to 132 ° C is more preferable.
  • Tcd and Tm are values in polyethylene having the lowest melting point among polyethylenes mixed in 5 parts by weight or more used for extrudates.
  • Crystal dispersion temperature is ASTM Measured as the temperature of the dynamic viscoelasticity measurement characteristics described in D4065.
  • the stretching speed is preferably 3% / sec or more for both MD and TD, and is independently selected. More preferably, it is 5% / sec or more, more preferably 10% / sec or more. The range of 5 to 25% / sec is preferable. The upper limit is preferably 50% / sec in order to prevent membrane breakage.
  • Heat treatment process It is believed that the heat treatment process stabilizes crystals, forms uniform lamellae in the film and heat relaxes, thereby eliminating stress strain remaining in the film. In the present invention, in the heat treatment step, the heat treatment is continuously performed in a state where the microporous membrane is separated from the clip that holds both ends of the microporous membrane in at least a part of the steps.
  • the heat treatment is performed by exposing the film to a temperature between Tcd and Tm, preferably 100 ° C. to 135 ° C., more preferably 120 ° C. to 132 ° C., more preferably 122 ° C. to 130 ° C.
  • the heat treatment temperature can be the same as the downstream stretching temperature.
  • the heat treatment requires a sufficient time to form a uniform lamella in the film and eliminate the stress strain remaining in the film by thermal relaxation, but from the viewpoint of productivity, it is in the range of 1 to 300 seconds. Is more preferable, and the range of 1 to 120 seconds is more preferable.
  • the polyolefin microporous film is wound.
  • productivity is excellent because extrusion, stretching, solvent removal for film formation, drying, and heat treatment can be performed continuously.
  • the polyolefin microporous membrane obtained by the present invention described above is excellent in heat shrinkage properties, and can produce a polyolefin microporous membrane excellent in productivity and heat shrinkage properties continuously.
  • the porosity of the microporous membrane is measured by comparing the mass w 1 of the microporous membrane with the equivalent weight w 2 of the polymer without voids (for polymers of the same width, length and composition). The The porosity is determined by the following formula and is an average value of five measurements.
  • Porosity (%) (w 2 ⁇ w 1 ) / w 2 ⁇ 100 4).
  • Thermal contraction rate The thermal contraction rate at 105 ° C. in the planar direction (MD, TD) of the microporous membrane is measured as follows. (i) Measure the dimensions of the microporous membrane at 23 ° C. (MD and TD). (ii) Expose the sample to the condition of 105 ° C. and 8 hours without load. Thereafter, (iii) the MD and TD dimensions are measured. The thermal contraction rate of MD and TD is obtained by dividing the size of (iii) by the size of (i) and subtracting the value from 1 in percent. The same measurement was performed on the three samples, and the average value was defined as the heat shrinkage rate. 5.
  • GPC gel permeation method
  • Melting point / crystallization temperature Measured under the following conditions using differential scanning calorimetry. -Measuring apparatus Pyrys 1DSC manufactured by PerkinElmer is used. Measurement method A sample adjusted to 5.5 to 6.5 g is sealed in an aluminum pan, heated from 30 ° C., heated to 230 ° C. at a rate of 10 ° C./min, and held at 230 ° C. for 10 min. The sample is then cooled (crystallization) from 230 ° C. to 25 ° C. at a cooling rate of 10 ° C./min and held at 25 ° C. for 10 min. Thereafter, the temperature is raised to 230 ° C. (second melting) at a rate of 10 ° C./min.
  • Example 1 Preparation of mixture of polymer and solvent for film formation A mixture of a polymer and a solvent for film formation is prepared by mixing a blend of liquid paraffin, polyethylene 1 (PE1), and polyethylene 2 (PE2).
  • This polymer blend has (a) Mw of 3.0 ⁇ 10 5 , MWD of 4.05, unsaturated end group amount of 0.14 / 1.0 ⁇ 10 4 carbon atoms, and melting point Tm of 136.0 ° C.
  • PE1 is 95% by mass
  • PE2 having an Mw of 2.0 ⁇ 10 6 and a melting point of 136.0 ° C.
  • the mass% is based on the weight of the mixed polymer.
  • Example 2 Microporous polyethylene in the same manner as in Example 1 except that the film was stretched 1.8 times at 120 ° C. in Example 1 and then simultaneously biaxially stretched by a tenter at a stretching ratio of 5 times in both TD and MD at 123 ° C. A film was obtained. Table 1 shows the film forming conditions and the measurement results.
  • Example 3 After removing the liquid paraffin, a microporous polyethylene film was obtained in the same manner as in Example 1 except that stretching was not performed. Table 1 shows the film forming conditions and the measurement results.
  • Example 1 Comparative Example 1
  • the microporous structure was microporous as in Example 1, except that 1.4 times of stretching was not performed after extrusion of the mixture, and simultaneous biaxial stretching was performed with a tenter at 117 ° C. for both TD and MD at a stretching ratio of 5 times.
  • a porous polyethylene microporous membrane was obtained. Table 1 shows the film forming conditions and the measurement results.
  • Example 2 In Example 1, after extruding the mixture, the film was stretched 2.2 times at 115 ° C., and the same biaxial stretching was performed with a tenter at 120 ° C. for both TD and MD at a stretch ratio of 5 times. A microporous polyethylene microporous membrane was obtained. Table 1 shows the film forming conditions and the measurement results.
  • the polyolefin microporous membrane obtained by the production method of the present invention can be suitably used particularly as a separator for a lithium ion battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

 ポリエチレンと製膜用溶剤とを混練し、ダイから押出してなるシートを延伸し、該製膜用溶剤を除去する微多孔性フイルムの製造方法であって、該延伸が長手方向に1.1~2.0倍の延伸倍率で延伸する工程、および長手方向と幅方向に同時に面積倍率4~50倍で延伸する工程を有する微多孔性ポリエチレンフイルムの製造方法。 電池とした場合に、巻き取り方向に均一な特性を有し、長手方向の剛性、透気度、熱収縮性のバランスに優れた微多孔性ポリエチレンフィルムの製造方法を提供する。

Description

微多孔性ポリエチレンフィルムの製造方法
 本発明は、物質の分離、選択透過などに用いられる分離膜、及びアルカリ、リチウム二次電池や燃料電池、コンデンサーなど電気化学反応装置の隔離材等として広く使用されている微多孔膜の製造方法に関する。特にリチウムイオン電池用セパレータとして好適に使用される、ポリオレフィン製微多孔膜の製造方法に関する。
 ポリオレフィン微多孔膜は、種々の物質の分離や選択ろ過に用いられる、分離膜、セパレータ等として広く用いられている。例えば、ポリオレフィン微多孔膜は、精密ろ過膜、燃料電池用セパレータ、コンデンサー用セパレータなどとして用いられている。これらの中でも、ポリオレフィン微多孔膜は、ノート型パーソナルコンピュータや携帯電話、デジタルカメラなどに広く使用されているリチウムイオン電池用のセパレータとして特に好適に使用されている。その理由は、ポリオレフィン微多孔膜が優れた膜の機械強度やシャットダウン特性を有していることが挙げられる。
 リチウムイオン電池用のセパレータとしては、電池とした状態で高温サイクル試験、オーブン試験などにおいて優れた結果を示すなど、高温下での熱収縮特性にも優れている必要がある。しかしながら、高強度化、シャットダウン性及び高空孔率と、熱収縮率の大きさとは相反する関係にあり、これらのバランスに優れたセパレータを効率良く生産することは困難であった。
 例えば、特許文献1には、ポリエチレン微多孔膜の製造方法において製膜用溶剤を含む混合物に対して第1の延伸を行い、製膜用溶剤を除去した微多孔膜に第2の延伸を行うポリエチレン微多孔膜の製造方法が記載されている。
 特許文献2には、ポリオレフィン微多孔膜の製造方法(積層方法)が記載されているが、ポリエチレンと製膜用溶剤とをそれぞれ異なるダイから押出した後、異なる温度で2段階の延伸を行い、積層膜を製造している。
特開2007-63547号公報 国際公開第2007/046473号
 上記の特許文献1に記載の製膜用溶媒除去後に第2の延伸をする場合、長手方向に延伸する方法としては、所定の温度にフイルムを予熱した後、少なくとも一対のロール間でその周速差を利用して延伸するロール延伸法と、フイルムの両端をクリップで把持して該クリップ間隙を長手方向に拡大することで延伸するクリップ延伸法が例示される。前者によるとロールあるいはフイルム表面への付着異物があるとピンホール等の表面欠点によりフイルム品質を損なう問題が発生しやすい。また、クリップ延伸法では延伸装置が高価なものとなり経済性を損なうばかりか、クリップ把持部分と製品部分の延伸比率はクリップ把持部が高くなるために、フイルムが破断しやすくなるという問題があった。
 また、特許文献2に記載された先行技術においては、透気度、耐熱収縮性などのバランスが良好であるもののフィルム長手方向の剛性が不十分であり、電池としてセパレータを巻き挙げる際に欠陥が生じることがあった。
 すなわち、本発明は、
(1)ポリエチレンと製膜用溶剤とを混練し、ダイから押出してなるシートを延伸し、該製膜用溶剤を除去する微多孔性フイルムの製造方法であって、該延伸が長手方向に1.1~2.0倍の延伸倍率で延伸する工程、および長手方向と幅方向に同時に面積倍率4~50倍で延伸する工程を有する微多孔性ポリエチレンフイルムの製造方法、
(2)前記長手方向に1.1~2.0倍の延伸倍率で延伸する工程が110~120℃にて行われる(1)記載の微多孔性ポリエチレンフィルムの製造方法、
(3)前記長手方向と幅方向に同時に面積倍率4~50倍で延伸する工程が115~125℃にて行われる(1)または(2)に記載の微多孔性ポリエチレンフィルムの製造方法、
(4)製膜用溶剤を除去した後、さらに延伸、熱処理を行う(1)~(3)のいずれかに記載の微多孔性ポリエチレンフィルムの製造方法、
(5)前記製膜用溶剤を除去した後の延伸が、MD延伸倍率が1.1~1.5倍、TD延伸倍率が1.15~1.5倍でなされる(4)に記載の微多孔性ポリエチレンフィルムの製造方法、
である。
 本発明の微多孔性ポリエチレンフィルムの製造方法によれば、長手方向の剛性、熱収縮特性、透気度のバランスに優れたポリオレフィン微多孔膜を得ることができる。
 本発明では、ポリエチレンを原料として用いる。ポリエチレンは、重量平均分子量1×10~5×10の超高分子量ポリエチレンと重量平均分子量1×10~8×10の高密度ポリエチレンとの混合物を用いるのが好ましい。
 重量平均分子量(Mw)1×10~5×10の超高分子量ポリエチレンとは、エチレン由来の単位の繰り返し単位が50%以上含まれており、好ましくは、繰り返し単位の少なくとも85%がポリエチレンであるポリエチレンホモポリマー及び/又はポリエチレンコポリマーであり、Mwが1.0×10~5.0×10のポリエチレンである。好ましくは、MWDが50以下、さらに好ましくは1.2~50.0である。
 また、超高分子量ポリエチレンは、好ましくは、エチレンホモポリマー若しくはエチレン/αオレフィンコポリマーであって5.0モル%以下が少なくとも一つ以上のαオレフィン等のコモノマーである(モル%は、コポリマーを100%とした値である)。コモノマーは例えば、少なくとも一つのプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、ビニルアセテート、メチルメタクリレート、又はスチレンから選ばれてなる。このような、ポリマー若しくはコポリマーはチグラーナッタ触媒又は、シングルサイト触媒を用いて得ることができる。また、融点が134℃以上であることが好ましい。また、超高分子量ポリエチレン(UHMWPE)としては、HI-ZEX
MILLION 240-mポリエチレンなどが挙げられる。
 重量平均分子量1×10~8×10の高密度ポリエチレンは、エチレン由来の単位の繰り返し単位が50%以上含まれており、好ましくは、繰り返し単位の少なくとも85%がポリエチレンであるポリエチレンホモポリマー及び/又はポリエチレンコポリマーであり、Mwが1×10~8×10である。また、好ましくは、MWDは2~15の範囲であり、不飽和末端基量が0.20/1.0×10炭素原子未満である。さらに好ましくは、Mwが4.0×10~6.0×10、MWDが3.0~10.0である。さらに好ましくは、不飽和末端基量が0.14/1.0×10炭素原子以下であることが好ましく、さらには、0.12/1.0×10炭素原子以下であることが好ましい。さらに好ましくは、0.05~0.14/1.0×10炭素原子、0.05~0.12/1.0×10炭素原子であることが好ましい(下限については測定限界である)。
 高密度ポリエチレンは、好ましくは、エチレンホモポリマー若しくはエチレン/αオレフィンコポリマーであって5.0モル%以下が少なくとも一つ以上のαオレフィン等のコモノマーである(モル%は、コポリマーを100%とした値である。)。コモノマーは例えば、少なくとも一つのプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、ビニルアセテート、メチルメタクリレート、又はスチレンから選ばれてなる。このような、ポリマー若しくはコポリマーはチグラーナッタ触媒又は、シングルサイト触媒を用いて得ることができる。
 重量平均分子量1×10~8×10の高密度ポリエチレンとしては“SUNFINE”(登録商標)SH-800またはSH-810((株)旭化成ケミカルズ)を用いることができる。
 本発明では、これらの超高分子量ポリエチレンと高密度ポリエチレンとを用いたポリエチレン組成物を用いる。超高分子量ポリエチレンと高密度ポリエチレン以外の含有物としては、例えば、フィラー、酸化防止剤、安定剤、及び/又は耐熱樹脂である。好ましく用いられる添加剤のタイプや種類はWO2007/132942,WO2008/016174,WO2008/140835に記載されたものと同じものを用いることができる。
(混合、押出工程)
 本発明では、超高分子量ポリエチレンと高密度ポリエチレンと製膜用溶剤とを含有する混合物を押出し、冷却、固化させる。製膜用溶剤は一般的にポリマーと相溶性があり押出に用いられる。例えば、製膜用溶剤は如何なる種類のものでも良く、その組合せでもよく、押出温度において、樹脂と単相として結合することができるものである。製膜用溶剤の具体例としては、脂肪族炭化水素若しくは環状炭化水素であり、ノナン、デカン、デカリン、パラフィンオイル、ジブチルフタレート、ジオクチルフタレートなどのフタル酸エステルなどである。40℃の動粘度が20×10-6~200×10-6/secのパラフィンオイルは好ましく用いることができ、米国公開公報2008/0057388及び2008/0057389に記載されたパラフィンオイルを用いることができる。
 製膜用溶剤とポリエチレン組成物の混合比率は、製膜用溶剤:ポリエチレン組成物=50質量%:50質量%~90質量%:10質量%が好ましい。
 本発明における、ポリエチレン組成物と製膜用溶剤との混合物形成(混合)、押出は二軸押出機を用いて行われることが好ましい。ここで、前記フィラーなどは、サイドフィーダによって添加されてもよい。
 混合エネルギーは0.1~0.65KWh/kgで混合されることが好ましい。さらに好ましくは、0.66KWh/kg>混合エネルギー≧0.12KWh/kgである。混合エネルギーがこの範囲であると、延伸倍率を高くすることができ、(a)高い降伏点、(b)高強度を得ることができる。混合エネルギーが0.12KWh/kg以上である場合、フィルムの平面性が向上する。混合エネルギーが0.66KWh/kgよりも大きい場合、ポリマーの分解によって二軸延伸性に乏しく、3×3倍以上の延伸が難しくなることがある。
 上述の混合物は、450rpm以下の回転数の押出機で混合され、好ましくは430rpm以下、さらに好ましくは、410rpm以下、また、好ましくは150rpm以上、さらに好ましくは、250rpm以上である。ポリエチレン組成物と製膜用溶剤との混合物の混合温度は、140℃~250℃、好ましくは、210℃~240℃である。
 ポリエチレン組成物と製膜用溶剤の混合物はダイから押し出され、押出物を形成する。押出物は後の工程のために好ましい厚さで調節され、延伸後の最終的な膜の所望の厚さ(1.0μm以上)を得ることができるように調節される。例えば、押出物の厚さは、0.1mm~10mm若しくは0.5~5mmである。押出は混合物が溶融した状態で行われる。シートを作製するダイが用いられる場合、ダイは通常140~250℃に加熱される。好ましい製造条件はWO2007/132942、WO2008/016174に記載されている。
 所望の場合、押出物は15~80℃の温度範囲に晒され、冷却押出物を形成する。冷却速度は特に決定的なものではないが、30℃/minよりも小さいことが好ましく、押出物のゲル温度付近まで冷却される。冷却の製造条件については、WO2007/132942、WO2008/016174、WO2008/140835に記載されている。
押出物の延伸(上流延伸)
 押出物若しくは冷却押出物は長手方向に1.1~2.0倍の延伸倍率で延伸される。延伸倍率が低すぎるとネック部を伴う不均一延伸となり厚みの均一性を損なったり、あるいは目的とする長手方向の強度を得ることが難しくなる。また、延伸倍率が高すぎると長手方向の分子配向が上昇し引き続く2軸延伸工程でフイルムの破断が発生しやすくなり生産性を損なう。また、膜厚の均一性・空孔形状の均一性の点で、延伸温度は110~120℃が好ましく、更に好ましくは115~118℃の範囲にあると好ましい。
 このような延伸を商業的に実現するためには、前記冷却シートを複数のロール機構を含む延伸装置(ロール延伸装置)に導き、複数の加熱ロールによって該シートを予熱後、少なくとも一対のロール間でその周速差を利用して長手方向に延伸し、直ちに冷却ロールで冷却する方法が工程安定性・設備経済性に優れ好ましい。予熱工程には複数のロール装置が含まれ、該ロール材質としては金属ロール、セラミックロール、ゴムロール等を用いることができ、加熱方法としては、熱媒、温水、加圧温水、蒸気等のロール内を循環する流体による方法、誘導加熱方式等が適宜選択される。また、延伸工程では、少なくとも一対のロール間で延伸されるが、複数対のロール機構によって、多段に延伸することが可能である。この場合、複数のロールを所定の周速で駆動して延伸する方式と周速差を設けた一対のロール間に複数のフリーロール配置し延伸する方式が適宜選択される。更に、当該延伸工程での長手方向の延伸倍率範囲(1.1~2.0)を満たす前提において、1.0倍未満の緩和工程を組み合わせることが可能である。
 当該シートは製膜用溶剤により表面が滑りやすくなっていることから、当該延伸工程においては延伸ロール上でシートを固定する目的でニップ機構を適用することが好ましく、ゴムロールにより該シートを延伸ロール上に押圧しスリップを防止することが好ましい。ゴムロール材質としては、シリコーン、クロロプレン等の合成ゴム類が例示されるが、シリコーンゴム系が耐熱性に優れ好ましく用いられる。次に、押出物若しくは冷却押出物はMD(長手方向)、TD(幅方向)に同時に面積倍率4~50倍で延伸される(上流延伸若しくはウエット延伸)。このような延伸は混合物中のポリマー中に配向を生じさせる。押出物はテンターを用いて延伸することができ、ロール延伸、インフレーション法、若しくはこれらの組合せを用いることができる。ここでの延伸温度は、115~125℃であることが好ましく、より好ましくは118~125℃、さらに好ましくは、119~123℃である。
 このような特定の延伸倍率を用いた特定の延伸工程を有することによって、透気度、熱収縮性を保ったまま優れた長手方向の剛性を得ることができる。
製膜用溶剤の除去
 乾燥膜を得るために製膜用溶剤は延伸された押出物から除去される。取り除くための溶剤は製膜用溶剤を除去するために用いられる。この方法については、例えば、WO2008/016174に記載されている。
 残留した揮発成分は、希釈成分の除去の後に乾燥膜から取り除かれる。洗浄溶媒の除去には様々な方法を用いることができる。例えば、熱乾燥、風乾燥などである。揮発成分の除去のための洗浄溶媒の条件はWO2008/016174と同じ方法を用いることができる。
膜の延伸(下流延伸)
 乾燥膜の延伸(下流延伸又は、ドライ延伸と呼ぶ。少なくとも製膜用溶剤が除去された状態で延伸される)は、好ましくは、少なくとも一方向MD及び/又はTDで行われる。このような延伸は、膜中のポリマーの配向を生じさせる。ドライ延伸前の下流延伸の幅方向のTD長さを初期乾燥幅、長さ方向のMD長さを初期乾燥長さという。テンター延伸法の装置はWO2008/016174に記載されており、これと同様の方法を用いることができる。
 下流延伸において、MD、TDの延伸倍率は目標とするフイルム物性を達成するために適宜選択可能である。但し、本技術によれば上流延伸によってMDへの配向が強化されており、MD延伸は実施したとしても低倍率に留めておくことが好ましく、初期乾燥長さ比で1~1.3の範囲であり、より好ましくは1~1.2である。TD延伸倍率は初期乾燥幅比で1.1~1.6であるとフイルムの品質均一性が良好となるために好ましい。特に、電池用途においては、TDの熱収縮は、MDの熱収縮と比較して電池特性への影響が大きいことから、TDの延伸倍率は通常MDの総合延伸倍率を超えないことが好ましい。ここで、上流MD延伸倍率と下流MD延伸の積として総合MD延伸倍率を定義する。より好ましい延伸倍率としては、MD延伸倍率が1.1~1.5、さらに好ましくは、1.2~1.4であり、TD延伸倍率は好ましくは1.15~1.5、さらに好ましくは1.2~1.4である。この範囲において、上流MD延伸倍率と下流MD延伸倍率とを適宜配分することができる。
 ドライ延伸はMDとTDに関して逐次延伸、または同時二軸延伸を用いることができる。二軸延伸の場合、MDとTDと同時に延伸されることが好ましい。ドライ延伸が逐次延伸の場合、MD、TDの順で延伸されることが好ましい。
 ドライ延伸では、乾燥膜は、Tm以下の温度、例えば、結晶分散温度(Tcd)-30℃~Tmの範囲で行われる。膜は70℃~135℃の範囲の温度に晒される。120℃~132℃が好ましく、128℃~132℃がさらに好ましい。なお、ここでのTcdとTmは、押出物に用いられる5重量部以上混合されているポリエチレンの中で融点が最も低いポリエチレンでの値である。結晶分散温度はASTM
D4065に記載された動的粘弾性測定の特性の温度として測定される。
 延伸速度はMD、TDとも3%/sec以上が好ましく、それぞれ独立して選択される。5%/sec以上であるとさらに好ましく、より好ましくは10%/sec以上である。5~25%/secの範囲であることが好ましい。上限は50%/secが破膜を防ぐために好ましい。
熱処理工程
 熱処理工程は結晶を安定化させ、膜中に均一なラメラを形成させると共に熱緩和させることで膜中に残存している応力歪を解消すると考えられている。本発明では、熱処理工程において、少なくとも一部の工程において微多孔膜の両端を把持するクリップから微多孔膜が切り離された状態で連続的に熱処理が行われる。熱処理は膜がTcd~Tmの間の温度に晒されることで行われ、好ましくは、100℃~135℃、さらに好ましくは120℃~132℃、より好ましくは122℃~130℃である。熱処理温度は下流延伸温度と同じ温度とすることができる。一般的に熱処理は膜中に均一なラメラを形成し熱緩和により膜中に残存している応力歪を解消できるのに十分な時間があれば良いが生産性の観点から、1~300secの範囲が好ましく、より好ましくは1~120secの範囲である。
 熱処理工程後、ポリオレフィン微多孔膜は巻きとられる。
 また、本発明では、押出、延伸、製膜用溶剤除去、乾燥、熱処理を連続的に行うことができるため、生産性が優れる。
 上述の本発明で得られるポリオレフィン微多孔膜は熱収縮特性に優れるものであり、かつ連続的に生産性良く熱収縮特性に優れたポリオレフィン微多孔膜を製造できるものである。
 以下に、本発明における具体例を、実施例を用いて説明するが、本発明はこれに限定されるものではない。
(評価方法)
1.膜厚
 微多孔膜の30cmの幅にわたって5mmの長手方向間隔で接触厚さ計により膜厚を5回測定し、平均することにより求めた。膜厚測定機は(株)ミツトヨ製ロータリーキャリパーRC-1を用いることができる。
2.突刺強度
 先端が球面(曲率半径R:0.5mm)の直径1mmの針で、膜厚Tの微多孔膜を2mm/secの速度で突刺したときの最大荷重を測定した。最大荷重の測定値Lを、式:L=(L×20)/Tにより、膜厚を20μmとしたときの最大荷重Lに換算し、突刺強度とした。
3.空孔率
 微多孔膜の空孔率は微多孔膜の質量wとそれと等価な空孔の無いポリマーの重量w(幅、長さ、組成の同じポリマーについての)との比較によって測定される。空孔率は、以下の式によって決定され、5回の測定値の平均値とする。
   空孔率(%)=(w-w)/w×100
4.熱収縮率
 微多孔膜の平面方向(MD,TD)における105℃での熱収縮率は以下の様に測定される。(i)23℃での微多孔膜の寸法を測る(MD及びTD)。(ii)サンプルを無加重にて105℃、8時間の条件に晒す。その後(iii)MD、TDの寸法を測定する。MDとTDの熱収縮率は(iii)の寸法を(i)の寸法で割り、その値を1から引いたものをパーセントで表したものである。3つのサンプルについて同様の測定を行い、その平均値を熱収縮率とした。
5.透気度
 膜厚Tの微多孔膜に対してJIS P 8117に準拠して測定した透気度Pを、式:P=(P×20)/Tにより、膜厚を20μmとしたときの透気度Pに換算した。測定は3回行いその平均値を透気度とする。
6.長手方向の剛性
 長手方向(MD)に引張強度を測定した。測定は、幅10mmの短冊状試験片を用いてASTM D882により測定した。測定は3回行いその平均値を長手方向の剛性とした。
7.分子量
 ゲルパーミエーション法(GPC)による。単分散ポリスチレン基準で算出し、以下で定義される。
     数平均分子量:Mn=(Σni・Mi)/Σni
     重量平均分子量:Mw=(Σni・Mi2)/(Σni・Mi)
     多分散度:Mw/Mn
・測定装置:Waters Corporation製GPC-150C
・カラム:昭和電工(株)製Shodex UT806M 
・カラム温度:135℃
・溶媒(移動相):o-ジクロルベンゼン
・溶媒流速:1.0 mL/min
・試料濃度:0.1 % by mass(溶解条件:135℃/hr)
・インジェクション量:500μL
・検出器:Waters Corporation製ディファレンシャルリフラクトメーター
・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数を用いて作成した。
8.融点・結晶化温度
 示差走査熱量測定 (Differential scanning calorimetry)を用い以下の条件で測定する。
・測定装置 パーキンエルマー社製パイリス1DSCを用いる。
・測定方法 5.5~6.5gに調整されたサンプルをアルミニウムパンに封じ、30℃から昇温して230℃まで10℃/minの速度で昇温し、230℃で10min保持される。サンプルは、次に230℃から25℃まで10℃/minの冷却速度で冷却され(結晶化)、25℃で10min間保持される。その後、10℃/minの速度で230℃まで昇温(第2融解)される。結晶化と第2融解の両方の熱分析が記録される。融点(Tm)は第2融解曲線のピークであり、3つのサンプルについて測定を行い、それを平均した値を用いる。
9.結晶分散温度
 以下の条件にて動的粘弾性挙動の測定を行い、結晶格子の緩和ピークを求めて、結晶分散温度とする。ASTM D4065に記載された方法で測定される。
(実施例1)
 (1)ポリマーと製膜用溶剤の混合物の調製
 ポリマーと製膜用溶剤との混合物は、リキッドパラフィンとポリエチレン1(PE1),ポリエチレン2(PE2)のブレンド物を混合することにより調製される。このポリマーブレンドは、(a)Mwが3.0×10で、MWDが4.05、不飽和末端基量が0.14/1.0×10カーボン原子、融点Tmが136.0℃であるPE1を95質量%、(b)Mwが2.0×10であり、融点が136.0℃であるPE2を5質量%用いてなる。ここで、質量%は混合したポリマーの重量を基準とする。
 (2)膜の製造
 ポリマーと製膜用溶剤の混合物は押出機に送り込まれ、シート形成ダイからシート状押出物として押し出された。ダイ温度は210℃であった。押出物は20℃の冷却ロールを用いて冷却された。冷却された押出物は115℃で1.4倍に延伸された後、117℃でTD、MDとも延伸倍率5倍でテンターによって同時二軸延伸された。延伸されたゲル状シートは25℃の塩化メチレンに浸漬された後、リキッドパラフィンを取り除かれ、その後、室温の送風にて乾燥させられた。この間膜のサイズは一定であり、続いて、テンターにて128℃の温度、7%/secの延伸速度で1.1倍にTD方向にドライ延伸され、最終的な微多孔性ポリエチレンフィルムが形成された。原料、プロセス条件、膜特性を表1に記載した。
(実施例2)
 実施例1において120℃で1.8倍に延伸された後、123℃でTD、MDとも延伸倍率5倍でテンターによって同時二軸延伸された以外は実施例1と同様にして微多孔性ポリエチレンフィルムを得た。製膜条件及び測定結果を表1に示す。
(実施例3)
 リキッドパラフィンを除去した後、延伸を行わない以外は実施例1と同様に微多孔性ポリエチレンフィルムを得た。製膜条件及び測定結果を表1に示す。
(比較例1)
 実施例1において、混合物の押出後に1.4倍の延伸を行わず、117℃でTD、MDとも延伸倍率5倍でテンターによって同時二軸延伸を行った以外は実施例1と同様に微多孔性ポリエチレン微多孔膜を得た。製膜条件及び測定結果を表1に示す。
(比較例2)
 実施例1において、混合物の押出後に115℃で2.2倍の延伸を行い、120℃でTD、MDとも延伸倍率5倍でテンターによって同時二軸延伸を行った以外は実施例1と同様に微多孔性ポリエチレン微多孔膜を得た。製膜条件及び測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の製造方法により得られるポリオレフィン製微多孔膜は、特にリチウムイオン電池用セパレータとして好適に使用することができる。

Claims (5)

  1. ポリエチレンと製膜用溶剤とを混練し、ダイから押出してなるシートを延伸し、該製膜用溶剤を除去する微多孔性フイルムの製造方法であって、該延伸が長手方向に1.1~2.0倍の延伸倍率で延伸する工程、および長手方向と幅方向に同時に面積倍率4~50倍で延伸する工程を有する微多孔性ポリエチレンフイルムの製造方法。
  2. 前記長手方向に1.1~2.0倍の延伸倍率で延伸する工程が110~120℃にて行われる請求項1記載の微多孔性ポリエチレンフィルムの製造方法。
  3. 前記長手方向と幅方向に同時に面積倍率4~50倍で延伸する工程が115~125℃にて行われる請求項1または2に記載の微多孔性ポリエチレンフィルムの製造方法。
  4. 製膜用溶剤を除去した後、さらに延伸、熱処理を行う請求項1~3のいずれかに記載の微多孔性ポリエチレンフィルムの製造方法。
  5. 前記製膜用溶剤を除去した後の延伸がMD延伸倍率が1.1~1.5倍、TD延伸倍率が1.15~1.5倍でなされる請求項4に記載の微多孔性ポリエチレンフィルムの製造方法。
PCT/JP2012/060649 2011-07-22 2012-04-20 微多孔性ポリエチレンフィルムの製造方法 WO2013014986A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280034937.XA CN103687901B (zh) 2011-07-22 2012-04-20 微多孔性聚乙烯膜的制造方法
KR1020137034332A KR101852803B1 (ko) 2011-07-22 2012-04-20 미다공성 폴리에틸렌 필름의 제조 방법
JP2013525602A JP5920602B2 (ja) 2011-07-22 2012-04-20 微多孔性ポリエチレンフィルムの製造方法
US14/233,243 US20140159271A1 (en) 2011-07-22 2012-04-20 Method of manufacturing a microporous polyethylene film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-160666 2011-07-22
JP2011160666 2011-07-22
JP2011226309 2011-10-14
JP2011-226309 2011-10-14
JP2011264325 2011-12-02
JP2011-264325 2011-12-02

Publications (1)

Publication Number Publication Date
WO2013014986A1 true WO2013014986A1 (ja) 2013-01-31

Family

ID=47600846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060649 WO2013014986A1 (ja) 2011-07-22 2012-04-20 微多孔性ポリエチレンフィルムの製造方法

Country Status (5)

Country Link
US (1) US20140159271A1 (ja)
JP (1) JP5920602B2 (ja)
KR (1) KR101852803B1 (ja)
CN (1) CN103687901B (ja)
WO (1) WO2013014986A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016024533A1 (ja) * 2014-08-12 2017-05-25 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜およびその製造方法、非水電解液系二次電池用セパレータ、ならびに非水電解液系二次電池
JP2019509591A (ja) * 2016-03-07 2019-04-04 シャンハイ、エナジー、ニュー、マテリアルズ、テクノロジー、カンパニー、リミテッドShanghai Energy New Materials Technology Co., Ltd. リチウムイオン電池隔離板の調製方法
WO2020075794A1 (ja) * 2018-10-10 2020-04-16 東レ株式会社 ポリオレフィン微多孔膜、多層ポリオレフィン微多孔膜、電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102027261B1 (ko) * 2012-03-30 2019-10-01 도레이 카부시키가이샤 폴리에틸렌 미다공막 및 그 제조방법
CN108348957A (zh) * 2015-10-30 2018-07-31 住友化学株式会社 膜制造方法、膜制造装置以及膜
CN114228122B (zh) * 2022-02-24 2022-06-14 佛山市盟思拉伸机械有限公司 薄膜双向混合拉伸装置与方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284535A (ja) * 1988-05-12 1989-11-15 Tokuyama Soda Co Ltd 多孔性フィルムの製造方法
JPH05117440A (ja) * 1991-10-31 1993-05-14 Mitsubishi Kasei Corp 多孔化ポリオレフインフイルムの製造方法
JP2003253026A (ja) * 2002-02-28 2003-09-10 Tonen Chem Corp ポリオレフィン微多孔膜の製造方法及びその製造方法によるポリオレフィン微多孔膜
JP2004083866A (ja) * 2002-06-25 2004-03-18 Tonen Chem Corp ポリオレフィン微多孔膜の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600970B2 (ja) * 2003-11-28 2010-12-22 旭化成イーマテリアルズ株式会社 ポリオレフィン微多孔膜の製造方法
CN101233176A (zh) * 2005-08-04 2008-07-30 东燃化学株式会社 聚乙烯微多孔膜及其制造方法以及电池用隔离件
JPWO2007046473A1 (ja) * 2005-10-19 2009-04-23 東燃化学株式会社 ポリオレフィン多層微多孔膜の製造方法
US7807287B2 (en) * 2006-08-31 2010-10-05 Tonen Chemical Corporation Multi-layer, microporous membrane, battery separator and battery
KR100873851B1 (ko) * 2006-09-29 2008-12-15 도레이새한 주식회사 폴리올레핀 미다공막의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284535A (ja) * 1988-05-12 1989-11-15 Tokuyama Soda Co Ltd 多孔性フィルムの製造方法
JPH05117440A (ja) * 1991-10-31 1993-05-14 Mitsubishi Kasei Corp 多孔化ポリオレフインフイルムの製造方法
JP2003253026A (ja) * 2002-02-28 2003-09-10 Tonen Chem Corp ポリオレフィン微多孔膜の製造方法及びその製造方法によるポリオレフィン微多孔膜
JP2004083866A (ja) * 2002-06-25 2004-03-18 Tonen Chem Corp ポリオレフィン微多孔膜の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016024533A1 (ja) * 2014-08-12 2017-05-25 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜およびその製造方法、非水電解液系二次電池用セパレータ、ならびに非水電解液系二次電池
JP2019509591A (ja) * 2016-03-07 2019-04-04 シャンハイ、エナジー、ニュー、マテリアルズ、テクノロジー、カンパニー、リミテッドShanghai Energy New Materials Technology Co., Ltd. リチウムイオン電池隔離板の調製方法
US11101524B2 (en) 2016-03-07 2021-08-24 Shanghai Energy New Materials Technology Co., Ltd. Method for preparing lithium-ion battery separator
WO2020075794A1 (ja) * 2018-10-10 2020-04-16 東レ株式会社 ポリオレフィン微多孔膜、多層ポリオレフィン微多孔膜、電池
JP7334719B2 (ja) 2018-10-10 2023-08-29 東レ株式会社 ポリオレフィン微多孔膜、多層ポリオレフィン微多孔膜、電池

Also Published As

Publication number Publication date
JP5920602B2 (ja) 2016-05-18
CN103687901A (zh) 2014-03-26
KR20140051181A (ko) 2014-04-30
CN103687901B (zh) 2015-11-25
JPWO2013014986A1 (ja) 2015-02-23
KR101852803B1 (ko) 2018-04-27
US20140159271A1 (en) 2014-06-12

Similar Documents

Publication Publication Date Title
JP6013368B2 (ja) ポリオレフィン微多孔フィルム、ポリオレフィン微多孔フィルムロールおよびそれらの製造方法ならびにそれらを用いた電池用セパレーター
KR101265556B1 (ko) 폴리올레핀 미세 다공막의 제조 방법 및 그 미세 다공막
JP4195810B2 (ja) ポリオレフィン微多孔膜及びその製造方法並びに用途
KR101716249B1 (ko) 폴리올레핀 미세 다공막 및 이의 제조 방법
JP5920602B2 (ja) 微多孔性ポリエチレンフィルムの製造方法
KR102157492B1 (ko) 적층 폴리올레핀 미세 다공막, 전지용 세퍼레이터 및 그것들의 제조 방법
WO2012102129A1 (ja) 微多孔膜、その製造方法及びそれを用いたバッテリーセパレーター
KR20150002649A (ko) 폴리에틸렌 미다공막 및 그 제조방법
TWI750214B (zh) 微多孔膜、鋰離子二次電池及微多孔膜製造方法
JP2012530619A (ja) 多層微多孔フィルム
TWI770004B (zh) 聚烯烴微多孔膜及其製造方法以及電池用隔膜及其製造方法
TWI770003B (zh) 聚烯烴微多孔膜及其製造方法以及電池用隔膜及其製造方法
KR20160094942A (ko) 폴리올레핀 미다공막, 비수 전해액계 이차 전지용 세퍼레이터, 폴리올레핀 미다공막 권회체, 비수 전해액계 이차 전지 및 폴리올레핀 미다공막의 제조 방법
KR20190046758A (ko) 미다공막, 리튬 이온 2차 전지, 및 미다공막 제조 방법
WO2015190487A1 (ja) ポリオレフィン微多孔フィルム、その製造方法及び電池用セパレータ
TW201841679A (zh) 聚烯烴微多孔膜、多層聚烯烴微多孔膜、積層聚烯烴微多孔膜、及隔離材
JPWO2018179810A1 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
JP2013514389A (ja) 微多孔膜、その製造方法、及びその電池用セパレータフィルムとしての使用
JP2008088393A (ja) ポリオレフィン微多孔膜の製造方法
JP5594873B2 (ja) ポリオレフィン系二軸延伸多孔質膜の製造方法及びポリオレフィン系二軸延伸多孔質膜
TW201838225A (zh) 聚烯烴微多孔膜及使用其之電池
JPWO2018173904A1 (ja) ポリオレフィン微多孔膜、及びそれを用いた電池
JP5924263B2 (ja) 多孔性ポリプロピレンフィルムおよびその製造方法
JP2013108045A (ja) ポリオレフィン微多孔膜の製造方法
JP7470297B2 (ja) ポリオレフィン微多孔膜およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525602

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137034332

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14233243

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817424

Country of ref document: EP

Kind code of ref document: A1